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Model‑predicted geometry 
variations to compensate material 
variability in the design of classical 
guitars
Alexander Brauchler 1*, Sebastian Gonzalez 2, Manuel Vierneisel 1, Pascal Ziegler 1, 
Fabio Antonacci 2, Augusto Sarti 2 & Peter Eberhard 1

Musical instrument making is often considered a mysterious form of art, its secrets still escaping 
scientific quantification. There is not yet a formula to make a good instrument, so historical examples 
are regarded as the pinnacle of the craft. This is the case of Stradivari’s violins or Torres guitars that 
serve as both models and examples to follow. Geometric copies of these instruments are still the 
preferred way of building new ones, yet reliably making acoustic copies of them remains elusive. 
One reason for this is that the variability of the wood used for instruments makes for a significant 
source of uncertainty—no two pieces of wood are the same. In this article, using state‑of‑the‑art 
methodologies, we show a method for matching the vibrational response of two guitar top plates 
made with slightly different materials. To validate our method, we build two guitar soundboards: one 
serving as a reference and the second acting as a copy to which we apply model‑predicted geometry 
variations. The results are twofold. Firstly, we can experimentally validate the predictive capabilities 
of our numerical model regarding geometry changes. Secondly, we can significantly reduce the 
deviation between the two plates by these precisely predicted geometry variations. Although 
applied to guitars here, the methodology can be extended to other instruments, e.g. violins, in a 
similar fashion. The implications of such a methodology for the craft could be far‑reaching by turning 
instrument‑making more into a science than artistic craftsmanship and paving the way to accurately 
copy historical instruments of a high value.

One of the largest problems found in guitar making is the lack of reproducibility: even though people talk of a 
‘Torres’ or a ‘Hausser’  model1, intrinsic material variations of the wood make every instrument unique. Yet, in 
their uniqueness, they all share a certain something that lets us speak of the different models and their character-
istic sounds. To achieve that characteristic sound, luthiers subtly modify the internal bracing of the guitar based 
on their experience and sensibility. This is where the art comes in.

There are, however, many reasons why a more systematic approach to instrument-building is timely and 
sorely needed. Global warming has already altered the habitat of  trees2,3, and tone-wood (the particular kind 
of spruce used for the soundboard of musical instruments) is bound to become more and more scarcely avail-
able. Recent research has clearly shown that the design of a guitar is much more important for the sound than 
environmental and material  variability4. What this research lacks, however, is a concrete methodology of how to 
compensate for those material variations by adjusting the design. In this article, we close this gap by combining 
the state-of-the-art in parameter identification applied to guitars together with standard optimisation techniques.

The starting point for our research lies with the recent advances in simplified FEM simulations for musical 
instruments, be they for guitars with model order reduction  methods5,6 or violins with neural  networks7. These 
simplified approaches allow us to obtain the values for the eigenfrequencies of the system in 1/1000th of the time 
compared to traditional FEM simulations without significant loss of accuracy, allowing us to perform optimisa-
tions in a reasonable  time6,8. The traditional approach has been used in a variety of musical instruments, from 
the  kantele9 to the viola da  gamba10, with numerous studies focusing on string  instruments4–8,11–20.
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In engineering, shape optimisation using finite element models evolved into a standard method used in many 
 applications21,22. However, in the field of musical instruments, the only examples that we are aware of are the 
shape optimisation of a bell, e.g.23–25, of vibraphone  bars26–28, and a simplified model of the violin top  plate29. To 
the best of the authors’ knowledge, shape optimisation has not yet been applied to string instruments because, 
in stark contrast to other examples, one does not know how to choose a suitable objective function because one 
lacks objective criteria to define a ‘good’ instrument. We can, however, count on the expert knowledge of luthiers 
and the evaluation of musicians to identify ‘good’ examples of guitars or  violins30–32. Therefore, trying to copy the 
vibrational response of these well-sounding instruments seems to be the most reasonable choice when it comes 
to designing an objective function for the optimisation of string instruments like guitars.

This article’s contribution is a methodology for creating a vibrational copy of a reference guitar’s top plate. We 
focus on the top plate since it is not only the most complex but also the most relevant part for sound production 
in a guitar. Figure 1 shows a diagram of the proposed methodology: Starting from a reference plate (top 1), we 
identify its modal parameters—namely eigenfrequencies, eigenmodes, and modal damping ratios—in a frequency 
range up to 1000 Hz. This frequency range has been chosen since up to this frequency our experimental results are 
admissible. Beyond that, the mesh we used to compute the modal parameters is too coarse to correctly identify 
the modes. The measured modal parameters of another plate (top 2) with identical geometry besides initially 
higher braces are fed into a material parameter identification process to obtain a virtual prototype that is able to 
predict the influence of geometric changes on this plate. This virtual prototype is used in numerical optimisa-
tion of the bracing heights to compensate for the differences in the eigenfrequencies between the two plates. The 
modifications to the bracing height are then applied to top 2 as predicted by the numerical optimisation. Finally, 
the experimental modal analysis of the reference and the modified copy shows that two different geometries can 
have a very similar vibrational response.

We believe this is an excellent starting point to tackle more general problems regarding the interaction 
between material and design of musical instruments, as it demonstrates that the traditional geometrical recon-
struction of the outer shape of instruments is not necessarily the best to obtain a standard vibrational response. 
Our approach shows that noticeable geometric modifications must be considered if a reference plate’s vibrational 
response is to be achieved. Even though the timbre of the instrument is also dependent on the high frequency 
 range33, a modal approach is not useful here as the modal overlap becomes relevant and a statistical approach 
should be used  instead34.

Results
We constructed two guitar top plates according to a simplified Torres fan bracing  pattern1. Great care was taken 
in building them as similarly as possible by matching the density of the braces used and the final weight of the 
top plates.

Figure 1.  Visualisation of the workflow that we use for matching the modal parameters of two soundboards by 
compensating the material differences through geometry modifications. Starting from the modal parameters of 
the reference plate (top 1). By fitting the material parameters of a different plate (top 2) in an initial state with 
thicker braces than the reference, we can optimise the geometry of the bracing by only looking at the differences 
in the eigenfrequencies. Finally, the experimental modal analyses show that two different geometries can have a 
very similar vibrational response.
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A diagram of the two plates and their bracing height indicated by colours can be seen in Fig. 1, for ‘top 1-ref-
erence’ and ‘top 2-initial’. We have coloured the top plates in different shades to indicate that they have different 
material parameters. In particular for top 1 the identified longitudinal stiffness is E1L = 11.6 GPa and the density 
is ρ1 = 403 kgm−3 and for top 2 we get E2L = 9.31 GPa and ρ2 = 407 kgm−3 . In total, 35 material parameters 
are identified for each top as all braces are handled individually (see “Methods”). We have started from very 
thick braces (7 mm in the fan region) for two reasons. First, it serves us as a validation of the numerical model 
for different geometric configurations. Secondly, when we try to optimise top 2 to fit the vibrational response of 
top 1, we need to have a range of possible heights for the braces, and since taking out wood is easier than adding 
it, we decided to start from an oversized configuration.

Figure 2a shows the eigenfrequencies of the experimental setup and the numerical model once the material 
parameters of the braces and the plate have been identified for top 1. The experimentally identified eigenfrequen-
cies are the mean values from 4 measurements, with the eigenfrequencies varying in a mean range of ±0.7% 
for the first 24 modes. Figure 2b shows the modal assurance criterion  matrix35 for the first 24 modes of the top 
plate—showing that the modal similarity is excellent. In order to validate the model, we implement the modal 
identification in two stages. Starting from the initial configuration with rather thick braces (Fig. 2c top 1-initial), 
we arrive at the reference configuration (Fig. 2c top 1-reference) and compute the relative change of the eigen-
frequencies in the numerical model as well as in the experimental setup. Figure 2d shows the relative change in 
the frequencies for the experiments and simulations. Notice that the material parameter identification is only 
made for the initial configuration of top 1. Further insight into the error of the numerical model is given in the 
Supplementary Material.

Once the material parameters are fully identified, we can develop a linear regression model of the relative 
influence of the bracing height on the eigenfrequencies (see “Methods”). Figure 3a shows the correlation between 
the braces’ heights and the eigenfrequencies of the first 6 modes of the top plate. In fact, we find the dependency 
of the eigenfrequencies on the bracing heights to be approximately linear for the first 13 modes (see Supple-
mentary Material). The vertical inset shows the modal shape associated with each eigenfrequency, whereas the 
horizontal diagrams show which of the braces it refers to. Notice that for symmetry, we only take pairs of braces 
in the fan, except for the central one. In Fig. 3b, the height changes necessary to influence the eigenfrequency of 
modes 1 and 2 are depicted vividly.

To quantify the variability in the eigenfrequencies due to material or design parameter changes, we sample 
the parameter space for each of them (geometric and material) in the range of possible values for each (see 
“Methods”). We sample the eigenfrequencies 10,000 times and obtain a distribution that turns out to be very 
close to normal, similarly to the results reported in Ref.7. From those distributions, and for each eigenfrequency, 

Figure 2.  (a) Comparison of eigenfrequencies calculated from the numerical model and experimentally 
identified eigenfrequencies for the initial configuration of top 1. (b) Comparison of eigenmodes between the 
numerical model and the experimental modal analysis. (c) Conducted bracing height changes to validate the 
numerical model. (d) Relative frequency changes caused by the bracing height variation in the numerical model 
and the experiment.
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we measure the standard deviation of the frequency change. Figure 3c shows the relative standard deviation in 
percentage for the first 10 modes of the top plate. Interestingly, the variation due to material parameters is, on 
average, slightly larger than that due to geometric variations, which explains why the wood selection is such a 
critical step in instrument making. Particularly modes 1, 2, 4, 6, and 8 are extremely sensitive to the variation in 
the material parameters and are much less affected by the bracing height. We conclude that these modes depend 
more on the plate’s specific stiffness than on the braces’ geometry. Nevertheless, these results explain that our 
method to reproduce the vibrational response works well since we started with very similar woods that only vary 
in their stiffness and had almost the same density.

Finally, in order to find out the necessary bracing heights of top 2 so that it vibrates as top 1, we use a straight-
forward optimisation process. Instead of using directly the finite element simulations at each iteration step, we 
use the linear regression model (explained in detail in the “Methods” section and the Supplementary Material) 
to solve the optimisation problem of the eigenfrequencies of both top plates with the objective function

Note that this function must be normalised so as to only compare relative changes in frequency and not give 
excessive importance to the higher modes. The number of modes used to define this function is arbitrary, but the 
higher the number of modes included, the more their shapes change, and the purely frequency-based objective 
function becomes less effective. We have settled on 13 as the largest number of modes that still behaves well. 
To minimise this objective function, we use Matlab’s fmincon constrained optimisation algorithm for the seven 
brace heights shown in Fig. 3a.

The optimisation problem is considered to be converged if the first order optimality criterion ||∇L || < 10−10 
is reached. Around 100 iterations are necessary until convergence. Although several starting points have been 
tested, it cannot be ruled out completely that the presented solution is a local, rather than a global, minimum. 
The resulting height profile for the braces is carved into top 2 as depicted in Fig. 4a. After the optimisation, the 
difference in eigenfrequencies between top 1 and top 2 can be observed for the initial and modified configuration 
(purple and green line in Fig. 4b respectively), as well as the difference predicted from the numerical model (red 
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(
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Figure 3.  (a) Correlation matrix between eigenfrequencies of the first modes and the height of specific bracing 
areas. (b) Bracing height changes that are necessary to change the eigenfrequency of the specified modes (colors 
match the colorbar in Fig. 3a). (c) Relative standard deviation of eigenfrequencies caused by feasible bracing 
height changes and possible material parameter changes within spruce wood.
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line). The mean error between the eigenfrequencies of top 1 and top 2 after modification is 1.55% or 27 cents 
(roughly the quarter of a semitone), which is extremely well predicted by the numerical model. The maximum 
error between eigenfrequencies of the tops is 4.99% or 88 cents for the sixth mode, which is still below one 
semitone difference.

While the modal shapes are primarily influenced by the shape of the tops, the modal damping ratios are 
mainly a material property and are expected not to change much if the bracing heights are changed. Hence, our 
objective function only considers the eigenfrequencies, for they are the main quantities that have to be adjusted. 
Figure 4c shows the damping ratio for the reference top 1 and the optimised top 2. The match is very good for 
the first six modes, so we expect a similar tonal performance of both top plates when used in a complete instru-
ment. However, the damping ratios of the eighth and the ninth eigenmode deviate considerably. This difference 
is also visible before modification of top 2 and, hence, is not caused during the optimisation process. From the 
acquired data, the cause of this deviation cannot be explained unambiguously. Possible causes might be uncer-
tainties in the manufacturing process, e.g. the glued connections, or the position of the experimental mount-
ing. A locally inhomogeneous material might be a further possible cause. The fit of the modal shapes is even 
better, showing an average MAC of 0.92 for the first 13 modes. An example of the mode similarity can be seen 
in Fig. 4d where for mode 5, a MAC of 0.98 is achieved. In conclusion, by fitting the first 13 eigenfrequencies, 
our model can correctly predict a height profile that top 2 needs to yield a similar vibrational response to top 1. 
The results are also excellent for both modal shapes and damping ratios, which come ‘for free’ when optimising 
the eigenfrequencies. From modal analysis theory, it is expected that matching modal parameters should result 
in a similar vibrational  response36. The graphs depicted in Fig. 5a confirm this expectation for one exemplary 
measured mobility compared between top 1 in its reference state and top 2 before and after the modification. 
The modified top 2 has a very similar frequency response to the one of top 1. In Fig. 5c the experimental plates 
are shown in their final state. The height differences between the harmonic bars are clearly visible while the small 
height differences in the fan are barely recognisable.

Discussions
In this article, we have presented a methodology for the material identification of a guitar top plate and a pre-
dictive framework that allows one to ‘copy’ a target vibrational response. The framework uses state-of-the-art 
methodologies to rapidly compute a linear regression model of the vibrational response of the plate as a function 
of the bracing height (see Supplementary Material). We then use that linear regression model to minimise an 
objective function based on the first 13 eigenfrequencies to obtain the geometry that matches the vibrational 
response in a top plate of a different material than the original. We carve the optimised bracing height profile in 
our experimental top and show that, indeed, the results are very similar, not only for the eigenfrequencies but also 
for the damping ratios and the modal shapes of the first 13 modes. Note, however, that the damping ratios cannot 
yet be explicitly controlled with the methodology since they are not included in the objective function. The decay 
time of the sound, for example, is one of the most important perceptual characteristics of an instrument, and 

Figure 4.  (a) Conducted bracing height changes given by the optimisation to fit the soundboard copy to the 
reference. (b) Experimentally identified relative frequency difference compared to the reference soundboard 
before and after the height changes. (c) Modal damping ratios of the reference and the copy soundboard in 
comparison. (d) One exemplary experimentally identified mode in comparison between reference and copy.
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our method is not able to optimise for this in its current formulation. Compared to previous results,  however8,29, 
our method has been shown to work experimentally, demonstrating, for the first time, that such computational 
approaches can be used in real life for the deliberate construction of vibrational copies of musical instruments. 
The question of whether fitting only the low-frequency modes ( ≤ 500 Hz) is enough to reproduce the timbre of 
the instrument or if the error achieved is perceptually significant is still open and requires further study.

Thanks to the model order reduction technique, we can sample a vast array of material and geometrical val-
ues and study how geometry and material parameters affect the eigenfrequencies. Previous results on the use of 
metamaterials for thin wooden  plates37 show that, to a certain degree, the density and stiffness of the plates can 
be purposefully controlled. By matching the density and the longitudinal stiffness of the top and the back plate, 
we can be certain that the modifications of the braces will be  minimal6.

The implications of these results are far-reaching in the field of instrument making: By quantifying how close 
we can come to a desired vibrational response with a given material, we have taken guesswork out of the equation 
in guitar-making. One could argue that the equipment used in this research is far beyond the reach of standard 
contemporary instrument-making workshops. However, the principles behind our method can be applied with 
any setup of modal identification. Some luthiers already perform this as part of their workflow to characterise 
their  instruments38–40. Furthermore, recent advances in the development of efficient surrogate models like neu-
ral network prediction of the vibrational response of  wood7,41 and parametric model order reduction for shape 
 optimisation42 make us hopeful that in the near future this optimisation method can become a fundamental 
part of guitar-makers’ toolboxes.

Finally, the ability to deliberately achieve a certain vibrational response is unheard of in classical instrument 
making. Instead of blindly following older designs or searching for new ones based only on intuition, we propose 
a method for scientifically and methodically producing a copy of a given instrument. This is not only relevant 
in guitar-making but in other instruments as well, and opens new possibilities for the construction of facsimiles 
and acoustic copies of historically relevant  instruments43–45. A case in point is violins, where some historical 
instruments more than 300 years old are no longer suited for actual playing. This method could help us hear these 
instruments (and the example of Stradivari’s Messiah comes immediately to mind) by creating accurate acoustic 
copies of them. Whether the accuracy of the method is sufficient to produce  perceptually32,46,47 indistinguishable 
copies of instruments still remains an open question. The path is rather long still, but this is a necessary step in 
the direction of turning instrument making more into a science than a mysterious art.

Figure 5.  (a) Measured frequency response functions for the plates in comparison. (b) Input and Output 
position of the mobility in (a) and alternative input that is used for the modal analysis. (c) Pictures of the two 
plates in their final configuration with depicted bracing heights next to the braces. Especially for the harmonic 
bars, the height difference between the corresponding braces of the two plates is clearly visible.
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Methods
Guitar plates construction. The guitar plates were built with same-grade wood pieces bought from the 
same dealer (Rivolta Wood, Desio, Italy). The wood used is Abete Rosso (Picea abies). Each guitar plate is made 
of two bookmatched pieces supplied by the dealer. The plates were glued up with fish glue (Kremer pigments, 
Aichstetten, Germany) using the traditional guitar-making methods. Six weeks passed between glueing the top 
plate and glueing the braces to allow the wood to regain its original moisture content.

The wood for the braces was sorted by density, and the two top plates were matched as closely as possible to 
have the same weight distribution on space. The mass variation of the braces for either guitar was less than 3 gr. 
Due to the size of the brace wood, an independent material parameter identification could not be used, and we 
opted for a bulk characterisation from the reduced-order model. The braces were glued to the soundboard with 
rabbit glue (Cremona tools, Cremona, Italy). The braces were planed by hand to a standard cross-section of 7 × 
7 mm and glued in a fan pattern based on a simplified Torres model from  18841, the Stradivari of guitar-making. 
Harmonic bars had a 23.5 × 7 mm cross-section. Before glueing the fan bars, we measured their density and 
ordered them in such a way that the heaviest bars were in the centre of the top plate and the lightest on the sides. 
This was done to have the two top plates as similar as possible in terms of their weight distribution. The impact 
of the glue was in no way characterised and assumed irrelevant. After construction, the plates were shipped 
from Cremona to Stuttgart, where they were kept in a climate-controlled room for 3 months before starting the 
measurements.

Experimental modal analysis. Experimental modal analysis is the standard method when it comes to iden-
tifying modal parameters of vibration structures and has been applied to various musical  instruments5,36,40,48,49. 
A setup with the guitar plates being suspended by very soft springs approximating free boundary conditions was 
developed for the experimental modal analysis. The plates were kept, and measurements were taken in a climate-
controlled room, with a relative humidity of 55± 1% and a constant temperature of 24 ◦ C. One can find details 
on the climate-controlled room in Ref.50. The plates’ velocities were measured with a Polytec PSV-500 Scanning 
Laser Doppler Vibrometer, and an automatic impulse hammer acts as the excitation  device51. The excitation with 
the hammer yielded a reproducible excitation of frequencies up to 1000 Hz, and the maximum forces on the 
guitar plates did not exceed 3.0 N. A total of 220 mobilities were measured. These measurements were composed 
of 110 points on the soundboard, where the velocity is measured, and two distinct excitation positions between 
the fan braces as depicted in Fig. 5b. Each measurement resulted in a data sequence of duration T = 0.8 s. Using 
a sampling step of �t = 1.6× 10−4 s, the width of each frequency bin of the corresponding Fourier transform 
was �f = 1.25 Hz. Longer measurements would have resulted in zero padding due to the faded signal and were, 
therefore, avoided. The complex mode indicator function, in combination with enhanced frequency response 
functions, was used to identify the modal parameters of the plates. Details on the method can be found  in52, 
and a detailed description of the application to a classical guitar is included  in5. The uncertainty of the modal 
parameter changes, given in the error bars in Figs. 2 and 4, was calculated from 15 measurements throughout 
the modification process of top 1 by interval  arithmetic53.

Material parameter identification. The material parameter identification follows the approach described 
in detail in Ref.6. Detailed finite element models of the guitar plates act as the key pieces of the  approach54,55. 
The models were created in the commercial software Abaqus with free boundary conditions and an orthotropic 
material model for all the  braces56. The plates were discretised with linear shell elements of Abaqus type S4, while 
the braces’ discretisation was carried out with linear C3D8 volume elements. In former publications, rigid tie 
constraints have shown to be a reasonable assumption for binding the plate and the braces  together5,6. Hence, 
this approach was used in this publication, too. The degrees of freedom of the full-order model with a very fine 
discretisation sum up to N = 400128.

Unfortunately, the detailed model takes too much computational time to be evaluated thousands of times 
during the parameter identification procedure. Furthermore, the parameter space would contain up to 107 
material parameters if all braces with all their material parameters were to be identified individually. Thus, a 
projection-based Krylov approach for parametric model order reduction was applied to reduce the number of 
degrees of freedom in an efficient surrogate model to n = 600 while keeping a good approximation of the full-
order model’s results up to 1000 Hz. This was reached by matching the transfer function of 4 inputs and outputs 
distributed over the plate at 20 frequency shifts equally distributed in the frequency range and 60 parameter 
expansion points created with a Sobol sequence as explained  in6. General information on model order reduc-
tion can be found in Refs.57,58 while a review of parametric model order reduction techniques is given in Ref.59, 
and the used software is described in Ref.60. The order-reduction approach reduces the computational time to 
calculate the first 30 modal parameters from 78 s with the full-order model to 0.04 s with the reduced-order 
model, corresponding to a numerical speedup of 1950. On a set of test data consisting of 100 evaluations for 
the first 30 eigenfrequencies, the common coefficient of determination is R2 = 0.96 between the reduced-order 
model and the full-order  model61.

In the reduced-order model, parameter dependency is preserved for the 35 most influential parameters cho-
sen with the help of a sensitivity analysis (see Supplementary Material). The parameters kept for the plates are 
the density ρ , the Young’s moduli EL in longitudinal and ER in the radial direction, and the shear modulus GLR . 
The parameters are identified for each brace individually. However, the number of parameters varies between 
the different braces as follows. Parameters for the fan braces comprise ρ , EL , and the shear modulus GLT with 
the subscript T denoting the tangential direction. The higher braces directly above and below the soundhole 
are characterised by ρ , EL , the Young’s modulus in tangential direction ET , and GLT . The horizontal brace on 
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the upper part of the plates is parameterised with ρ and EL . Values for spruce from Ref.62 are used for all the 
remaining values.

The parameter identification procedure follows a two-step approach. Firstly, the 35-dimensional parameter 
space were explored as done in Ref.6 using a sampling approach based on a Sobol-sequence and one million 
 samples63. In the second step, an objective function comparing eigenfrequencies and eigenmodes was evaluated, 
and the eight best-performing solutions were given into the Matlab fmincon algorithm as starting values. In both 
sets, constraints were set in such a way that the total mass of the plates would not allow variations beyond ±5% 
with respect to the experimentally measured value. As a second set of constraints, the material parameter values 
were not allowed to exceed bounds taken from  literature4,62,64,65. The best solution with respect to the objective 
function evaluated for the first 24 modes of the algorithm was used for the geometry optimisation.

Geometry optimisation. The finite element model with the identified material parameters served as a 
virtual prototype to apply the changes to the braces. The model of top 1 was used for validation purposes, as 
shown in Fig. 2, while the model with the material parameters for top 2 was used to optimise the bracing heights 
of top 2 to match the modal parameters of top 1, as visible in Fig. 4. In this procedure, seven independent height 
parameters were used for the ten braces as the symmetry in the fan braces was kept constant. Again, the full-
order model turned out to be unsuitable for optimisation purposes due to its high computational cost. For this 
reason, a linear regression model was fitted for the correlation between the first 13 eigenfrequencies and the 
heights of the braces. The linear regression model was trained with a set of 950 parameter samples of bracing 
heights created from a Sobol sequence in a realistic range of hrange = [1mm, 7mm] for the lower braces and 
Hrange = [8mm, 23.5mm] for the harmonic bars. The resulting linear regression model is given in the Sup-
plementary Material. On a set of test data consisting of 50 further samples, the coefficient of determination is 
R2 = 0.96.

This regression model was then used in the optimisation process to identify the optimal bracing heights. Since 
the finite element model approximates the absolute values of the eigenfrequencies with a small systematic error, 
the desired relative change of eigenfrequencies was used as optimisation criterion as depicted in the violet curve 
in Fig. 4b. Hence, the systematic error between the finite element model and the experiment did not influence 
the results. Then, the mean squared error of the first 13 eigenfrequencies was minimised using Matlab’s fmincon. 
The only constraints set in the optimisation process were the lower and upper bounds, and they were specified 
as written above in hrange and Hrange.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.
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