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Identification 
of cuproptosis‑related lncRNA 
for predicting prognosis 
and immunotherapeutic response 
in cervical cancer
Xiaoyu Kong 1,6, Yuanpeng Xiong 2,6, Mei Xue 3, Jie He 4, Qinsheng Lu 5, Miaojuan Chen 5* & 
Liping Li 4*

Patients diagnosed with advanced cervical cancer (CC) have poor prognosis after primary treatment, 
and there is a lack of biomarkers for predicting patients with an increased risk of recurrence of CC. 
Cuproptosis is reported to play a role in tumorigenesis and progression. However, the clinical impacts 
of cuproptosis‑related lncRNAs (CRLs) in CC remain largely unclear. Our study attempted to identify 
new potential biomarkers to predict prognosis and response to immunotherapy with the aim of 
improving this situation. The transcriptome data, MAF files, and clinical information for CC cases were 
obtained from the cancer genome atlas, and Pearson correlation analysis was utilized to identify 
CRLs. In total, 304 eligible patients with CC were randomly assigned to training and test groups. 
LASSO regression and multivariate Cox regression were performed to construct a cervical cancer 
prognostic signature based on cuproptosis‑related lncRNAs. Afterwards, we generated Kaplan–
Meier curves, receiver operating characteristic curves and nomograms to verify the ability to predict 
prognosis of patients with CC. Genes for assessing differential expression among risk subgroups were 
also evaluated by functional enrichment analysis. Immune cell infiltration and the tumour mutation 
burden were analysed to explore the underlying mechanisms of the signature. Furthermore, the 
potential value of the prognostic signature to predict response to immunotherapy and sensitivity to 
chemotherapy drugs was examined. In our study, a risk signature containing eight cuproptosis‑related 
lncRNAs (AL441992.1, SOX21‑AS1, AC011468.3, AC012306.2, FZD4‑DT, AP001922.5, RUSC1‑AS1, 
AP001453.2) to predict the survival outcome of CC patients was developed, and the reliability of the 
risk signature was appraised. Cox regression analyses indicated that the comprehensive risk score is 
an independent prognostic factor. Moreover, significant differences were found in progression‑free 
survival, immune cell infiltration, therapeutic response to immune checkpoint inhibitors, and IC50 for 
chemotherapeutic agents between risk subgroups, suggesting that our model can be well employed to 
assess the clinical efficacy of immunotherapy and chemotherapy. Based on our 8‑CRLs risk signature, 
we were able to independently assess the outcome and response to immunotherapy of CC patients, 
and this signature might benefit clinical decision‑making for individualized treatment.
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CRL  Cuproptosis-related lncRNA
TCGA   The cancer genome atlas
TCIA  The cancer immunome atlas
DEGs  Differentially expressed genes
ROC  Receiver operating characteristic
AUC   Area under curve
FDR  False discovery rate
OS  Overall survival
PFS  Progression-free survival
GO  Gene ontology
KEGG  Kyoto encyclopedia of genes and genomes
PCA  Principal component analysis
TMB  Tumor mutation burden
TME  Tumor microenvironment
IPS  Immunophenoscore
ICIs  Immune checkpoint inhibitors
IC50  Half maximal inhibitory concentration
RCD  Regulatory cell death

Cervical cancer is one of the most prevalent reproductive system tumours in females, with rates of occurrence 
and mortality being particularly high in developing  countries1,2. Although the development of vaccines against 
different genotypes of human papillomavirus has helped to reduce the incidence and mortality of cervical cancer, 
it is still a highly prevalent disease that seriously threatens the health of  women3. The main treatment options 
for patients with cervical cancer include surgical removal and radiotherapy, and concurrent chemoradiotherapy 
is recommended for patients with advanced cervical  cancer4. Although targeted therapies for cancer treatment 
have emerged in recent years, with considerable progress, the overall survival rate of cervical cancer is still 
 unsatisfactory5. Therefore, there is an urgent need to further investigate the biological mechanisms of cervical 
cancer progression and to seek new prognostic biomarkers to improve its treatment and prognosis.

Proposed on March 17, 2022, cuproptosis is a unique, copper-dependent modality of regulated cell death 
with a distinct molecular mechanism and signal transduction  pathways6,7. Cuproptosis differs from other known 
modes of cell death, including autophagy, apoptosis, pyroptosis, and ferroptosis. Accumulation of intracellular 
and mitochondrial copper induces mitochondrial stress, in particular, abnormal aggregation of mitochondrial 
lipoylated proteins and decreased levels of iron-sulfur cluster proteins, both of which together initiate proteo-
toxic stress and ultimately lead to cell  death8. Copper is an indispensable trace element required for maintaining 
human health that participates in numerous cellular biochemical processes as a cofactor of essential enzymes 
and has an integral role in mitochondrial respiration and antioxidant and redox  metabolism9. Nevertheless, 
high redox activity renders free copper ions highly cytotoxic, and therefore, the intracellular copper availability 
must be tightly regulated to maintain  homeostasis10. It has been shown that copper is present at higher levels in 
the serum of cancer patients than in healthy controls, suggesting that dysregulation of copper homeostasis may 
affect the development of  tumours11,12.

Long noncoding RNA (lncRNA) is a form of RNA with a length greater than 200 nucleotides. It has no 
capability to code for proteins yet affects a variety of biological processes in  cells13. With the advancement of 
sequencing technology and widely conducted genome sequencing projects, lncRNAs have become a hot topic 
for research in recent  years14. LncRNAs exert a critical role in a variety of biological functions and disease pro-
cesses, including embryonic development, cell growth and carcinogenesis, by affecting chromatin modification, 
transcription, and posttranscriptional  regulation15,16. Due to their tissue-specific expression and high stability, 
lncRNAs can be detected in body fluids or tumour tissues and are deemed novel potential biomarkers and thera-
peutic targets for diagnosing diseases, assessing prognosis and tracking disease  progression17. LncRNAs have also 
been demonstrated to modulate immunotherapy response by changing the tumour immune microenvironment, 
particularly tumour immune cell  infiltration18. For example, lncRNA TCL6 has been linked to tumour-infiltrating 
lymphocyte infiltration and demonstrated to modulate expression of PD-1, PD-L1 and CTLA-4 immune check-
point molecules; thus, it can serve as a prognostic and predictive molecular biomarker of breast  cancer19.

Since serum copper levels are elevated in patients with cervical cancer, altered copper levels are crucial for the 
development of  cancer20,21. Hence, modulation of cuproptosis is a prospective therapeutic target for CC. Aberrant 
expression of lncRNAs is also involved in the progression of  CC22. As there are few reports on their relationship, 
we attempted to combine them to investigate the worth of cuproptosis-related lncRNAs in predicting prognosis 
and response to immunotherapy in CC patients.

For our research, we extracted several cuproptosis-related lncRNAs and then built a signature to predict the 
outcome of CC patients and proceeded to internal validation and external validation. The results of a series of 
analyses indicate that this signature can predict prognosis, PFS, level of immune cell infiltration and response 
to ICI therapy in patients with CC.

Material and methods
Data collection. RNA-seq data, mutational data in mutation annotation format (MAF) and correspond-
ing clinical information of cervical cancer samples (306 samples of tumour tissue and 3 samples of adjacent 
normal tissue) were collected from the cancer genome atlas up to March 30, 2022 (TCGA; https:// portal. gdc. 
cancer. gov/). Patients with missing expression data were omitted from the analysis, with 304 CC patients in the 
final cohort. According to previously published literature, 19 cuproptosis-related genes were identified (Sup-

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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plementary Table S1). As an external validation cohort, clinical information and gene expression data for 300 
CC patients were collected from the GEO database (GSE44001 https:// www. ncbi. nlm. nih. gov/ geo/). The immu-
nophenoscore (IPS) for CTLA-4 and PD-1 inhibitors in CC patients was obtained from the cancer immunome 
atlas up to March 30, 2022 (TCIA; https:// tcia. at/ home).

Identification of CRLs in CESE. LncRNA and cuproptosis-related gene expression data were filtered from 
TCGA-CESE RNA-seq data. The correlation between all lncRNAs and cuproptosis-related genes was calculated 
via Pearson correlation analysis to determine cuproptosis-related lncRNAs. A lncRNA satisfying correlation 
coefficient |R2|> 0.3 and P < 0.001 was defined as a cuproptosis-related lncRNA. The 304 CC samples selected for 
subsequent analysis were assigned at random into a training group and a test group at a 1:1 ratio utilizing the 
“caret” package of R software (version 4.1.2).

Construction and validation of a CRLs signature. By applying univariate Cox regression analysis at 
P < 0.05, CRLs were shown to correlate substantially with the prognosis of CC patients based on survival infor-
mation encompassing overall survival (OS) and progression-free survival (PFS) in the TCGA database. To avoid 
overfitting, we employed LASSO and multivariate Cox regression analysis to calculate regression coefficients 
of significant prognostic lncRNAs in the training group, resulting in the establishment of a prediction signa-
ture. Weighting the standardized expression levels of each risk lncRNA with their corresponding regression 
coefficients generated a risk score (RS) for each patient. The following formula was used: 

∑n
i=1

Coef (i)× x(i) , 
where Coef (i) and x(i) signify the coefficient and standardized expression of lncRNA, respectively. Based on the 
median risk score of the training group, patients with CC were split into low- and high-risk groups. Kaplan–
Meier curves were plotted using the “survival” R package to assess the OS and PFS of the two risk subgroups. 
To assess survival prediction, a time-dependent ROC curve was used, and the area under the curve (AUC) 
was computed to test the accuracy and specificity of the CRLs prediction. The GEO dataset was employed as 
an external validation. We developed a nomogram using the RS and other clinicopathological characteristics 
and then utilized calibration curves to determine whether the predicted survival probability matches the actual 
observation. In addition, the clustering ability of the signature was determined by executing the “scatterplot3d” 
package for principal component analysis (PCA). We further performed Cox proportional hazard regression to 
evaluate whether the risk signature is able to independently predict prognosis without taking into account other 
clinicopathological factors. The robustness of the signature was validated in the test group.

Functional enrichment analysis. With the premise of a false discovery rate (FDR) of 0.05 and |log2FC|> 1, 
the “limma” R package was applied to determine genes that differ in expression between the high- and low-risk 
subgroups. To better understand their biological functions and mechanisms, Gene ontology (GO) and Kyoto 
encyclopedia of genes and genomes (KEGG, www. kegg. jp/ kegg/ kegg1. html)23,24 enrichment analyses of differ-
entially expressed genes (DEGs) were carried out utilizing the “clusterProfiler” and “enrichplot” R packages.

Tumour microenvironment (TME) and immune cell infiltration analysis. The immunological and 
stromal components of each CC sample’s tumour microenvironment (TME) were analysed by the “estimate” R 
package to validate variations in microenvironment features across different risk subgroups. Using the “CIB-
ERSORT” R package, the relative percentages of 22 different kinds of human infiltrating immune cells were 
extracted as well as quantified for each CC sample; samples with P values greater than 0.05 were excluded to 
enhance the accuracy of the estimation results and reveal the relationship between the CRLs signature and infil-
tration of immune cells.

Exploring implications of the CRLs signature in clinical treatment. To determine whether the 
prognostic signature can help predict patient response to immunotherapy, the immunophenoscore (IPS) of 
CTLA-4 and PD-1 inhibitors in CC patients was obtained from the TCIA database. When differences in IPS 
between risk subgroups are compared, a higher score indicates a better response rate to ICI immunotherapy. 
The next step is to observe whether the prognostic signature can be used to predict which drugs will be effective 
prior to a patient being treated. We applied the “pRophetic” R package to calculate the half maximal inhibitory 
concentration (IC50) values of chemotherapeutic drugs commonly used in the clinic. The Wilcoxon signed-rank 
test was used to compare the IC50 values of the high- and low-risk cohorts. A statistically significant P value was 
less than 0.05.

Quantitative RT–PCR. The human cervical immortalized squamous cell line Ect1/E6E7 and the cervical 
cancer cell line HeLa were recently acquired from ATCC and grown in DMEM containing 10% foetal calf serum 
(FCS, Lonza, Ambroise, France). Total RNA was extracted and purified by applying RNAsimple Total RNA Kit 
(Tiangen Biotech). For reverse transcription, the FastKing RT kit (with gDNase) (Tiangen Biotech) was used. 
qRT–PCR was carried out using SuperReal PreMix Plus (SYBR Green) from Tiangen Biotech according to the 
manufacturer’s instructions. Each assay was duplicated at least three times for each sample. The  2(−∆∆Ct) method 
was used to calculate relative expression levels, which were normalized to GAPDH. Gene expression differences 
were tested by Student’s t test for statistical significance. GraphPad Prism (version 8.0.2) was applied to analyse 
the results and create graphs (*P < 0.05, **P < 0.01, and ***P < 0.001). The sequences of the primers used are 
shown in Supplementary Table S2.

Ethical approval. The study is an analysis of publicly available data and thus did not require ethical approval.

https://www.ncbi.nlm.nih.gov/geo/
https://tcia.at/home
http://www.kegg.jp/kegg/kegg1.html


4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10697  | https://doi.org/10.1038/s41598-023-37898-0

www.nature.com/scientificreports/

Results
Identification of CRLs in CESE. The overall flowchart of this study is shown in Fig. 1A. A total of 703 
lncRNAs were ultimately chosen as CRLs through Pearson correlation analysis between the expression levels 
of each lncRNA and cuproptosis-related genes (coefficient > 0.3, P < 0.001). Then, we created a coexpression 
network of the cuproptosis-related genes-lncRNAs utilizing Cytoscape_3.9.1 to predict the potential impact of 
CRLs (Fig. 1B). To show associations between cuproptosis-related genes, a PPI network was mapped with the 
String website (https:// cn. string- db. org/) (Fig. 1C).

Construction of the CRLs prognostic signature. The 304 CC patients were randomly assigned into 
two cohorts: the training group (n = 152) and the test group (n = 152). Among clinicopathologic variables, age, 
grade, and TNM categorization did not differ significantly between the two groups. (Table 1). We performed 
univariate Cox regression analysis on 703 CRLs based on the training cohort. Eighteen lncRNAs with prog-
nostic significance were initially screened for inclusion in the subsequent analysis (Fig. 2A). To develop a reli-
able signature for predicting prognostic status, LASSO and multivariate Cox regression analyses were used to 
filter the lncRNAs (Fig.  2B–C). Eight candidate prognostic CRLs associated with CC prognosis were finally 
obtained, including three protective lncRNAs (AL441992.1, SOX21-AS1, AC011468.3) and five risk lncRNAs 
(AC012306.2, FZD4-DT, AP001922.5, RUSC1-AS1, AP001453.2). The heatmap shown in Fig. 2D depicts the 
relationship between these 8 lncRNAs involved in signature construction and cuproptosis-related genes. The 
Sankey diagram in Fig. 2E further illustrates the relationship between these prognostic CRLs and the OS of CC 
patients.

To validate the predictive power of a prognostic model consisting of these 8 CRLs to predict CC sur-
vival, the following formula was used to determine the RS for each sample: RS = (− 0.495 × AL441992.1 
expression) + (− 0.355 × SOX21-AS1 expression) + (− 0.853 × AC011468.3 expression) + (0.556 × AC012306.2 
expression) + (0.511 × FZD4-DT expression) + (0.592 × AP001922.5 expression) + (0.468 × RUSC1-AS1 

19 cuproptosis genes & 703 related lncRNAs

(correlation coefficient > 0.3 and p < 0.001)

CESE RNA sequencing data in TCGA

Entire set (N=304)

Train set (N=152)Test set (N=152) CESE clinical data in TCGA
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Figure 1.  Identification of CRLs. (A) Flowchart of the study. (B) The co-expression network between 
cuproptosis-related genes and lncRNAs. (C) The PPI network of cuproptosis-related genes.

https://cn.string-db.org/
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expression) + (0.708 × AP001453.2 expression). The CC patients were classified into different risk subgroups by 
the median RS. Consistent findings were observed among all subgroups (Fig. 3A–F), with significantly more 
deaths as the RS increased. The expression level of the 8 CRLs in different risk subgroups is displayed in a heatmap 
(Fig. 3G–I). Five of them were risk lncRNAs (AC012306.2, FZD4-DT, AP001922.5, RUSC1-AS1, AP001453.2), 
which were strongly upregulated in the high-risk subgroup. Three were protective lncRNAs (AL441992.1, SOX21-
AS1, AC011468.3), which were significantly upregulated in the low-risk subgroup. A significant difference in the 

Table 1.  Clinicopathological features of CC patients in test and train group.

Covariates Type Total (n = 304) Test (n = 152) Train (n = 152) P value

Age (years), n (%)
≤ 50 186 (61.18) 98 (64.47) 88 (57.89)

0.2895
> 50 118 (38.82) 54 (35.53) 64 (42.11)

Grade, n (%)

G1-2 153 (50.33) 76 (50) 77 (50.66)

0.691G3-4 119 (39.14) 57 (37.5) 62 (40.79)

Unknown 32 (10.53) 19 (12.5) 13 (8.55)

T, n (%)

T1-2 211 (69.41) 110 (72.37) 101 (66.45)

0.9973T3-4 30 (9.87) 15 (9.87) 15 (9.87)

Unknown 63 (20.72) 27 (17.76) 36 (23.68)

M, n (%)

M0 116 (38.16) 61 (40.13) 55 (36.18)

0.664M1 10 (3.29) 4 (2.63) 6 (3.95)

Unknown 178 (58.55) 87 (57.24) 91 (59.87)

N, n (%)

N0 133 (43.75) 65 (42.76) 68 (44.74)

0.527N1 60 (19.74) 33 (21.71) 27 (17.76)

Unknown 111 (36.51) 54 (35.53) 57 (37.5)
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Figure 2.  Construction of prognostic signature. (A) The forest plot of univariate regression analysis. (B) Partial 
likelihood deviance for the lasso regression. (C) LASSO coefficient profiles. (D) Heat map. (E) Sankey diagram 
of prognostic CRLs. *P < 0.05, **P < 0.01 and ***P < 0.001.
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prognosis of the two risk subgroups was revealed by a Kaplan–Meier survival plot (Fig. 3J–L, P < 0.05). Patients 
in the low-risk subgroup had markedly greater OS.

Then, we performed stratified analysis of clinicopathological factors for CC patient prognosis. According to 
Fig. 4, patients in the high-risk subgroup had considerably shorter OS in clinical stratification analysis based on 
age, tumour grade, M stage, and N stage. These results demonstrated that the model we established is applicable 
to different clinical subgroups of patients.

Predictive performance of the signature evaluated by ROC. By plotting ROC curves and calculat-
ing AUC values, the accuracy of the signature in forecasting the outcome of CC patients was evaluated. AUC 
values for survival at 1, 3, and 5 years were 0.761, 0.777, and 0.858 for the training group, 0.651, 0.726, and 0.651 
for the test group, and 0.705, 0.757, and 0.759 for the entire group, respectively (Fig. 5A–C). These findings dem-
onstrate the good accuracy of the predictive signature we established.

Independent prognostic analysis and external validation of the 8‑CRLs signature. To further 
assess whether the prognostic signature is an independent prognostic factor for CC patients, we conducted Cox 
regression analyses of the 8-CRLs signature and conventional clinicopathological factors. The results revealed 
that tumour T stage, tumour N stage, and risk score correlated highly with OS in univariate Cox regression 
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analysis (P < 0.001) (Fig.  5D). Next, multivariate Cox regression analysis revealed that the risk score was an 
independent factor influencing the prognosis of CC patients (Fig. 5E). The AUC value of the risk score based on 
the prognostic signature was 0.757, which was higher than that of other clinicopathological features, according 
to the ROC curve (Fig. 5F). This shows that our model is markedly more effective than other clinicopathological 
features in predicting patient prognosis. These results confirm the independent predictive value of the 8-CRLs 
signature.

We next constructed a nomogram incorporating clinicopathological factors as well as the risk score to achieve 
clinical applicability (Fig. 5G). The calibration curves indicated an excellent match between the observed OS 
and predicted OS based on the nomogram (Fig. 5H). These results corroborate the accuracy and generalization 
capability of our developed predictive signature. We were not able to retrieve other datasets that also contained 
gene expression data for 8 CRLs, clinicopathological features, and survival information for CC patients. There-
fore, an external validation cohort was selected from the GEO dataset (GSE44001), which includes survival 
information of 300 CC patients and expression levels of mRNAs with coexpression relationships with the eight 
CRLs (Fig. 2E). The KM survival curve indicated that the OS of patients in the high-risk group was notably 
shorter (Fig. 5I). In ROC analysis, the AUCs were 0.698, 0.688, and 0.706 for 1-, 3-, and 5-year survival rates, 
respectively (Fig. 5J). Based on all the findings, the 8-CRLs signature has excellent predictive power for predict-
ing the outcome of CC patients.
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Figure 4.  Kaplan Meier survival curves of risk subgroups in patients stratified by different clinicopathological 
factors. (A–B) Age. (C–D) Grade. (E–F) M stage. (G–H) N stage M, metastasis; N, lymph node.
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The prognostic value of the 8‑CLR signature for PFS. For patients with advanced cancer, a prolonged 
PFS may signal a reduction in disease burden and symptom  alleviation25. Taking into account the role of PFS in 
the clinical outcome of CC patients, our study considered PFS as well, in contrast to most prognostic models that 
focus primarily on OS. The Kaplan–Meier progression-free survival curves showed that low-risk patients in all 
three cohorts had more promising PFS (Fig. 6A–C). PFS-based ROC curves were further displayed to confirm 
the predictive performance of the signature. The AUC values for survival at 1, 3, and 5 years were 0.717, 0.676, 
and 0.748 for the training cohort, 0.554, 0.671, and 0.631 for the test cohort, and 0.641, 0.667, and 0.694 for the 
entire cohort, respectively (Fig. 6D–F). These results show that our established signature can accurately predict 
the PSF of CC patients.

Principal component analysis (PCA). To further analyse the clustering capability of the 8-CRLs signa-
ture for the distinct distribution pattern of patients in risk subgroups, PCA was performed to visualize the distri-
bution of CC patients between high- and low-risk groups utilizing the whole genome, cuproptosis-related gene 
sets, cuproptosis-related lncRNAs and eight lncRNAs from the prediction model. The results showed that the 
lncRNAs included in the prediction model well separated the distribution of patients in different risk subgroups 
and clearly classified patients into two distinct quadrants (Fig. 7A–D).

Functional enrichment analysis. We conducted GO and KEGG enrichment analyses of differentially 
expressed genes (DEGs) based on different risk subgroups to investigate their possible involvement in biologi-
cal functions and their mechanisms. GO analysis revealed that the DEGs are involved in biological processes 
(BP) associated with tissue homeostasis and metabolic processes. For cellular components (CC), the DEGs were 
associated with the extracellular matrix. In the molecular function (MF) category, the DEGs were significantly 
enriched in receptor ligand activity, signaling receptor activator activity and cytokine activity (Fig. 7E). Accord-
ing to KEGG analysis, the enriched pathways correlate with immune and inflammatory mechanisms, including 
cytokine–cytokine receptor interaction, complement and coagulation cascades, IL-17 signalling pathway, and 
ECM-receptor interaction (Fig. 7F).

TME and immune cell infiltration features in risk subgroups. The TME is composed of various 
types of cells, including tumour cells, stromal cells, and infiltrating immune cells. Tumour-infiltrating immune 
cells in the immunological microenvironment are thought to be closely associated with tumorigenesis and can-
cer progression, and they are a critical factor influencing the therapeutic and prognostic significance of anti-
tumour  therapies26,27. By applying the ESTIMATE algorithm, we successfully calculated the scores of immune 
cells, stromal composition, and tumour purity. Our results showed that samples with a low RS had a higher 
stromal, immune, and ESTIMATE scores as well as lower tumour purity than samples with a high RS, suggesting 
that the degree of immune infiltration differs between risk subgroups (Fig. 8A–D).
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Figure 6.  Performance evaluation of model forecast PFS. (A–C) Kaplan–Meier progression-free survival curves 
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We analysed the relative amounts of 22 different types of immune infiltrating cells. in two risk subgroups 
using CIBERSORT to further analyse differences in the TME between the risk subgroups. The composition of 
immune infiltrating cells in samples of the risk subgroup is shown in Fig. 8E. We found some differences between 
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the two subgroups, and we discovered that M0 macrophages and activated mast cells were more abundant in 
the high-risk subgroup. On the other hand, the low-risk subgroup showed considerably higher levels of  CD8+ T 
cells, activated  CD4+ memory T cells, M1 macrophages, resting dendritic cells and resting mast cells (Fig. 8F). 
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Figure 8.  TME and immune cell infiltration features in the risk subgroups. (A–D) Comparison of the 
stromal score, immune score, ESTIMATE score, and tumor purity in two risk subgroups, respectively. (E) The 
composition of 22 types of tumor-immune infiltration cells. (F) Immune cells fractions between high and low 
risk groups in boxplots. (G–H) Correlations between risk scores and immune infiltration cells. (I–J) Survival 
analysis of T cell CD8 and T cells memory activated in CC. *P < 0.05, **P < 0.01 and ***P < 0.001.
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Among them, activated mast cells and M0 macrophages were shown to correlate positively with the risk score, 
with the remainder correlating negatively (Fig. 8G–H). It is also worth noting that low infiltration of  CD8+ T 
cells and activated  CD4+ memory T cells was significantly linked to poor prognosis (Fig. 8I–J). These findings 
suggest that abnormal immune cell infiltration may play a role in the carcinogenesis and development of CC and 
demonstrate that our model has a strong association with the TME and prognosis of CC patients.

Potential of the 8‑CLR signature in immunotherapy and chemotherapy. Immunotherapies have 
shown promising outstanding therapeutic effects in multiple types of malignant solid  tumours28. The tumour 
mutational burden (TMB) and immune checkpoints are two relevant biomarkers for predicting response to 
immunotherapy and have shown tremendous potential for antitumour effects.

The TMB is the total number of somatic mutations in each coding region of the tumour cell genome. The TMB 
between the different risk subgroups is shown in Fig. 9A–B. To clarify the intrinsic association between TMB and 
patient overall survival, the median TMB was employed as the cut-off point to separate CC patients into low- and 
high-mutational burden subgroups. Subsequently, we executed survival analysis between the TMB subgroups 
and discovered that patients with a high TMB had significantly greater survival outcomes than those with a low 
TMB (Fig. 9C). The results indicate that patients with a high TMB may be more sensitive to immunotherapy 
than patients with a low TMB. We further performed stratified survival analysis, and the results showed the most 
favourable prognostic performance for the high TMB/low risk group (Fig. 9D).

Immune checkpoint inhibitors (ICIs), important agents in tumour immunotherapy with prominent clinical 
benefits, are transforming cancer treatment in every  aspect29. Overexpression of immune checkpoint molecules 
suppresses the function of immune cells, thus preventing the body from mobilizing an effective antitumour 
immune  response30. Due to the role of immune checkpoints in immunotherapy, we further analysed common 
immune checkpoint genes between the risk subgroups. Most immune checkpoints such as PDCD 1 appeared to 
be more activated in the low-risk group (Fig. 9E).

The immunophenoscore (IPS) of CTLA-4 and PD-1 inhibitors in 307 CC patients was retrieved from the 
TCIA database; samples with missing data were eliminated, with 304 samples for subsequent analysis. The results 
showed that the low-risk group responded better to immunotherapy when treated with either a PD-1 inhibitor 
alone or a CTLA-4 inhibitor in combination with a PD-1 inhibitor, while there was no statistically significant 
difference in response to immunotherapy without PD-1 inhibitors between the two groups (Fig. 10A–D). All 
of these discoveries indicate that patients with a high RS may be less sensitive to immunotherapy with ICIs, 
according to our prediction model.

Finally, we used the “pRRophetic” R package to assess the value of our prediction model for guiding the 
clinical use of chemotherapeutic agents in patients with CC by comparing IC50 data for some commonly used 
chemotherapeutic agents between risk subgroups. Several anticancer drugs showed significantly different IC50 
values between the two risk subgroups. Moreover, based on the 8-CRLs signature, the low-risk CC patients were 
more susceptible to A-443654, DMOG, GSK690693, navitoclax, temozolomide, and ZSTK474, which may be 
more appropriate for patients with a lower RS (Fig. 10E–J). Our findings suggest that the established model has 
potential predictive value for chemosensitivity.

Quantitative real‑time reverse transcriptase–polymerase chain reaction analysis. Levels of the 
8 cuproptosis-related lncRNAs (AC011468.3, AC012306.2, AL441992.1, AP001453.2, AP001922.5, FZD4-DT, 
RUSC1-AS1, SOX21-AS1) were assessed in Ect1/E6E7 and HeLa cells. As depicted in Fig. 11A–H, the expression 
levels of these lncRNAs differed significantly between the two cell lines. This indicates that these lncRNAs are 
significantly differentially expressed between tumour and normal cervical cells. Moreover, we examined expres-
sion levels of key genes for the cuproptosis process in the two cell lines (Fig. 11I). And the results of qRT-PCR 
are for reference purposes only. Overall, the results of our experiments support the robustness of our model.

Discussion
Regulatory cell death (RCD) was discovered as a type of cell death mediated by activation of one or more sig-
nalling pathways and is critical for normal cell growth and the immune response, and evasion of RCD is one 
of the key hallmarks of  cancers7,31. Cuproptosis is a copper-dependent form of RCD characterized by aberrant 
aggregation of mitochondrial lipoylated proteins and decreased levels of iron-sulfur cluster proteins caused by 
copper accumulation. Under normal conditions, intracellular copper ion concentrations are maintained at low 
basal levels through a set of homeostatic  mechanisms32. Exogenous copper ions are transported into the cell 
using copper ionophores, which are small molecular compounds that bind copper ions; this leads to elevation of 
intracellular copper levels, particularly in the mitochondria, resulting in excessive cell respiration and cytotoxic-
ity and consequently cell  death33. It has been reported that inducing cuproptosis in cancer cells has tremendous 
research potential in terms of suppressing tumour progression.

As high-throughput sequencing technology becomes widely available, a growing number of research have 
been carried out to predict the prognosis of cervical cancer patients by the alteration of a single lncRNA or 
combined expression of several lncRNAs in body  fluids34. For instance, downregulated expression of the lncRNA 
GAS5 predicts worse outcomes in patients with  CC35. Studies have demonstrated that lncRNAs are engaged in 
tumour initiation and progression by affecting tumour immune responses and immune cell infiltration; therefore, 
lncRNAs are potential biomarkers and targets for antitumour  therapy18,36.

In this research, we selected 703 cuproptosis-associated lncRNAs from TCGA-CESE transcriptomic data by 
Pearson correlation analysis based on 19 cuproptosis-associated genes. Then, 18 cuproptosis-related lncRNAs 
associated with CC prognosis were identified by univariate Cox regression, and after LASSO and multivari-
ate Cox regression, a risk prediction model containing AL441992.1, SOX21-AS1, AC011468.3, AC012306.2, 
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FZD4-DT, AP001922.5, RUSC1-AS1, and AP001453.2 was constructed. There have been several previous reports 
on the establishment of cuproptosis-related lncRNA models for predicting the prognosis of cervical  cancer37–39 
(Table 2). Compared to a study by Liu, Wang et al. using only the TCGA database, we added the GEO database 
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(GSE44001) as an external validation to make the obtained results more persuasive. Our model incorporated 
new lncRNAs (AC011468.3, AC012306.2, AL441992.1, AP001453.2, AP001922.5, FZD4-DT), and we further 
explored differential expression of lncRNAs in the model as well as the key cuproptosis gene FDX1 in cell lines 
by qRT–PCR. When evaluating survival predictions, AUCs at 1, 3 and 5 years were 0.705, 0.757 and 0.759 for 
the entire group, respectively, which were significantly higher than those of previous studies. Our signature was 
also valuable for predicting PFS in CC patients. It is also worth mentioning that we used IPS data obtained from 
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the TCIA database to assess response to immunotherapy with ICIs in patients in different risk groups. As dem-
onstrated by the calibration curves, we have a greater consistency between the actual survival and the predicted 
survival of the nomogram based on our signature, which is more beneficial for clinical applications. In summary, 
our prognostic model has good and stable prognostic prediction ability.

According to previous studies, the lncRNA SOX21 antisense RNA 1 (SOX21-AS1) can alleviate oxidative 
stress and inhibit neuronal apoptosis in Alzheimer’s disease mice and is associated with disease  development40. 
Our qRT–PCR results showed its lower expression in a cervical cancer cell line, which may represent an associa-
tion with good outcome. In patients with lung squamous cell carcinoma, the low AC011468.3 expression group 
achieved significantly longer recurrence-free survival than the high AC011468.3 expression  group41, and our 
qRT–PCR results showed it to be highly expressed in CC cells. Expression of AC012306.2 was found to correlate 
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Figure 11.  Quantitative polymerase chain reaction detection of 8-CRLs and FDX1 expression in cervical 
normal cell line and CC cell line. (A) AC011468.3. (B) AC012306.2. (C) AL441992.1. (D) AP001453.2. (E) 
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Table 2.  Main characteristics of the previous related studies.

Authors Year Database

Sample size

CRL signature

AUC 

Training cohort Testing cohort Training cohort Testing cohort Entire cohort

Liu et al. 2023 TCGA 152 152 AC063943.1,CDKN2B-
AS1, CNNM3–DT Not available Not available 0.699, 0.679, 0.698  (1, 3, 

and 5 years)

Liu et al. 2022 TCGA 143 142
AC009902.2, AL354733.3 
, AL441992.1, 
LINC01305, AL354833.2, 
CNNM3-DT,  SCAT2

0.807, 0.824, 0.793  (1, 3, 
and 5 years)

0.652, 0.676, 0.669  (1, 3, 
and 5 years)

0.724, 0.757, 0.741  (1, 3, 
and 5 years)

Wang et al. 2022 TCGA 152 152
AC096992.2, 
AJ003147.1, SOX21-AS1, 
AL049869.2,  CNNM3-
DT, ARHGAP31-AS1

Not available Not available 0.718, 0.713, 0.646  (1, 3, 
and 5 years)
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positively with poor patient prognosis in a cervical cancer investigation, with the 5-year survival rate being 
significantly lower among patients with high expression of AC012306.2 than among other  patients42. To further 
investigate its expression in cervical cancer, we performed qRT–PCR, and the results suggest that it is poorly 
expressed in CC cell lines. RUSC1-AS1, which is located on chromosome 1q22, has been shown to promote the 
development of CC through a competitive endogenous RNA (ceRNA) mechanism, sponging microRNA-744 
and upregulating Bcl-2  expression43. Furthermore, RUSC1-AS1 promotes development of hepatocellular carci-
noma by modulating the miR-340-5p/CREB1 axis to affect the proliferation, invasion and migration abilities of 
cancer  cells44. In agreement with this, our qRT–PCR results confirm that it is highly expressed in CC cell lines. 
Moreover, AP001453.2 was found to be closely associated with hypoxia in triple-negative breast cancer tissues and 
substantially expressed in the group with a high hypoxia fraction based on RNA-seq data from TCGA-TNBC45. 
Our qRT–PCR results showed high expression of AP001453.2 in CC cells. In an immune-related lncRNA-based 
prognostic prediction model for CC patients, AL441992.1 was discovered to be less expressed in the high-risk 
 subgroup46. This was consistent with our qRT–PCR results. In contrast, FZD4-DT and AP001922.5 have rarely 
been reported in clinical or basic research. Therefore, we verified differential expression of these two genes at 
the cellular level, and the results are shown in Fig. 11E–F. FZD4-DT was highly expressed in the cervical cancer 
cell line, consistent with its characterization as a risk gene; however, the risk gene AP001922.5 was expressed at 
low levels in the cervical cancer cell line, which may need to be further explored. According to the latest related 
research, FDX1 converts  Cu2+ to more toxic  Cu1+, which makes it a key positive regulator of  cuproptosis8. There-
fore, we additionally detected differences in expression at the cellular level via qRT–PCR, and the experimental 
results showed low expression of FDX1 in a cervical cancer cell line, which was in accordance with our expecta-
tion. Finally, it is important to note that the cell line used for qRT-PCR is a single cervical cancer cell line, so 
the qRT-PCR validation results are for reference purposes only. Based on a Sankey diagram, these lncRNAs are 
associated with regulatory genes specifically related to cuproptosis metabolic pathways. AL441992.1 is associated 
with CDKN2A, a negative regulator of cell cycle progression that is considered to be involved in cuproptosis 
metabolic  pathways47. DLAT, as a molecule encoding mitochondrial proteins involved in the catabolic glucose 
pathway, is associated with cellular energetics and energy metabolism reprogramming and may also be linked 
to FZD4-DT48. ATP7B encodes a copper transporter critical for cellular copper  homeostasis49, and its mutation 
leads to the development of copper metabolism disorders, possibly regulated by AP001922.5.

To assess the prognostic value of our 8-CRLs signature for predicting OS and PFS in CC patients as well as 
its effectiveness in assessing response of CC patients to immunotherapy with ICIs, CC patients were randomly 
allocated to training and test cohorts at a 1:1 ratio. Significantly shorter overall survival times were observed for 
CC patients in the high-risk group in the training, test and entire cohorts. These prognostic differences between 
two risk subgroups based on different clinical characteristics were clearly illustrated using Kaplan–Meier survival 
analysis, including age groups, G1-2/G3-4 stage groups, M0/M1 stage groups, and N0/N1 stage groups. According 
to ROC curves, the signature showed good prediction effectiveness in the training cohort, test cohort, and entire 
cohort. The AUC values of the model were greater than 0.7 at 1, 3, and 5 years. The remarkable capacity of our 
model to distinguish between high- and low-risk groups in all samples was clearly shown by PCA.

Our prognostic signature was also linked to infiltration of immune cells in the TME and immune-related 
biomarkers to predict the clinical outcome of immunotherapy. We discovered that the risk subgroups have diverse 
tumour microenvironments, which may lead to differences in prognosis and response to immunotherapy. For 
samples with a high RS, the stromal score and immune score were lower, and the tumour purity was higher. 
Levels of M0 macrophages and activated mast cells were higher in the TME of high-RS samples. These aberrantly 
infiltrated immune cells may be associated with the advancement and poor prognosis of cervical cancer. It is 
undeniable that  CD8+ T cells play a key role in the body’s antitumour immunity. Consequently, reduced levels 
of  CD8+ T cells in the high-risk subgroup may lead to poor responses to  immunotherapy50.

ICIs immunotherapy consisting of anti-CTLA4 and anti-PD1 has been shown to be effective in non-small 
cell lung cancers and oropharyngeal cancer, and the feasibility of applying immunotherapy to cervical cancer 
is receiving increasing attention and  research51,52. ICIs act on immune checkpoints and are used to enhance 
antitumour immunity or to increase immunosuppression. According to our prediction model, the majority of 
immune checkpoints in the low-risk group showed higher activation, suggesting that CC patients in the low-
risk group may be more sensitive to immunotherapy than those in the high-risk group (Fig. 9E). As shown in 
Fig. 10A–D, patients in the low-risk group were more sensitive to treatment with ICIs, suggesting that they are 
more likely to benefit from immunotherapy. Nevertheless, there is currently no thorough and systematic study 
on the relationship among cuproptosis, the immune microenvironment and immunotherapy in CC. Therefore, 
the goal of our research was to discover appropriate immunotherapy targets and prognostic biomarkers.

However, we admit that our research has certain limitations. First, this was a retrospective study using data 
from the TCGA database. Therefore, some discrepancies may exist. Second, another limitation of this study was 
the reliance on a single cervical cancer cell line. We will subsequently include more samples and cell lines for 
validation when available. Third, the mechanism of function of cuproptosis-related lncRNAs requires further 
experimental demonstration, and the validity of the 8-CRLs signature established in this study needs additional 
confirmation in clinical trials with large samples.

As mentioned above, the 8-CRLs signature was found to be efficient in independently predicting the prognosis 
of CC patients. This study will serve as a foundation for future research on the mechanism and clinical thera-
peutic effectiveness of cuproptosis-related lncRNAs in CC, but further experimental validation is still needed.

Conclusion
The 8-CRLs signature established in this study is beneficial for predicting the prognosis and therapy response in 
CC patients and may provide unique insights into cancer treatment.
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