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Optimization of PID trajectory 
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This study introduces and compares two optimization techniques, the basic Artificial Bee Colony (ABC) 
and the enhanced Artificial Bee Colony with multi‑elite guidance (MGABC), for determining optimal 
gains of a Proportional‑Integral‑Derivative (PID) controller in a 3 degrees of freedom (DOF) rigid link 
manipulator (RLM) system. The objective function used in the optimization process is a novel function 
that is based on the well‑known Lyapunov stability functions. This function is evaluated against 
established error‑based objective functions commonly used in control systems. The convergence 
curves of the optimization process demonstrate that the MGABC algorithm outperforms the basic ABC 
algorithm by effectively exploring the search space and avoiding local optima. The evaluation of the 
controller’s performance in trajectory tracking reveals the superiority of the Lyapunov‑based objective 
function (LBF), with significant improvements over other objective functions such as IAE, ISE, ITAE, 
MAE and MRSE. The optimized system demonstrates robustness to diverse disturbance conditions 
and uncertainty in the mass of the payload, while also exhibiting adaptability to joints flexibility 
without inducing any vibrations in the movement of the end‑effector. The proposed techniques and 
objective function offer promising avenues for the optimization of PID controllers in various robotic 
applications.

Approximately seven decades ago, the development of robotic manipulators emerged as a viable solution to 
replace human workers in hazardous industrial settings. These robots are commonly employed in inaccessible 
areas where repetitive tasks need to be executed within specific timeframes. One of the essential applications for 
mechanical robotic manipulators is picking and positioning  material1. Furthermore, industrial manipulators find 
utility in handling radioactive and biohazardous materials during robot-assisted surgical procedures, as well as 
performing various functions such as welding, assembly, manufacturing, painting, and other operations within 
the automotive  industry2–4.

Mathematical modeling plays a crucial role in understanding and optimizing the behavior of multi-degree-
of-freedom (MDOF) robotic manipulators in industrial applications. The development of a mathematical model 
for such mechanisms often employs the Lagrangian  approach5–8. However, the process of mathematical modeling 
poses significant challenges, particularly for nonlinear systems, and involves intricate and time-consuming 
calculations. Lee and  Alandoli3 have conducted a comprehensive analysis of various mathematical modeling 
techniques, offering valuable insights into this field.

The application of SimMechanics models in robot modeling using Simulink and Simscape toolboxes, employ-
ing numerical modeling techniques, has been widely adopted in  research2, 9, 10. These models offer advantages 
such as simplicity and controllability. Simulation software enables researchers to gain a deeper understanding of 
the behavior of Multi-Degree-of-Freedom (MDOF) robotic manipulators in a simulated environment. Further-
more, utilizing simulation software helps mitigate the complexities associated with mathematical formulations. 
However, upon conducting a literature review, it becomes evident that there is a scarcity of research focused on 
this specific area, particularly in terms of validating mathematical models with  Simscape11, 12. Additionally, there 
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is a lack of validation for models created using other software tools like MSC Adams. These findings highlight 
the importance of further attention and investigation in this field.

By addressing this research gap, the current study contributes to the existing body of knowledge by providing 
validation for the mathematical models using both Simscape and MSC Adams. This validation process enhances 
the credibility and reliability of our research findings. Furthermore, it serves as a steppingstone for future research 
endeavors in the field of robotic manipulator systems.

Controlling robot manipulators presents a highly intriguing domain due to the complex nature of their 
dynamical models. The dynamical analysis of robotic models involves examining the relationship between the 
arm’s positions and the joint torques exerted by the actuators. Achieving precise and dependable control becomes 
challenging due to the interconnected relationships and nonlinear dynamics inherent in these systems. Conse-
quently, the development of a controller using conventional control techniques that rely on the system’s dynamics 
becomes a formidable  undertaking6, 13.

The proportional-integral-derivative (PID) control system is extensively employed in diverse industrial 
domains owing to its simplicity and  effectiveness13–19. Furthermore, the global asymptotic stability of linear PID 
controllers has been demonstrated for uncertain robotic manipulators through the utilization of Lyapunov’s 
direct method and LaSalle’s invariance  principle20, 21. Moreover, the global asymptotic stability of linear PID 
controllers has been established for a point mass subjected to Coulomb friction by employing a discontinuous 
Lyapunov-like function and an appropriate application of LaSalle’s invariance  principle22.

The tuning of PID controller gains plays a crucial role in enhancing system performance and efficiency, 
as the tuning rule enables optimal disturbance rejection within the PID control feedback  loop23. Traditional 
optimization techniques, such as Ziegler-Nichols approaches, often fail to yield satisfactory results when tun-
ing PID controller gains. In recent years, evolutionary algorithms (EAs) have emerged as effective and efficient 
optimization techniques for addressing practical optimization problems encountered in scientific research and 
engineering applications. This is particularly relevant as many modern practical optimization problems exhibit 
non-convexity, discontinuity, and non-differentiability, posing challenges for conventional optimization tech-
niques, such as gradient-based  approaches24–27.

Swarm-based optimization algorithms (SOAs) utilize natural processes to guide the search towards the opti-
mal solution. Unlike conventional algorithms like hill climbing and random walk, SOAs operate on a population 
of solutions rather than a single solution per iteration. This fundamental difference sets SOAs apart from these 
algorithms, as each iteration involves processing a population of solutions and generating a new population of 
 solutions28. Various distinct paradigms are employed within evolutionary algorithms, including Jellyfish Search 
Optimization (JSO), Whale Optimizer Algorithm (WOA), Grey Wolf Optimizer (GWO), Ant Colony Optimiza-
tion (ACO), Particle Swarm Optimization (PSO), Cuckoo Search Optimization (CSO), and Artificial Bee Colony 
(ABC) algorithm, among others. These paradigms showcase the diversity and effectiveness of evolutionary 
algorithms in solving optimization problems.

Elkhateeb and  Badr29 employed the ABC (Artificial Bee Colony) optimization algorithm to determine the 
optimal gains of a PID controller for a 2DOF robotic manipulator. The tuning process involved the utilization 
of three distinct objective functions: the mean of the root of square error (MRSE), mean absolute error (MAE), 
and reference-based error with control effort (RBECE). However, the evaluation of the controller’s robustness 
was limited to its performance in the presence of disturbance, without testing its robustness to varying payloads.

In a study conducted by Sheng and  Li30, the GA (Genetic Algorithm) optimization algorithm was employed 
to compute the gains of a PID controller for a 3 RRR parallel robot. The objective was to minimize the dynamic 
error of the system, with the Integral Square Error (ISE) serving as the objective function. The effectiveness of 
the controller was evaluated under disturbance conditions.

Bounouara et al.31 utilized the PSO (Particle Swarm Optimization) optimization algorithm to optimize the 
PID controller of a two-link manipulator. The Mean Absolute Error (MAE) was employed as the objective func-
tion, and the stability of the system was established using the Lyapunov stability theorem. The performance of 
the controller was evaluated under disturbance conditions, with the disturbances introduced at the measured 
joint angles.

Loucif et al.32 focused on optimizing the PID control of a nonlinear 2-DOF robot manipulator using the 
Whale Optimizer Algorithm (WOA). The effectiveness of the WOA-PID controller was compared against other 
controllers such as Particle Swarm Optimization-PID (PSO-PID) and Grey Wolf Optimizer-PID (GWO-PID). 
The objective function used in this optimization was the Integral Time Absolute Error (ITAE).

The Artificial Bee Colony (ABC) algorithm developed by  Karaboga24, 25 comprises three types of bees: 
employed, onlooker, and scout bees. The employed bees actively search for food, while the onlooker bees observe 
and evaluate the employed bees’ dance, which conveys information about food sources. Scout bees are introduced 
in each generation to maintain solution space diversity and prevent the algorithm from getting trapped in local 
optima. During their foraging, employed bees gather food and return to the hive, where they perform a wag-
gle dance. This dance contains crucial information such as the direction, distance, and quality rating of flower 
patches, facilitating effective communication within the colony. By relying solely on the waggle dance, the colony 
dispatches bees accurately to flower patches without the need for external guides or maps. Each individual bee 
performs the waggle dance, serving as the primary source of environmental  information28, 33. The collected food 
sources are shared among neighboring bees to generate new solutions, which are then evaluated using a fitness 
function. Additional follower bees are dispatched to promising patches, enabling the colony to efficiently acquire 
food. If a candidate food source does not lead to improved solutions, it is considered ineffective and  replaced24, 34.

Similar to other Evolutionary Algorithms (EAs), ABC faces challenges such as early convergence or a slug-
gish convergence rate when solving complex optimization  problems27, 35, 36. Research in the ABC community 
has identified the exploration–exploitation balance as a critical factor affecting performance. The exploration 
technique equation in the fundamental ABC algorithm exhibits strong performance in searching for new food 
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sources but weak performance during  exploitation37–39. Thus, enhancing ABC’s exploitation while maintaining 
exploration becomes a significant topic of discussion. Striking a balance between the two is crucial for improving 
ABC’s performance, albeit a challenging task.

The enhanced artificial bee colony with multi-elite guidance (MGABC) is an improved variant of the ABC 
algorithm introduced by Zhou et al.39. This variant incorporates two key modifications aimed at enhancing 
the exploration and exploitation phases. The first modification focuses on refining the neighborhood search 
technique, aiming to improve the efficiency of local exploration. This enhancement enables the algorithm to 
effectively exploit neighboring solutions for potential improvements. The second modification introduces two 
innovative food search techniques for both exploration and exploitation. These techniques leverage a group of 
selected superior food sources, referred to as the group of elite solutions. By incorporating the valuable knowledge 
contained within this group, the algorithm aims to maximize exploitation without compromising exploration. 
The MGABC algorithm combines these enhancements to achieve a balance between exploration and exploitation, 
utilizing the valuable insights derived from the group of elite solutions. This approach enhances the algorithm’s 
overall performance and effectiveness in solving optimization problems.

The primary contributions of this research can be summarized as follows:

• Optimization of the PID trajectory tracking controller using the MGABC algorithm.
• Validation of the complex and time-consuming mathematical model through the use of the efficient Simscape 

model and MSC Adams, providing researchers and industry professionals with a choice between the two 
approaches.

• Introduction of a novel objective function for the optimization process. This new function is based on the 
well-known Lyapunov stability functions and is used as an alternative to the widely used functions in the 
literature.

• Comprehensive performance analysis of the proposed controller, including disturbance rejection at the con-
troller output and robustness against payload uncertainty during pick-and-place operations.

• Investigation of the impact of joint flexibility to evaluate the adaptability of the controller to flexible joint 
configurations and ensure accurate trajectory tracking.

These contributions provide valuable insights and practical implications for researchers and practitioners 
working in the field of robotic manipulator systems.

This paper is organized as follows, dynamic models of a 3-DOF planar robotic manipulator using Lagrange 
formulation, Simscape and MSC Adams software are given in Section "Modelling A 3-DOF robotic manipulator", 
where the accuracy of the models are verified by investigating the open-loop system responses. Two optimiza-
tion techniques, the basic Artificial Bee Colony (ABC) and the enhanced Artificial Bee Colony with multi-elite 
guidance (MGABC), are described in detail in Section "Optimization techniques". The procedures for optimiz-
ing the gains of the PID controller for trajectory tracking, utilizing the novel LBF as the objective function are 
outlined in Section "Optimization of PID gains for trajectory tracking". A comprehensive performance analysis 
is conducted in Section "Simulation performance evaluation", which includes the elimination of disturbances 
and the evaluation of robustness against variations in the mass of the end-effector. Additionally, the effect of 
joint flexibility on the system behavior is discussed. Future research directions are explored in Section "Future 
work", while concluding remarks summarizing the outcomes of the study are provided in Section "Conclusion".

Modelling a 3‑DOF robotic manipulator
In this section the model of a 3-DOF is formulated using the Lagrangian approach, which accounts for the kinetic 
and potential energies of the interconnected components. It will be designed to encompass the complexity of 
the system and its interactions, incorporating relevant variables and assumptions as deemed necessary. As the 
complexity of a given problem increases, there is a growing demand for variables, assumptions, and iterations, 
resulting in extended computational time. However, the integration of Simscape Multibody with MATLAB 
and MSC Adams multibody dynamics and motion analysis software offers engineers the means to examine 
the dynamics of moving components, the distribution of loads and forces within mechanical systems, and the 
potential for enhancing and optimizing product performance.

Next subsections will delve into the modeling of the robotic manipulator using Lagrangian approach, Sim-
scape and MSC Adams with a comparative analysis of the open-loop performance of the robotic manipulator 
using the three different modeling techniques. The internal mechanical properties of the 3DOF manipulator 
are listed in Table 1.

Table 1.  The mechanical properties of the links.

Parameters Link 1 Link 2 Link 3

Mass 1 kg 1 kg 1 kg

Moment of inertia ( Izz) 0.020833 kg  m2 0.020833 kg  m2 0.020833 kg  m2

Length 0.5 m 0.5 m 0.5 m

Cross-section area 5 × 5  cm2 5 × 5  cm2 5 × 5  cm2
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Lagrangian mathematical modelling. Figure 1 presents the schematic representation of a 3DOF rigid 
planar robotic manipulator model. In this diagram, the initial link is fixed to a rigid base through a pin support 
that operates without friction. Subsequently, the second link is positioned at the extremity of the first link and 
secured by a frictionless ball bearing. Similarly, the third link is connected to the second link through another 
frictionless ball bearing. The system’s non-linear coupled dynamic equations are derived and expressed in Eq. (1).

where θ̈i , Fi
(

θ , θ̇
)

, gi and τi for ( i = 1, 2, 3 ) represent the angular accelerations of the three links, the combined 
centrifugal and Coriolis forces, the gravitational forces, and the torque exerted at each joint of the three links, 
respectively. The lefthand matrix defined by Mii is the robot mass matrix and its entries are defined by:

where, mi , li and  Ii represent the mass, length, and the moment of inertia of the ith link about its center of gravity.
The various centrifugal and Coriolis forces are given as follows:
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Figure 1.  Schematic diagram of the 3-DOF robotic model.
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The gravitational forces are defined by:

where, g represents the acceleration of gravity.

Simscape model. The Simulink® environment provides a platform for constructing physical model sys-
tems efficiently. Simscape™, within this environment, facilitates the creation of physical component models that 
are established on interconnected physical connections and seamlessly interact with block diagrams and other 
modeling methodologies. By incorporating Simscape add-on products, users gain access to advanced compo-
nents and analysis tools, further enhancing the modeling capabilities. Simscape significantly contributes to the 
development of control systems and the assessment of system performance. Leveraging MATLAB variables and 
expressions, models can be parameterized, while Simulink serves as a valuable tool for devising control strategies 
for physical  systems2, 11.

Figure 2 illustrates the Simscape model of the RLM system. The model encompasses all the essential mechani-
cal attributes of the components, generated by the MATLAB SimMechanics Toolbox.

MSC Adams model
MSC Adams is a widely used software tool for modeling and simulating the dynamics of robotic manipulators. 
It is specifically designed for multibody dynamics analysis, which allows engineers to study the motion and 
behavior of interconnected mechanical systems. It considers the interactions between different components, 
such as links, joints, and actuators, allowing for a comprehensive analysis of the system’s behavior. The software 
provides tools for studying the kinematics and dynamics of the robotic manipulator.

This enables engineers to understand how the manipulator moves and responds to external loads or control 
inputs. MSC Adams can be integrated with control systems and algorithms developed in other software tools, 
such as MATLAB and Simulink. This integration enables engineers to design and evaluate control strategies for 
the robotic manipulator within a unified simulation environment. The MSC Adams model of the RLM system 
is depicted in Fig. 3.

Validation of the modeling techniques. In order to validate the modeling techniques employed, a com-
parison is conducted, focusing on the open loop performance of three distinct models: the mathematical model, 
the Simscape model, and the MSC Adams model. This validation analysis is performed under the condition 
wherein a constant torque with a magnitude of 2 N m is applied to the first joint of the robotic manipulator. 
Figures 3 and 4 visually illustrate the system’s configuration during this validation procedure.

Figure 5 presents the outcomes derived from the comparative analysis of the three modeling techniques. 
Figure 5a,b exhibit the response of the mathematical and Simscape models, demonstrating their remarkable 
similarity, with an error in angles equal to zero. Similarly, Fig. 5c,d exhibit the response of the MSC Adams and 
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g1(θ) = m3g(l1cos(θ1)+ 0.5l3cos(θ1 + θ2 + θ3)+ l2cos(θ1 + θ2))+m2g(l1cos(θ1)+ 0.5l2cos(θ1 + θ2))+0.5m1gl1cos(θ1)

(15)g2(θ) = m3g(0.5l3cos(θ1 + θ2 + θ3)+ l2cos(θ1 + θ2))+ 0.5m2gl2cos(θ1 + θ2)

(16)g3(θ) = 0.5m3gl3cos(θ1 + θ2 + θ3)

Figure 2.  Simscape model of the 3-DOF robotic manipulator.
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Simscape models. Notably, the models demonstrate substantial similarity, with the error in angles bounded 
within the range of −0.006 to 0.006 , which is deemed negligible.

Considering the close resemblance and insignificant differences among the three proposed techniques, 
employing the Simscape Multibody toolbox is recommended for modeling multi-Degree-of-Freedom (MDOF) 
robotic manipulator systems. This preference arises from the advantages offered by Simscape, such as rapid 
modeling capabilities and ease of incorporating and modifying components, which are comparatively more 
challenging to achieve using MSC Adams software.

Our approach offers distinct advantages over the methodologies employed by Lee et al.11 and Manjaree 
and  Thomas12. Unlike their approaches, our methodology does not require the use of CAD software such as 
Solidworks. Additionally, our study places emphasis on validating mathematical model against models created 
using software tools like MATLAB and MSC Adams. This aspect has not been adequately addressed in previous 
research, making our investigation particularly valuable for researchers and practitioners working in the field 
of robotic manipulator systems. Furthermore, our approach is flexible and can be extended to systems with 
higher degrees of freedom. With appropriate modifications and considerations to account for the increased 
complexity, our methodology can be applied effectively. The ability to apply our approach to higher degree-of-
freedom systems opens up new possibilities and expands the scope of its practical applications. Overall, our 
research contributes valuable insights and offers practical implications for the development and analysis of 
robotic manipulator systems.

Figure 3.  MSC Adams model of the 3-DOF robotic manipulator.

Figure 4.  System’s configuration during the validation of the mathematical and the Simscape models.
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Optimization techniques
The subsequent subsections provide a comprehensive exposition of the basic artificial bee colony (ABC)25 and 
enhanced artificial bee colony with multi-elite guidance (MGABC)39 optimization techniques, elucidating their 
intricate mechanisms and algorithms.

The Basic ABC Algorithm. The basic artificial bee colony (ABC) algorithm simulates a honeybee colony 
consisting of three distinct types of bees: employed bees, onlooker bees, and scout bees. Each type of bee is 
assigned specific tasks within the optimization process. The employed bees are responsible for exploring the 
search area to discover nutritious food sources. They actively search for potential solutions, acting as the explora-

Figure 5.  Model validation results, (a) the response of the Simscape and Mathematical models, (b) the error 
between Simscape and Mathematical models, (c) the response of the Simscape and MSC Adams models, and (d) 
the error between the Simscape and MSC Adams models.
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tory agents in the algorithm. It is important to note that the number of employed bees is equivalent to the num-
ber of food sources within the search area. To expedite the search process in subsequent iterations, the employed 
bees share information about the quality and distance to the food source with the onlooker bees at the hive. This 
information exchange involves communicating the richness of nectar (representing the fitness value of a poten-
tial solution) associated with each food source. The onlooker bees then utilize the acquired information to selec-
tively explore the neighborhood of chosen food sources. Food sources with higher fitness values have a greater 
probability of being selected by the onlooker bees. This exploitation mechanism enhances the algorithm’s ability 
to refine and improve promising solutions. The number of onlooker bees is equal to the number of employed 
bees, ensuring a balanced distribution of exploration and exploitation strategies in the ABC algorithm. These 
collaborative efforts among the employed and onlooker bees contribute to the overall optimization process, 
enabling efficient search and convergence towards optimal  solutions25, 27, 36, 39, 40.

Scouter bees are added in each generation to ensure the diversity of the solution space and prevent the algo-
rithm from being stuck in a local optimum. A food source is abandoned if it cannot be improved for more than a 
limited number of trials. In turn, the employed bee connected to the discarded solution will change into a scouter 
bee and begin searching for a new food source throughout the entire search area. The Algorithm procedures can 
be described with four stages as following:

Initialization stage. In this stage the ABC starts with initial set of SN food sources which represents the pos-
sible solutions. The initial values of an individual Xk = (xk,1, xk,2, . . . , xk,S)  are generated using Eq.  (17)24, 25 
which represents the number of food sources (candidate solutions), where S denotes the dimension size of the 
parameters to be optimized.

where k ∈ (1, 2, . . . , SN) and j ∈ (1, 2, . . . , S) . xjmin
 and xjmax

 are the lower and upper bounds of the Sth dimen-
sions, respectively.

Exploration stage. The employed bees will explore new food sources throughout the search area, and new 
individuals in the subsequent search strategy are generated utilizing the exploration search equation specified 
in Eq. (18)24, 25.

where vk,j is the new source of food. xp,j is a partner food source chosen at random from the population, and it 
must be dissimilar from xk,j . φ is a uniformly random number between [−1, 1]27, 39. It should be noted that only 
one dimension of Xk is altered to produce Vk.

If vk,j exceeds the upper bound, it will be reset to the upper value. Conversely, if it falls below the lower value, 
it will be reset to the lower value. The selection of the best solution involves comparing the fitness values of the 
previous and current solutions and employing a greedy selection approach. Depending on the fitness value, the 
counter associated with Xk is either reset to 0 or incremented by  141. It is important to note that each food source 
has a counter limit, which keeps track of the consecutive iterations where it has not been  improved39.

Exploitation stage. The employer bees and the onlooker bees both have the same process of exploitation. The 
main distinction between them is the choosing of promising food sources based on the probabilities determined 
by the fitness values. Depending on the information the explorer bees collect (i.e., quality, amount, distance 
between the food source and the hive, etc.), a particular food source may be chosen more often. High probability 
indicates the presence of a significant quantity of excellent nectar. It should be mentioned that the onlooker bees 
only explore around the specified food sources’ neighborhood. The possibility of being chosen for a promising 
nectar source can be calculated by Eq. (19)24, 25

where fitk is the fitness value of solution k , and SN is the number of employed bees or food sources. The fitness 
value fitk of each food source is calculated using Eq. (20).

where f (Xk) is the value of the objective function. A food source is considered to have been abandoned if it 
cannot be further developed in a preset number of loops; however, if a new food source is superior to its parent, 
it will be kept, and the related counter will be reset to  025, 36, 42.

Scouter stage. For every nectar source, a check will be made on the corresponding counter of abandonment, 
in the ABC algorithm, the value of the specified number of loops is a crucial control parameter known as the 
abandonment limit. If Xk represents the abandoned food source, then the scout bee generates a new random 
food source according to Eq. (17).

(17)xk,j = xjmin
+ rand(0, 1)×

(

xjmax
− xjmin

)

(18)vk,j = xk,j + φk,j ×
(

xk,j − xp,j
)

(19)pk =
fitk

∑SN
k=1 fitk

(20)fitk =

{

1
1+f (Xk)

iff (Xk) ≥ 0

1+
∣

∣f (Xk)
∣

∣ otherwise

}
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The enhanced ABC algorithm. Zhou et al.39 proposed two modified solution search equations in their 
study. These equations are specifically designed for the exploration stage and the exploitation stage. Although 
the exploration stage and the exploitation stage in the basic Artificial Bee Colony (ABC) algorithm share the 
same exploration search equation to generate new offspring, the roles of employed bees and onlooker bees are 
different within the internal mechanism of  ABC36, 39. Therefore, it is recommended to develop separate solution 
search equations for the employed bee phase and the onlooker bee phase. The modified algorithm procedures of 
the Multi-Elite Guidance Artificial Bee Colony (MGABC) can be outlined as follows:

Initialization stage. The initialization stage in the MGABC is the same as that of the standard ABC.

Exploration stage. Since employed bees are in charge of discovering new solutions across the whole search 
space, the employed bee phase’s solution search equation should maintain relatively robust exploration. As a 
result, the used bee phase uses the modified solution search equation mentioned in Eq. (21)43.

where Xr1 and Xr2  are two distinct food sources that were chosen at random from the population and are both 
distinct from Xk . In the range of [−1, 1] , φ is a uniformly distributed random number. The food sources used in 
Eq. (21) to generate candidate solutions are all chosen randomly from the population.

Exploitation stage. Unlike the exploration phase, the onlooker bees are primarily focused on exploitation in 
order to conduct thorough searches for favorable food sources in the vicinity, resulting in the production of new 
offspring. As a result, an innovative solution search technique utilizing multiple elite solutions has been formu-
lated specifically for the onlooker bees, and it is represented by Eq. (22)39.

where Xe is one of the most promising solutions from the current population that was randomly chosen from the 
elite group. Se = q.SN denotes the size of the elite group. The purpose of the control parameter MR is to regulate 
how many dimensions can be sent from the superior solution Xe to the new solution Vk

41.

Scouter stage. The scout stage in the MGABC is the same as that of the standard ABC.

Modified neighborhood search operator stage. The basic principle of the modified neighbourhood search 
operator is that, like other evolutionary algorithms, ABC also frequently shows an unsatisfactory performance 
when solving challenging issues like premature convergence and sluggish convergence pace. These could be 
caused, for example, by an excessively large search step size that makes it likely that the true solution would be 
 missed26, 27, 40, 41. The operator thus performs particularly good exploitation and has a simple structure, which 
can be considered as a local search tool after the main ABC procedure is listed in Eq. (23)39, and if one solution 
is unfortunate became stuck by one of the local optima, exploring the neighbourhoods of this solution can help 
locate better alternatives or even the best  solution39.

where Xe1 , Xe2 , and Xe3 are the three food sources chosen at random from the elite group, and they must be 
distinct from Xk . Note that the group of superior food sources utilised in Eqs. (22) and (23) is the same.

Optimization of PID gains for trajectory tracking
On a personal computer with an Intel(R) Core (TM) i7-10750H CPU running at 2.60 GHz, 16 GB of RAM, and 
a 64-bit operating system, all the simulations provided here were run in MATLAB/SIMULINK. The ODE solver 
used a fourth-order Runge–Kutta method with 0.001 s sample time. The torque limitations used for all links are 
[−200, 200] N.m. For links 1, 2, and 3, the desired trajectories ( θd1 , θd2 , and θd3 ) have been listed in Eqs. (25), 

(21)vk,j = xr1,j + φk,j ×
(

xr1,j − xr2,j
)

(22)vk,j =

{

xe,j + φk,j ×
(

xe,j − xk,j
)

ifrand(0, 1) ≤ MR
xk,j otherwise

}

(23)TXk = r1 · Xk + r2 · Xe1 + r3 · (Xe2 − Xe3)

Table 2.  Design parameters of ABC and MGABC.

ABC MGABC

Design parameter Value Design parameter Value

Colony size ( N) 20 Colony size ( N) 20

Lower bound ( LB) [300 100 15] Lower bound ( LB) [300 100 15]

Upper bound ( UB) [550 200 65] Upper bound ( UB) [550 200 65]

Iterations ( Itr) 40 Iterations ( Itr) 40

Modification rate ( MR) 0.5

Elite group ( Se) 3
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(26) and (27), respectively. Table 2 lists the various ABC and MGABC parameters that are utilised to maximize 
controller gains. The simulation time is taken to be 5 s.

A fundamental ABC-PID tuning scheme is shown in Fig. 6. PID controller determines the control signal that 
activates the actual system according to Eq. (24).

where the controller parameter is τ(t) which considered to be the torque applied at each joint, the error is eθ (t) 
which is the difference between the desired θd(t) and measured θm(t) signals, respectively. The controller param-
eters that need to be tuned are Kp, KI , and Kd . Computer simulations have produced numerical results that have 
been used to evaluate the capabilities of the suggested tuning methods.

A newly proposed Lyapunov-based function (LBF), as denoted by Eq. (28), was utilized as the objective func-
tion during the tuning process. This new function was compared against five error-based objective functions 
mentioned in the existing literature. These objective functions include the Integral Time Absolute Error (ITAE) 
described in Eq. (29), Integral Absolute Error (IAE) defined in Eq. (30), Integral Square Error (ISE) presented 
in Eq. (31), Mean Root Square Error (MRSE) outlined in Eq. (32) and Mean Absolute Error (MAE) specified 
in Eq. (33). The purpose of this comparison was to evaluate the effectiveness and performance of the novel LBF 
relative to the established error-based objective functions.

(24)τ(t) = Kpeθ (t)+ KI

∫

e(t)dt + Kd
deθ (t)

dt

(25)θd1 = sin(2t)

(26)θd2 = sin(2t)

(27)θd3 = cos(2t)

(28)LBF =

3
∑

i=1

N
∑

k=1

[

eθi (k)
edi (k)
evi (k)

]T[
α 0 0

0 β 0

0 0 γ

][

eθi (k)
edi (k)
evi (k)

]

(29)ITAE =

∫ t

0

t|e(t)|dt

(30)IAE =

∫ t

0

|e(t)|dt

(31)ISE =

∫ t

0

e(t)2dt

(32)MRSE =
1

N

N
∑

k=1

√

eθ1(k)
2 + eθ2(k)

2 + eθ3(k)
2

(33)MAE =
1

N

N
∑

k=1

∣

∣eθ1(k)
∣

∣+
∣

∣eθ2(k)
∣

∣+
∣

∣eθ3(k)
∣

∣

(34)eθi (k) = θdi (k)− θmi (k)

Figure 6.  Schematic diagram of robotic system PID tuning.
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(35)edi (k) =
deθi (k)

dt

(36)evi (k) =

∫ t

0

eθi (k)dt

Table 3.  Optimized gains of PID Controller. Significant values are in bold.

Objective functions Algorithm

Optimized gains

Link (1) Link (2) Link (3)

Kp Ki Kd Kp Ki Kd Kp Ki Kd

LBF
ABC 550.000 135.645 65.000 550.000 101.398 63.957 550.000 100.000 59.088

MGABC 550.000 104.679 65.000 550.000 200.000 65.000 550.000 136.745 55.056

ITAE23, 32, 44
ABC 534.161 100.000 64.039 550.000 135.418 65.000 508.234 200.000 23.2699

MGABC 550.000 100.216 65.000 550.000 102.799 15.000 550.000 195.288 15.000

IAE15
ABC 550.000 100.00 65.000 550.000 100.000 65.000 525.998 196.129 65.000

MGABC 550.000 100.000 65.000 550.000 100.000 65.000 550.000 100.168 65.000

ISE30
ABC 550.000 131.742 65.000 550.000 117.990 65.000 550.000 100.000 65.000

MGABC 550.000 100.000 65.000 550.000 153.059 65.000 550.000 196.701 65.000

MRSE29
ABC 550.000 101.249 65.000 539.630 100.215 58.284 550.000 200.000 26.477

MGABC 550.000 100.00 65.000 550.000 100.000 65.000 550.000 200.000 22.956

MAE29, 31
ABC 550.000 100.00 64.315 530.912 100.000 65.000 387.838 189.629 15.000

MGABC 550.000 100.00 65.000 550.000 100.000 65.000 427.911 200.000 15.000

Figure 7.  Convergence history of (a) IAE, (b) ISE, (c) ITAE, (d) MRESE, (e) MAE and (f) LBF.
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The terms eθi (t) , edi (k) and evi (k)  represent the errors, derivative of errors, and integral of errors in the 
measured angle of link i, where i corresponds to the number of links (i.e., i = 1, 2, 3 ). The constants in Eq. (28) 
are chosen to be α = 0.7 , β = 0.2 and γ = 0.1 . Table 3 presents the optimized gains of the controller for all three 
links, utilizing the LBF as well as the other functions mentioned in previous literature. It is noteworthy that the 
optimal gains remained unchanged throughout the entire study.

Figure 7 shows the curves of the objective functions (OFs) versus iteration for all tested objective functions, 
employing two optimization algorithms. It is evident from Fig. 7 that the MGABC achieved lower OF values 
compared to the ABC algorithm. This can be attributed to the MGABC’s effective exploration of the search space 
and its utilization of various exploitation schemes, enabling it to avoid local optima.

Figure 8 illustrates the errors in the trajectories of angles for the three links, using the optimum gains of the 
controller obtained from the MGABC tuning process. Figure 8a demonstrates that the difference between all 
tested objective functions is negligible, except for the ITAE, which exhibits a higher peak in the error signals. In 
Fig. 8b, chattering is observed when the ISE and IAE are employed in the tuning process. However, in Fig. 8c, 
the new LBF demonstrates superior performance over the other tested functions by eliminating any chattering 
in the controller, as observed in the ISE and IAE functions. Furthermore, the peaks of the error signals are lower 
than those observed in ITAE, MRSE and MAE objective functions. The MGABC optimizer yielded the best 
LBF OF value of 0.10231 after 40 iterations. The superiority of the LBF is evident as it demonstrates a significant 
improvement over various other objective functions in the analysis of tracking trajectory. Specifically, the LBF 
exhibits a 1.99% improvement over IAE, a 2.22% improvement over ISE, a 48.73% improvement over ITAE, a 
4.50% improvement over MAE and a 1.48% improvement over MRSE in terms of the objective function value.

Figure 9 presents the trajectory tracking curves of links 1, 2, and 3, along with the X − Y  plot of the end-effec-
tor. These trajectories are generated using the optimized gains obtained from the Enhanced Artificial Bee Colony 
with Multi-elite Guidance (MGABC) utilizing the LBF as the objective function during the tuning process.

Simulation performance evaluation
The complete elimination of uncertainty in the mass of the end-effector and the presence of disturbances, whether 
measured or unmeasured, is crucial for achieving optimal performance in a control system. These factors can 
occur independently or simultaneously within the control loop, leading to a degradation in the system’s behavior. 
To address this, the rejection of disturbances and robustness against mass uncertainty have been thoroughly 
investigated and addressed in this section, aiming to enhance the controller’s performance. In addition to the 
aforementioned investigations, this section will also discuss the impact of joint flexibility on the system. The 
influence of joint flexibility on the overall performance and behavior of the system will be thoroughly examined 
and analyzed. The studies conducted for the optimized system using the MGABC algorithm and employing LBF 
as the objective function are outlined as follows:

Robustness against disturbance at the controller output. A dynamic disturbance signal listed in 
Eq. (33) is considered and injected at the output of the controller before being applied to the model as shown in 
Fig. 10.

The amplitude of the disturbance signal (A) was varied from 1 to 5 with a step of 1 in order to study the elimi-
nation of disturbances at the system output. The analysis of the manipulator system’s response is presented in 

(33)τd = Asin(200π t)+ Acos(2t)

Figure 8.  A Comprehensive analysis of all tested objective functions based on the error of measured angles for 
all links a) link (1), b) link (2) and c) link (3).
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Table 4, which provides a comprehensive overview of the obtained objective function (OF) values. Additionally, 
Fig. 11 illustrates a characteristic curve that represents the fluctuations in OF values corresponding to changes 
in the amplitude of the disturbance signal.

It becomes evident that the optimized controller exhibits a smooth and stable output which enables the control 
system to operate effectively for extended durations without compromising performance. The optimized system 
successfully minimizes the inflation in the objective function and shows its robustness in maintaining OF values 
within a range of 0.2945% under low disturbance conditions to 7.668% under severe disturbance conditions.

Figure 9.  The trajectory tracking curves of the links: (a) Link 1, (b) Link 2, (c) Link 3, and (d) the X − Y  plot 
of the end-effector.
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Robustness against uncertainty in mass of payload. A robust controller must have the power to 
overcome changes made both inside the system and outside it, in most industries, a manipulator’s primary duty 
is to pick up and place objects of varying masses using its end-effector, when the end-effector mass is changed, 
the controller in real time observes a new system, the effect of end-effector mass variation must be eliminated by 
a robust  controller4. The mass of the end-effector was incrementally increased by 0.05 kg, ranging from 0.2 kg 
to 0.45 kg, in order to evaluate the robustness of the controllers. Table 5 provides a comprehensive list of the 
obtained objective function (OF) values corresponding to the increasing end-effector mass. Furthermore, Fig. 12 
depicts the variations in OF values in relation to the variation in mass of the payload. The optimized system 
demonstrates effective mitigation of inflation in the objective function, showcasing its robustness in maintain-
ing OF values within a range of 1.755% under low uncertainty conditions to 13.999% under severe uncertainty 
conditions in the mass of the payload.

Figure 10.  Schematic of robotic system tuning in the presence of disturbance.

Table 4.  Objective function values for variation in amplitude of disturbance signal.

Amplitude

Objective function

LBF − MGABC

1 0.1026114

2 0.1035804

3 0.1051771

4 0.1073846

5 0.1101554

Figure 11.  Fluctuations of objective function values on increasing the amplitude of disturbance signal.
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Effect of joint flexibility. When comparing flexible manipulators with their rigid-link counterparts, several 
notable advantages become evident. Flexible manipulators offer significant benefits, including reduced material 
usage, lower power requirements, decreased weight, fewer required actuators, and improved  maneuverability45. 
Moreover, they enable safer operation in real-world scenarios and higher operating speeds. However, despite 
these advantages, the widespread application of flexible manipulators in everyday practical settings still presents 
challenges that must be addressed. The primary objective in controlling a flexible joint is to design a control-
ler that enables a robot link to accurately track a predetermined trajectory or reach a desired position while 
minimizing link vibrations. Resolving this challenge requires developing control strategies that strike a balance 
between precise trajectory tracking and minimizing undesired oscillations in the flexible link. This delicate bal-
ance is crucial to ensure the effective utilization of flexible manipulators in various real-life  applications2, 46.

This section aims to assess the effectiveness of the optimized PID controller in mitigating the influence of joint 
flexibility and achieving the desired trajectory. To thoroughly investigate the impact of flexibility, all three joints 
of the manipulator are chosen to be flexible. The Simscape model provides valuable resources for this analysis. 

Table 5.  Variation of objective function values with increasing the mass of end-effector.

Uncertainty in mass of payload

Objective function

LBF − MGABC

0.2 0.1041057

0.25 0.1051057

0.3 0.1079360

0.35 0.1108009

0.4 0.1137002

0.45 0.1166328

Figure 12.  Variation of objective function values with increasing the mass of payload.

Table 6.  The percentage of inflation in OFs caused by joints flexibility. Significant values are in bold.

Objective functions Rigid joints configuration Flexible joints configuration Percentage of inflation

IAE 0.3308875 0.6845902 106.895%

ITAE 0.7192567 1.6674362 131.827%

ISE 0.0136527 0.0424705 211.077%

MRSE 0.0354762 0.0927354 161.401%

MAE 0.0429643 0.1483228 245.223%

LBF 0.1023137 0.1341760 31.141%
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Specifically, the internal mechanics of each joint are characterized by a spring stiffness of 55 N m/rad and an 
equivalent viscous damping of 33 N m/rad. These parameters play a crucial role in determining the behavior of 
the flexible joints and their cumulative effect on the overall system performance.

Table 6 presents a comparison of the OFs values obtained for both rigid and flexible joint configurations, 
along with the corresponding percentage of inflation. The results demonstrate that the novel LBF outperforms 
the other error-based functions listed in the literature, exhibiting the lowest inflation. This indicates that the 
proposed function enables better trajectory tracking and enhanced adaptability in the presence of joint flexibility.

Figure 13.  The trajectory tracking curves of the flexible joints of links: (a) Link 1, (b) Link 2, (c) Link 3, and (d) 
the X − Y  plot of the end-effector.
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Figure 13 displays the trajectory tracking curves of the three flexible joints, as well as the X − Y  plot of 
the end-effector, demonstrating the performance of the controller in adapting to joint flexibility. Additionally, 
Fig. 14 illustrates the errors in the trajectory angles of the flexible joints, utilizing the optimized gains obtained 
from the MGABC tuning process. The optimized controller exhibits robustness and adaptability to the impact 
of joint flexibility, resulting in smooth trajectories with minimal vibration in the movement of the end effector.

Future work
The present study offers opportunities for further enhancement and extension by exploring additional crucial 
performance evaluations. The following areas are suggested for future research:

• Investigation of both link and joint flexibility to address potential vibrations in movement, necessitating the 
development of robust controllers capable of effectively controlling such dynamics.

• Expansion of the analysis to include experimental validation, which will strengthen the credibility and appli-
cability of the study by validating the findings in a real-world setting.

• Conducting a rigorous mathematical analysis to establish the stability of the flexible system, specifically 
focusing on the selected controller design. This will involve providing formal proofs and theoretical insights 
into the stability properties of the system.

By addressing these aspects in future work, a more comprehensive understanding of the system’s behavior, 
control strategies, and stability can be achieved.

Conclusion
In this study, we propose two optimization techniques, namely the basic Artificial Bee Colony (ABC) and the 
enhanced Artificial Bee Colony with multi-elite guidance (MGABC), for determining the optimal gains of a 
PID controller in a three-link rigid robotic manipulator system. We introduce a novel objective function, the 
Lyapunov-based function (LBF), and compare it with established error-based objective functions such as Integral 
Time Absolute Error (ITAE), Integral Absolute Error (IAE), Integral Square Error (ISE), Mean Root Square Error 
(MRSE), and Mean Absolute Error (MAE). The purpose of this comparison is to evaluate the effectiveness and 
performance of the new function in relation to the existing objective functions.

The convergence analysis of all objective functions using the two optimization algorithms reveals that the 
MGABC outperforms the ABC by effectively exploring the search space and employing diverse exploitation 
strategies, thus avoiding local optima. The trajectory tracking performance of the optimized controller is exam-
ined, and the LBF demonstrates superior performance compared to the other objective functions, with improve-
ments of 1.99% over IAE, 2.22% over ISE, 48.73% over ITAE, 4.50% over MAE, and 1.48% over MRSE in terms 
of the objective function value. Furthermore, the robustness of the optimized system is evaluated in terms of 
disturbance rejection and uncertainty in the mass of the payload. The results indicate that the optimized system 
effectively maintains objective function values within a range of 0.2945% to 7.668% under varying disturbance 
conditions and 1.755% to 13.999% under different levels of uncertainty in the mass of the payload. Additionally, 
the adaptability of the optimized controller to joint flexibility is investigated, and it is observed that the controller 
exhibits robustness and adaptability by generating smooth trajectories with minimal vibration in the movement 

Figure 14.  The errors in measured angles of the flexible joints.
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of the end effector. These findings highlight the effectiveness of the proposed optimization techniques and the 
LBF in achieving improved trajectory tracking, disturbance rejection, robustness against uncertainty, and adapt-
ability to joint flexibility in robotic manipulator systems.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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