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A precise estimation for vibrational 
energies of diatomic molecules 
using the improved Rosen–Morse 
potential
M. Abu‑Shady 1 & E. M. Khokha 2*

In the context of the generalized fractional derivative, novel solutions to the D‑dimensional 
Schrödinger equation are investigated via the improved Rosen‑Morse potential (IRMP). By applying 
the Pekeris‑type approximation to the centrifugal term, the generalized fractional Nikiforov‑Uvarov 
method has been used to derive the analytical formulations of the energy eigenvalues and wave 
functions in terms of the fractional parameters in D‑dimensions. The resulting solutions are employed 
for a variety of diatomic molecules (DMs), which have numerous uses in many fields of physics. 
With the use of molecular parameters, the IRMP is utilized to reproduce potential energy curves for 
numerous DMs. The pure vibrational energy spectra for several DMs are determined using both the 
fractional and the ordinary forms to demonstrate the effectiveness of the method utilized in this 
work. As compared to earlier investigations, it has been found that our estimated vibrational energies 
correspond with the observed Rydberg‑Klein‑Rees (RKR) data much more closely. Moreover, it is 
observed that the vibrational energy spectra of different DMs computed in the existence of fractional 
parameters are superior to those computed in the ordinary case for fitting the observed RKR data. 
Thus, it may be inferred that fractional order significantly affects the vibrational energy levels of DMs. 
Both the mean absolute percentage deviation (MAPD) and average absolute deviation (AAD) are 
evaluated as the goodness of fit indicators. According to the estimated AAD and MAPD outcomes, the 
IRMP is an appropriate model for simulating the RKR data for all of the DMs under investigation.

In recent decades, numerous works on the solutions to the Klein-Gordon, Dirac and Schrödinger equations 
were  reported1–6. This is owing to the reality that the solutions to these wave equations include all of the data 
required for the quantum system under investigation. In this context, the vibrational energy spectra of diatomic 
molecules (DMs) were investigated using several potential functions, such as the  Morse7,  Kratzer8, Deng-Fan9, 
Hulthén10, Tietz-Hua11 and others.

In 1932, Rosen and  Morse12 suggested a diatomic molecular function

where C, B and d are changeable parameters. The Rosen-Morse potential (RMP) was used to explore polyatomic 
vibrational states of the NH3  molecule12. It was also employed to characterize the diatomic molecular  vibrations13. 
By utilizing the equilibrium bond length ( re ) and the dissociation energy ( De ) for a DM as explicit parameters, 
Jia et al.14 presented an improved expression of the RMP based on the original form of the RMP.

where the screening parameter α is defined as  follow15:
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where we is the equilibrium harmonic vibrational frequency and W is the Lambert W  function16 that fulfils 
z = W(z)eW(z) . The improved Rosen-Morse potential (IRMP) was extensively employed to depict the diatomic 
molecular vibrations by solving the relativistic and non-relativistic wave equations.

Wang et al.17 demonstrated that for diatomic molecules, one form of the Schiöberg potential is identical to the 
IRMP. Chen et al.18 used the supersymmetric shape invariance method to find the solutions of the Klein-Gordon 
equation (KGE) with the IRMP and determined the relativistic vibrational transition frequencies for the 33�+

g  
state of the Cs2 molecule. The ro-vibrational energy levels for the 51�+

g  state of the Na2 molecule and the 33�+
g  

state of the Cs2 molecule were calculated with the IRMP in D-dimensions using different  techniques19–21. By 
using the parametric Nikiforov-Uvarov (NU) method, Akanni and  Kazeem22 derived the approximate solutions 
of the KGE with the IRMP. The thermodynamics properties for the Na2 dimer were discussed using the  IRMP23. 
The authors in Ref.15 examined the solutions of the Dirac equation with the IRMP and computed the relativistic 
vibrational energy spectra for the 33�+

g  state of the Cs2 molecule.
Based on the IRMP, the predictions of molar enthalpy, entropy and Gibbs free energy for the P 2 dimer were 

 calculated24–26. Udoh et al.27 utilized the NU method to find the solutions of the Schrödinger equation (SE) in 
D-dimensions for the IRMP and estimated the ro-vibrational energies of H 2(X1�+

g  ) and NO(a4�i ) diatomic 
molecules. Horchani and  Jelassi28 used the IRMP to explore the impact of quantum correction on the thermo-
dynamic characteristics of the Cs2 ( 33�+

g  ) molecule. The vibrational energies for nitrogen molecule and sodium 
dimer were  found29 by studying the solutions of the SE with the IRMP. Al-Raeei30 derived an expression of the 
bond equilibrium length of the IRMP and used it to analyze six dimers and molecules.Yanar31 computed the 
vibrational energies of the SiF+(X1�+ ) molecule utilizing particular cases of the general molecular potential, 
such as the Morse potential, IRMP, and others.

Fractional derivatives calculus has been an appealing area of research in recent decades because of its appli-
cation in different scientific fields such as physics, chemistry, biology, engineering, medicine, and economics. 
In the literature, various fractional derivative definitions have been introduced, such as Riemann-Liouville32, 
 Caputo33,  Jumarie34, and  others35.

According to  Khalil36, an alternative fractional derivative definition that preserves classical features is the 
conformable fractional derivative (CFD). In the context of the CFD, the characteristics of heavy mesons were dis-
cussed using the N-dimensional radial SE for the trigonometric  RMP37, hot-magnetized inter-action  potential38, 
dependent temperature  potential39, and generalized Cornell  potential40. Abu-Shady41 used the concept of the 
CFD to present the mathematical model for describing the Coronavirus disease (COVID-19).

The generalized fractional derivative (GFD) is a novel concept for the fractional derivative that produces 
results consistent with those of classical definitions, was recently proposed by Abu-Shady and  Kaabar42. The 
extended NU method was employed in conjunction with the GFD to solve the SE and determine the masses of 
heavy  mesons43 and also the mass spectra of heavy tetraquarks and  diquark44. The masses of heavy flavor baryons 
with and without hyperfine interactions were calculated using the generalized fractional iteration approach in 
Ref.45. In the scope of the GFD, the analytical exact iteration method was used to analyze the thermodynamic 
properties of heavy mesons in strongly coupled quark-gluon  plasma46. In Ref.47, the fractional forms of various 
special functions were derived using the GFD. By using the generalized fractional Nikiforov-Uvarov (GFNU) 
 method48, the solutions of the SE with the generalized Woods-Saxon potential were derived. More recently, the 
D-dimensional SE was studied via the GFNU technique using the Deng-Fan  potential49 and the improved Tietz 
potential (ITP)50. Furthermore the vibrational and ro-vibrational energies of several DMs were predicted.

It is vital to note that no previous research into SE solutions for the IRMP has been disclosed within the 
framework of the GFD. To this end, the purpose of this work is to explore solutions to the D-dimensional SE for 
the IRMP in the scope of the GFD. The structure of this work is as follows: The basics of the GFNU approach are 
explained in Section “The basics of the GFNU method”. The solutions of the D-dimensional SE for the IRMP are 
found within the scope of the GFD in Section “Solution of the SE with the IRMP in D-dimensions”. The numeri-
cal results of the vibrational energy levels of different DMs are provided and analyzed in Section “Discussion”. 
Finally, Section “Conclusion” provides a succinct conclusion of the work.

The basics of the GFNU method
The basics of the GFNU method are introduced in this part for solving the generalized fractional differential 
equation, which takes the following  form49, 50.

where σ̃ (z) and σ(z) are polynomials of maximum 2γ-th degree and τ̃ (z) is a function at most γ-th degree. 
Utilizing the primary characteristics of the  GFD42
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with

and inserting Eqs. (5) and (6) into Eq. (4) gives

Eq. (4) can be changed into the hypergeometric equation shown below:

where

where the generalized fractional is denoted by the subscript GF. Now taking

and putting Eq. (12) into Eq. (10) leads to

where X(z) is given by:

and

The function Y(z) = Yν(z) is a hypergeometric-type function with polynomial solutions provided by the Rod-
rigues formula

where Cν is a constant of the normalization, and ρ(z) is the weight function given by:

The polynomial πGF(z) is determined by:

The function h(z) can be obtained if the function under the square root is the square of a polynomial. Hence, 
the eigenvalue expression is:

where

Finally, by putting Eqs. (14) and (16) into Eq. (12), the eigenfunctions W(z) can be determined.

Solution of the SE with the IRMP in D‑dimensions
The radial SE for a DM in the D-dimensional space with the potential V(r) is given  by50.

where E, D, J and are the energy eigenvalue, the dimensionality number, and the vibrational quantum number 
respectively, and � is the reduced Planck’s constant. By putting,

Eq. (21) turns to
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with

Inserting the IRMP (2) into Eq. (23) gives:

To determine the approximate analytical solutions of Eq. (25), the Pekeris approximation recipe is applied to the 
centrifugal term (δ2 − 1

4 )
/

r2  as19–21

where the coefficients b0, b1 and b2 are defined as  follows19–21

Inserting Eq. (26) into Eq. (25) yields

By employing the variable z = −e−αr , Eq. (30) turns into

where

with

By changing the integer orders in Eq. (31) to fractional orders, the generalized fractional version of the SE for 
the IRMP is being represented as follows:

Inserting Eqs. (5) and (6) into Eq. (36) yields
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By putting Eq. (38) into Eq. (18), the function πGF(z) is found as follows:

Eq. (39) can be reduced to the following:

where

with

By applying the restriction that the discriminant of the function under the square root of Eq. (40) should be zero, 
the function h(z) can be found as follow

By inserting Eq. (43) into Eq. (40) yields

The negative sign in Eq. (44) is selected to get a physically acceptable solution, the πGF(z) then changes to

and
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In the absence of the influence of the fractional parameters, the following ordinary expression for the energy 
eigenvalues can be produced by putting γ = β = 1:

By utilizing Eq. (14), the function X(z) becomes

Using Eq. (17), the function ρ(z) can be stated as follows

With the help of Eq. (16), the function Yν(z) is written as

The complete solution of Eq. (31) is obtained by applying Eq. (12) as follows

Discussion
In this part, the obtained results are applied to a selection of DMs with widespread uses in optical and molecu-
lar physics. First, the potential function curves for the chosen DMs are initially generated using the IRMP. The 
molecular parameters used in this study are presented in Table 1, which are collected from the  literature51–61. In 
Figs. (1, 2, 3), potential function curves generated by the IRMP are displayed alongside the experimental RKR 
points for the considered DMs. These Figs. show that the generated IRMP curves closely correspond to the 
observed RKR data  points51–61. We evaluate the average absolute deviations (AAD) from the RKR experimental 
data in order to demonstrate the effectiveness of the IRMP.

A prominent goodness-of-fit metric for evaluating the reliability of an empirical potential energy model is 
the AAD from the dissociation energy, which is defined  as62.

where VRKR(r) is the RKR potential and N is the number of experimental data points. Our AAD values for the 
chosen DMs are shown in Table 2. According to the Lippincott criterion,62 the AAD of the potential model 
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Table 1.  Molecular parameters of the chosen DMs.

Molecule State re ( 
o
A) De(eV) ωe (cm−1) µ (a.m.u.) Ref.

ScI B1
∏

2.7215 4.098 243.43 33.1961 51

N2 X1�+
g 1.0977 9.904 2358.57 7.00335 52

K2 X1�+
g 3.9253 0.742 92.4054 19.4818 53

SiF+ X1�+ 1.5265 6.600 1050.37 11.3320 54

SiN X2�+ 1.5700 4.595 1151.36 9.34588 55

SiP X2
∏

2.0775 3.768 615.70 14.7294 56

SrO X1�+ 1.9198 4.610 653.49 13.5287 57

ScO X2�+ 1.6682 6.759 964.90 11.7997 58

AsP X1�+ 1.9990 4.610 567.94 21.9141 59

AsS X2
∏

2.0174 4.280 604.02 22.4523 60

CS X1�+ 1.5349 7.354 1285.08 8.72520 61

YO X2�+ 1.7900 7.289 861.00 13.5590 58
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must be less than 1 % of the dissociation energy in order to fit the RKR potential curve. Thus, a better model is 
indicated by the smaller value of the AAD.

As revealed by Table 2, the IRMP is a perfect model for simulating the RKR potential since the computed AAD 
outcomes for all of the considered DMs are less than 1 % of the dissociation energies. Further potential models 
for the K 2(X1�+

g  ) molecule that have AAD results are the Morse, Modified Morse, and Hulbert-Hirschfelder 
 potentials52. Our AAD value is 0.6999% , whereas the AAD results for the Morse and Hulbert-Hirschfelder poten-
tials are 2.395% , and 0.681% respectively. Consequently, both the IRMP and Hulbert-Hirschfelder potential are 
superior to the Morse potential for simulating the RKR data of the K 2(X1�+

g  ) molecule.
In order to verify the reliability of the expressions generated for the IRMP using the GFNU technique, the 

pure vibrational energy levels of different DMs are computed in three-dimensional space ( D = 3 ). Comparisons 
between the calculated energies and the experimental RKR data as well as earlier investigations are provided in 
Tables 3, 4, 5, 6, 7, 8. To further support the veracity of our findings, we also examine the mean absolute percent-
age deviation (MAPD) of the IRMP from the RKR experimental points. The MAPD is expressed  as50:

where ERKR are the experimental RKR energies and EnJ are the computed energies using the IRMP. The vibrational 
energies of the selected DMs are calculated using Eqs. (50) and (53) in both the fractional and ordinary instances 
respectively. The results in Tables 3, 4, 5, 6, 7, 8 clearly show that the vibrational energies estimated using the 
IRMP are in close agreement with the RKR experimental data. Also for all of the chosen DMs, the calculated 
MAPD demonstrates that are within 1% of the allowed error from the experimental RKR values.

The vibrational energies of the ScI ( B1
∏

 ) molecule are displayed in Table 3, along with comparisons to the 
findings of Refs.63–65. Diaf et al. employed the path integrals formalism to compute the vibrational energies of the 
ScI ( B1

∏

 ) molecule with the q-deformed Scarf potential in Ref.63. While the modified forms of the generalised 
Mobius square and hyperbolical-type potentials were used in Refs.64,65. The findings of these comparisons show 
that they coincide with the other potential  models63–65. The vibrational energies for the N 2(X1�+

g  ) molecule 
are listed in Table 4 compared to the observed RKR data and the outcomes of Refs.52, 66. The authors in Ref.66 

(59)MAPD =
100

N

∑

ν
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Figure 1.  RKR data points and IRMP for the: (a) K 2(X1�+
g  ), (b) N 2(X1�+

g  ), (c) CS(X1�+ ) and (d) YO(X2�+).
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employed the deformed hyperbolic barrier potential to calculate the energy levels of the N 2(X1�+
g  ) molecule. 

Whereas the authors of Ref.52 used the Morse and deformed modified Rosen-Morse (DMRM) potentials.
Table 4 illustrates that our findings agree better with the RKR data than those computed using the other poten-

tial  models52, 66. Furthermore, our MAPD values are the smallest in both the ordinary and fractional cases. As a 
result, our IRMP estimates for modelling the N 2(X1�+

g  ) molecule are more accurate than the other  works52, 66. 
The vibrational energies for the K 2(X1�+

g  ) molecule are reported in Table 5. When comparing our results with 
those of Eyube et al.67 for the K 2(X1�+

g  ) molecule, it becomes clear that our results from the IRMP are more 
precise for fitting the RKR data for the K 2(X1�+

g  ) molecule than those from the improved q-deformed Scarf 
oscillator (IQSO) and the ITP. The vibrational energies of the CS(X1�+ ), AsS(X2

∏

 ) and AsP(X1�+ ) molecules 
are listed in Table 6. As illustrated in Table 6, our outcomes coincide with the RKR data. In Table 7, the computed 
values for the SrO(X1�+ ), YO(X2�+ ) and ScO(X2�+ ) molecules with the observed RKR values are presented. 
As can be seen in Table 7, the calculated and observed outcomes are in close agreement. The vibrational energies 
of the SiP(X2

∏

 ) and SiN(X2�+ ) are listed in Table 8 molecules with the RKR experimental values. It appears 
that the estimated results and the RKR data agree well. In Table 8, we also provide a comparison of the computed 
vibrational energies for the SiF+(X1�+ ) molecule with the outcomes of Ref.31 and observed values.  Yanar31 
calculated the vibrational energies for the SiF+(X1�+ ) molecule using the IRMP as well as the improved gen-
eralized Pöschl-Teller (IGPT) potential . It is clear that the current findings for the SiF+(X1�+ ) molecule are in 
good accord with those of Ref.31. As illustrated in Tables 3, 4, 5, 6, 7, 8, the influence of incorporating fractional 
parameters on the vibrational energies for the molecules studied in this work is crucial for modelling the experi-
mental RKR data. Consequently, our results can be investigated to examine various molecules in future studies.

Figure 2.  RKR data points and IRMP for the: (a) SiF+(X1�+ ), (b) SiN(X2�+ ), (c) SiP(X2
∏

 ) and (d) 
SrO(X1�+).
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Figure 3.  RKR data points and IRMP for the: (a) ScI(B1
∏

 ), (b) ScO(X2�+ ), (c) AsS(X2
∏

 ) and (d) 
AsP(X1�+).

Table 2.  Estimated AAD for the IRMP.

Molecule ScI(B1
∏

) N2(X1�+
g ) K2(X1�+

g ) SiF+(X1�+) SiN(X2�+) SiP(X2
∏

)

AAD% 0.0357 0.6340 0.6999 0.1656 0.1939 0.2715

Molecule SrO(X1�+) ScO(X2�+) AsS(X2
∏

) AsP(X1�+) CS(X1�+) YO(X2�+)

AAD% 0.2842 0.0907 0.0411 0.0969 0.0627 0.0470

Table 3.  Calculated energies ( cm−1 ) for ScI ( B1
∏

 ) molecule ( γ = 0.8598, β = 0.6859).

ν RKR51 Ref.63 Ref.64 Ref.65 Eq. (53) Eq. (50)

0 121.5 121.567 121.569 121.6 121.692 121.650

1 363.7 363.712 363.695 363.7 363.889 363.760

2 604.6 604.572 604.484 604.6 604.851 604.630

3 844.3 844.147 843.938 844.1 844.575 844.261

4 1082.7 1082.437 1082.059 1082.4 1083.063 1082.650

5 1319.8 1319.441 1318.846 1319.4 1320.313 1319.799

6 1555.7 1555.159 1554.301 1555.2 1556.323 1555.705

MAPD% 0.0239 0.0488 0.0280 0.0566 0.0221
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Table 4.  Calculated energies ( cm−1 ) for N 2(X1�+
g  ) molecule ( γ = 0.9585, β = 0.6842).

ν RKR52 Ref.66 Morse52 DMRM52 Eq. (53) Eq. (50)

0 1184.454 1175.820 1174.933 1174.997 1174.935 1183.966

1 3526.358 3502.697 3498.685 3499.841 3500.195 3526.869

2 5833.452 5794.661 5787.619 5790.876 5792.0565 835.821

3 8107.046 8051.712 8041.735 8048.081 8050.455 8110.759

4 10348.312 10273.850 10261.034 10271.387 10275.326 10351.617

5 12558.287 12461.076 12445.514 12460.752 12466.605 12558.331

6 14737.876 14613.389 14595.177 14616.138 14624.226 14730.836

7 16887.860 16730.789 16710.022 16737.473 16748.124 16869.065

8 19008.894 18813.278 18790.048 18824.747 18838.234 18972.953

9 21101.519 20860.852 20835.257 20877.869 20894.489 21042.436

MAPD% 0.8185 0.9355 0.8272 0.7866 0.0802

Table 5.  Calculated energies ( cm−1 ) for K 2 ( X1�+
g  ) molecule ( γ = 0.7975, β = 0.6393).

ν RKR67 IQSO67 ITP67 Eq. (53) Eq. (50)

0 46.094 46.083 46.110 46.114 46.134

1 137.839 137.776 137.912 137.852 137.906

2 228.927 228.755 229.107 228.92 229.002

3 319.354 319.022 319.695 319.318 319.421

4 409.116 408.575 409.672 409.045 409.161

5 498.209 497.416 499.037 498.099 498.223

6 586.628 585.544 587.788 586.481 586.605

7 674.369 672.959 675.922 674.188 674.307

8 761.427 759.660 763.437 761.219 761.327

9 847.797 845.649 850.331 847.575 847.665

10 933.474 930.925 936.602 933.253 933.319

11 1018.451 1015.487 1022.248 1018.253 1018.291

12 1102.724 1099.337 1107.266 1102.573 1102.577

13 1186.286 1182.474 1191.654 1186.214 1186.177

14 1269.131 1264.898 1275.411 1269.173 1269.091

15 1351.252 1346.609 1358.532 1351.449 1351.318

16 1432.642 1427.606 1441.017 1433.043 1432.856

17 1513.294 1507.891 1522.863 1513.952 1513.706

MAPD% 0.2221 0.2994 0.0201 0.0194

Table 6.  Calculated energies ( cm−1 ) for CS ( X1�+ ) ( γ = 0.9222, β = 0.7264 ), AsS ( X2
∏

 ) 
( γ = 0.9452, β = 0.7328 ) and AsP ( X1�+ ) ( γ = 0.9267, β = 0.7269 ) molecules.

CS ( X1�+) AsS ( X2
∏

) AsP ( X1�+)

ν RKR61 Eq. (53) Eq. (50) RKR60 Eq. (53) Eq. (50) RKR59 Eq. (53) Eq. (50)

0 640.9 640.8 641.2 283.47 283.76 284.26 301.51 301.40 301.72

1 1913.1 1912.6 1913.7 847.47 847.15 848.64 901.57 900.64 901.59

2 3172.3 3171.1 3172.9 1407.53 1405.98 1408.44 1497.67 1495.09 1496.65

3 4418.6 4416.2 4418.6 1963.65 1960.24 1963.66 2089.81 2084.76 2086.91

4 5652.0 5647.9 5651.0 2515.83 2509.95 2514.29

5 6872.5 6866.3 6869.9 3064.07 3055.09 3060.34

6 8080.1 8071.3 8075.5 3608.37 3595.66 3601.80

7 9274.7 9262.9 9267.5

MAPD% 0.0667 0.0357 0.1860 0.1207 0.1384 0.0694
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Conclusion
In this paper, the GFD is utilized for the first time to investigate the bound state solutions of the D-dimensional 
SE using the IRMP. Based on the GFNU, the analytical forms for the energy eigenvalues and wave functions of 
the IRMP are derived as a function of the fractional parameters in the D-dimensional space by employing the 
Pekeris-type approximation to the centrifugal term. The present results are applied to a number of DMs that have 
extensive applications in different physical domains. With the help of the molecular parameters, the potential 
energy curves are generated in terms of IRMP for the selected DMs. For the chosen DMs, the AAD of the IRMP 
from the observed RKR data is presented. According to our estimated AAD, the IRMP can successfully fit the 
experimental RKR data of several DMs. To validate the mechanism used in this research, the pure vibrational 
energies for different DMs are calculated in both ordinary ( γ = β = 1 ) and fractional ( γ  = 1,β  = 1 ) cases 
in three-dimensional space ( D = 3 ). It is found that the current computed pure vibrational energy values are 
preferable to those from earlier works and are in full harmony with the experimental data. It is further shown 
that the pure vibrational energies of different DMs computed in the existence of fractional parameters fit the 
observed RKR data better than those computed in the ordinary case. This leads one to the conclusion that frac-
tional order significantly affects the vibrational energy levels of DMs. The MAPD from the observed RKR data 
points is assessed to further substantiate the accuracy of our findings. According to the assessed MAPD, our 
values are accurate to within a 1% error margin of the experimental RKR values. Therefore, the current findings 
indicate that the IRMP is a precise model for estimating the observed RKR data for all of the DMs considered 
in this investigation.

Data availability
All data generated or analysed during this study are available upon reasonable request from the corresponding 
author.
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Table 7.  Calculated energies ( cm−1 ) for SrO ( X1�+ ) ( γ = 0.7723, β = 0.6363 ), YO ( X2�+ ) 
( γ = 0.9247, β = 0.7302 ) and ScO ( X2�+ ) ( γ = 0.9555, β = 0.7561 ) molecules.

ν

SrO ( X1�+) YO ( X2�+) ScO ( X2�+)

RKR57 Eq. (53) Eq. (50) RKR58 Eq. (53) Eq. (50) RKR58 Eq. (53) Eq. (50)

0 325.76 326.03 323.25 429.7 429.71 429.81 481.4 481.4 481.2

1 971.33 974.04 965.73 1284.9 1284.71 1284.97 1437.9 1438.1 1437.7

2 1608.98 1616.55 1602.77 2134.1 2133.70 2134.11 2386.0 2386.7 2386.

3 2238.71 2253.57 2234.36 2977.6 2976.67 2977.22 3325.7 3327.2 3326.1

4 2860.52 2885.07 2860.51 3815.1 3813.61 3814.28 4257.0 4259.4 4258.1

5 3474.41 3511.07 3481.19 4646.8 4644.51 4645.29

6 4080.38 4131.54 4096.42

7 4678.43 4746.49 4706.18

8 5268.56 5355.90 5310.47

MAPD% 0.8639 0.4338 0.0260 0.0163 0.0305 0.0170

Table 8.  Calculated energies ( cm−1 ) for SiP ( X2
∏

 ) ( γ = 0.7986, β = 0.6341 ), SiN ( X2�+ ) 
( γ = 0.7726, β = 0.6137 ) and SiF+ ( X1�+ ) ( γ = 0.9296, β = 0.7346 ) molecules.

ν

SiP ( X2
∏

) SiN ( X2�+) SiF+ ( X1�+)

RKR56 Eq. (53) Eq. (50) RKR55 Eq. (53) Eq. (50) RKR54 IGPT31 IRM31 Eq. (53) Eq. (50)

0 306.74 307.60 308.72 574.1 573.5 576.42 523.95 523.91 523.89 523.89 523.91

1 917.75 917.24 920.53 1712.5 1707.4 1716.1 1564.43 1563.92 1564.39 1564.40 1564.40

2 1524.08 1520.82 1526.21 2838.0 2823.9 2838.1 2595.02 2593.57 2594.99 2595.01 2595.06

3 2125.74 2118.32 2125.76 3950.5 3923.0 3942.4 3615.72 3612.85 3615.70 3615.72 3615.76

4 2722.72 2709.74 2719.15 5050.1 5004.6 5028.9 4626.53 4621.78 4626.49 4626.51 4626.51

5 3315.02 3295.08 3306.4 6136.8 6068.6 6097.7 5627.44 5620.33 5627.34 5627.38 5627.32

6 3902.65 3874.33 3887.5

7 4485.59 4447.49 4462.44

MAPD% 0.4441 0.2979 0.6028 0.3130 0.0674 0.0031 0.3468 0.0021
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