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Persistent Dirac for molecular 
representation
Junjie Wee 1*, Ginestra Bianconi 2,3 & Kelin Xia 1

Molecular representations are of fundamental importance for the modeling and analysing molecular 
systems. The successes in drug design and materials discovery have been greatly contributed by 
molecular representation models. In this paper, we present a computational framework for molecular 
representation that is mathematically rigorous and based on the persistent Dirac operator. The 
properties of the discrete weighted and unweighted Dirac matrix are systematically discussed, and 
the biological meanings of both homological and non-homological eigenvectors are studied. We also 
evaluate the impact of various weighting schemes on the weighted Dirac matrix. Additionally, a set of 
physical persistent attributes that characterize the persistence and variation of spectrum properties 
of Dirac matrices during a filtration process is proposed to be molecular fingerprints. Our persistent 
attributes are used to classify molecular configurations of nine different types of organic-inorganic 
halide perovskites. The combination of persistent attributes with gradient boosting tree model has 
achieved great success in molecular solvation free energy prediction. The results show that our model 
is effective in characterizing the molecular structures, demonstrating the power of our molecular 
representation and featurization approach.

Molecular representation and featurization play an essential role in physical as well as in data-driven learning 
models. The relationship between the structure and function of molecules is complex, and a comprehensive 
understanding of the structural properties is crucial to extract functional information. To establish explicit linear 
or nonlinear relationships between molecular structure and function, various quantitative structure-activity/
property relationship (QSAR/QSPR) models have been  developed1,2. Different molecular fingerprints have also 
been proposed for machine learning and deep learning models to predict molecular functions and  properties3–8. 
Despite significant advances, the development of highly efficient descriptors remains a major challenge for QSAR/
QSPR and learning models in the analysis of molecular data in the fields of materials, chemistry, and  biology1,2.

Graph  models9–18 are arguably the most widely used tools for molecular representations in molecular dynam-
ics simulation, coarse-grained models, elastic network models, QSAR/QSPR, graph neural networks, etc. In 
general, a molecule (or a molecular complex) is modeled as a graph with each vertex representing an atom, an 
amino acid, a domain, or an entire molecule, and edge representing covalent-bond, non-covalent-bond, or more 
general interaction. However, graphs are designed for the characterization of pairwise interactions. To capture 
higher-order interactions, topological representations, such as multilayer  networks19, simplicial  complexes20–22, 
 hypergraphs23,24, etc, should be considered. Among them, multilayer networks have been used in the characteriza-
tion of higher-order  dynamics25–28 and synchronization  dynamics29–31. As a generalization of graphs, simplicial 
complexes are made not only of 0-simplices (nodes) and 1-simplices (edges), but also of higher-dimensional 
simplices, such as 2-simplices (triangles), 3-simplices (tetrahedron), etc. Note that higher-order networks and 
simplicial complexes can describe the many-body interactions beyond pairwise interactions. Hypergraphs are a 
further generalization of simplicial complexes. An hypergraph is composed of hyperedges, which are formed by 
a set of vertices. Recently, simplicial complexes and hypergraphs have been used in molecular representations 
and have allowed improved performance of drug design algorithms, in particular, in the protein-ligand binding 
affinity prediction.

Based on topological representations, molecular descriptors or fingerprints can be generated and further used 
as features for learning models. The recent emergence of topological data analysis (TDA)32,33 and combinatorial 
Hodge theory-based molecular descriptors has had a significant impact on drug design. These models have been 
successful in various stages of drug design, such as predicting protein-ligand binding  affinity4,14,34–39, protein 
stability changes resulting from  mutations40,41,  toxicity42, solvation free  energy43,44, partition coefficient and 
aqueous  solubility45, and identifying binding  pockets46. In comparison to traditional molecular representations, 
these models have demonstrated superior performance in the D3R Grand  Challenge47,48. TDA’s fundamental 
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mathematical concept involves using persistent homology to extract topological information, tracking the change 
of homology generators of simplicial complexes over a filtration process. In particular, the topological invariant 
Betti numbers can be obtained from the kernel of combinatorial Hodge Laplacian (HL) matrix. Interestingly, 
the Forman Ricci curvature can be obtained via the Bochner–Weitzenböck decomposition of HL  matrix6. The 
great success of TDA and combinatorial Hodge theory based molecular descriptors in learning models is due 
to their characterization of structures with intrinsic invariants, including Betti numbers and Ricci curvatures. 
These intrinsic descriptors are well defined mathematical observables that characterize fundamental topologi-
cal and geometrical properties of real datasets, thus they have an excellent transferability for learning models.

Inspired by the success of Hodge Laplacian matrix in molecular sciences, here we propose the persistent Dirac 
based molecular representation and fingerprint. The discrete Dirac  operator49–55 is a first-order differential opera-
tor which can be interpreted as the square root of Hodge Laplace operator. This operator has been developed on 
graphs and simplicial complexes and used in TDA and for investigating dynamics of topological  signals50,56–58. 
Moreover, the persistent Dirac model can be used in the quantum algorithm of persistent  homology52,53,59. Here 
we present a rigorous mathematical theory for persistent Dirac through the commutative diagram of discrete 
Dirac operator over a filtration process. The commutative diagram is similar to the ones in persistent spectral 
 graph5,60, persistent Hodge  Laplacian61, and persistent sheaf  Laplacian61,62. Further, we develop a series of persis-
tent attributes from persistent Dirac, and use them as descriptors to characterize molecular structures.

Our work starts with a systematic study of the spectrum of the discrete Dirac matrix. In particular, we identify 
the geometric and topological properties of both non-homology and homology eigenvectors for molecular struc-
tures. We generalize these results to weighted simplicial complexes on top of which the weighted Dirac  operator63 
is carefully defined. In particular, we analyse the influence of weighting schemes on the spectral properties of 
molecular structures. The persistent Dirac is then introduced and is employed for the clustering of molecular 
configurations from the molecular dynamic simulations of nine types of organic-inorganic halide perovskites 
(OIHP). By the comparison with several existing models, we show that our model is highly efficient in clustering 
the structure configurations. Further, the combination of persistent attributes with gradient boosting tree model 
has achieved great success in molecular solvation free energy prediction. This demonstrates the great potential 
of our persistent Dirac-based fingerprints in molecular representation and featurization.

The paper is organized as follows. Section “Methods” is devoted to the discrete Dirac models. It covers basic 
mathematical background such as simplicial complexes, chain groups, boundary operators, Hodge Laplacian. 
Thereafter, the section discusses the use of spectrum of discrete Dirac models for biomolecular representation 
and characterization. In section “Results”, persistent Dirac model is present. The eigenspectrum information for 
(weighted) Dirac matrix and persistent attributes from persistent Dirac are discussed in detailed. The section 
ends with an application of the persistent Dirac based fingerprints on organic-inorganic halide perovskite (OIHP) 
classification and prediction of solvation free energy. The paper ends with a conclusion.

Methods
In this section, we discuss the discrete Dirac models, including discrete Dirac matrices and weighted Dirac 
matrices for biomolecular structure representation and characterization. Different from previous graph-based 
models, molecular structures are represented based on simplicial complexes, and algebraic tools from chain 
groups, homology groups, boundary operators and Dirac matrices, are used to reveal deeper geometric and 
topological properties.

Mathematical background for discrete Dirac models. Simplicial complex. Generally speaking, a 
simplicial complex can be viewed as a higher-dimensional generalization of graphs. A p-dimensional simplicial 
complex is formed by simplices of dimension up to p. Every p dimensional simplex consists of a set of p+ 1 ver-
tices and this set can be viewed geometrically as a point (0-simplex), an edge (1-simplex), a triangle (2-simplex), 
a tetrahedron (3-simplex), etc.

Here and in the following we indicate with np the number of p-simplices belonging to the simplicial complex 
K . The most commonly used simplicial complexes include Čech complex, Vietoris–Rips complex, Alpha complex, 
Cubical complex, Morse complex, etc.64.

Two p-dimensional simplices σ1 and σ2 in a simplicial complex K , are simplex neighbors if 

 (i) σ1 and σ2 share a (p+ 1)-simplex µ , that is, there exists a µ in K such that µ > σ1 and µ > σ2.
 (ii) σ1 and σ2 share a (p− 1)-simplex γ , that is, there exists a γ in K such that γ < σ1 and γ < σ2.

If either condition is satisfied, but both conditions do not hold at the same time, σ1 and σ2 are called parallel 
simplex neighbors. Here σ1 and σ2 are called upper adjacent neighbors and denoted as σ1 ⌢ σ2 , if they satisfy 
condition (i). They are lower adjacent neighbors and denoted as σ1 ⌣ σ2 if they satisfy condition (ii).

Homology. In homology, a p-dimensional oriented simplex σ p is the set of ordered p+ 1 nodes [v0, v1, . . . , vp] . 
For example, an oriented 1-simplex σ 1 = [v0, v1] has the opposite sign of the oriented 1-simplex [v1, v0] . In other 
words,

Similarly, this orientation can be written for higher-order simplices in the following way,

[vi , vj] = −[vj , vi].
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where α(π) refers to the parity of the permutation π . In this paper, we consider the orientation induced by node 
labels, i.e. for every simplex in a simplicial complex, we assign a positive orientation to the one provided by the 
increasing set of node labels.

For an oriented simplicial complex K , its p-dimensional chain group Cp(K) is composed by linear combina-
tion of positively oriented p-simplices in K . Let [v0, v1, . . . vp] indicate the generic positively oriented p-simplex 
σ p ∈ K . We notice that the set of simplices σp constitute a basis for the p-dimensional chains Cp(K) . Therefore 
any p-chain f1 ∈ Cp(K) can be written in a unique way as

The weighted boundary operator ∂p : Cp → Cp−1 can be determined by its action on any given σ p ∈ K:

Here ap is a constant in R+ dependent on p and the boundary of p-simplex is made of (p− 1)-simplices 
[v0, v1, . . . , v̂i , . . . , vp] , where v̂i means that vi has been removed from the sequence v0, . . . , vp . It is also well-
known that ∂p−1∂p = 0 . The unweighted boundary operator can be obtained by setting ap = 1 . In other words, 
the unweighted boundary operator ∂p : Cp → Cp−1 for a given σ p ∈ K is defined as

For an oriented simplicial complex K , its two oriented p-dimensional simplices σ1 and σ2 are similarly oriented 
and denoted as σ1 ∼ σ2 , if they are lower adjacent and have the same sign on the common lower (p− 1)-simplex. 
Two simplex σ1 and σ2 are dissimilarly oriented and denoted as σ1 ≁ σ2 , if they are lower adjacent but have 
different signs on the common lower (p− 1)-simplex.

The p-th cycle group Zp is defined as,

and p-th boundary group Bp is,

The p-th homology group is defined as Hp = Zp/Bp . Its rank is p-th Betti number that satisfies

With the boundary operators, we have chain complexes

The adjoint of ∂p , which is

satisfies the inner product relation �∂p(f ), g� = �f , ∂∗p(g)�, for every f ∈ Cp , g ∈ Cp−1 . It is used in the weighted 
Hodge Laplacian.

Weighted Hodge Laplacian and Hodge decomposition. The p-dimensional weighted Hodge Laplacian 
�p : Cp → Cp is defined as follows:

The special case where p = 0 is the well-known graph Laplacian.
Computationally, the information for weighted boundary operators acting from finite dimensional chain 

groups Cp to Cp−1 can be stored efficiently in matrix representations. As matrix representations, the weighted 
boundary operators and its adjoint satisfies ∂⊤p = ∂

∗
p.

More specifically, let np−1 and np be the number of (p− 1)-simplices and p-simplices respectively in a simpli-
cial complex K . The np−1 × np weighted boundary matrix Bp has entries defined as follows:

[v0, v1, . . . , vp] = (−1)α(π)[vπ(0), vπ(1), . . . , vπ(p)],

(1)f1 =
np
∑

i=1

ciσ
i .

∂p(σ
p) = ap

p
∑

i=0

(−1)i[v0, v1, . . . , v̂i , . . . , vp].

∂p(σ
p) =

p
∑

i=0

(−1)i[v0, v1, . . . , v̂i , . . . , vp].

Zp = ker(∂p) = {c ∈ Cp|∂p(c) = 0},

Bp = im(∂p+1) = {c ∈ Cp|∃d ∈ Cp+1 : c = ∂p+1(d)}.

βp = rank Hp = rank Zp − rank Bp.

· · ·
∂p+2−−→ Cp+1

∂p+1−−→ Cp

∂p−→ Cp−1

∂p−1−−→ · · ·

∂
∗
p : Cp−1 → Cp,

�p =
{

∂1 ◦ ∂∗1, if p = 0.

∂
∗
p ◦ ∂p + ∂p+1 ◦ ∂∗p+1, if p ≥ 1.
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where 1 ≤ i ≤ np−1 and 1 ≤ j ≤ np . Here, σ p−1
i < σ

p
j  represents the i-th (p− 1)-simplex σ p−1

i  is a face of j-th 

p-simplex σ p
j  and σ p−1

i ∼ σ
p
j  indicates the coefficient of σ p−1

i  in ∂p(σ
p
j ) is ap . Likewise, σ p−1

i ≮ σ
p
j  means that 

σ
p−1
i  is not a face of σ p

j  and σ p−1
i ≁ σ

p
j  indicates that the coefficient of σ p−1

i  in ∂p(σ
p
j ) is −ap.

Since the unweighted boundary operator ∂p = 1
ap
∂p , note that an unweighted boundary matrix can be simi-

larly written as

Using the weighted boundary matrices, the lower and upper weighted Hodge Laplacians can be defined as 
L
down
p = B

⊤
p Bp and Lupp = Bp+1B

⊤
p+1 respectively. More specifically, the entries of Ldownp  ( p > 0 ) are as follows,

Note that all the entries of Ldown0  are zero since 0-simplices have no lower adjacent neighbors. Further, σ p
i ⌣ σ

p
j  

refers to σ p
i  and σ p

j  being lower adjacent neighbors while σ p
i ⌢ σ

p
j  refers to σ p

i  and σ p
j  being upper adjacent 

neighbors.
It is important to observe that σ p

i ⌢ σ
p
j  (p > 0) also implies that σ p

i  and σ p
j  share a lower simplex σ p−1 . The 

case where σ p
i ∼ σ

p
j  refers to σ p

i  and σ p
j  sharing a common similar lower simplex σ p−1 . This means that the signs 

of coefficient of σ p−1 in ∂p(σ
p
i ) and ∂p(σ

p
j ) are the same. On the other hand, σ p

i ≁σ
p
j  refers to σ p

i  and σ p
j  sharing 

a common dissimilar lower simplex σ p−1 . This can be verified by checking the signs of coefficient of σ p−1 in 
∂p(σ

p
i ) and ∂p(σ

p
j ) to be not the same.

Since 0-simplices have no lower adjacent neighbors, any two 0-simplices σ 0
i  and σ 0

j  that are upper adjacent 
neighbors will always satisfy σ 0

i ∼ σ 0
j  vacuously.

Hence, the matrix elements of the Hodge Laplacian Lupp  are given by

Here d(σ p
i ) denotes the number of cofaces with dimension p+ 1 of simplex σ p

i .
The pth weighted combinatorial Laplacian Lp is defined as Lp = B

⊤
p Bp + Bp+1B

⊤
p+1 . Note that L0 = B1B

⊤
1  . 

The matrix elements of the Hodge Laplacians Lp with p = 0 are given by

while the matrix elements for p > 0 can be expressed as

It follows from Eq. (2) that the lower and upper unweighted Hodge Laplacians can be written as Ldownp = B⊤
p Bp 

and Lupp = Bp+1B
⊤
p+1 respectively. Hence, the pth unweighted combinatorial Laplacian Lp = Ldownp + L

up
p  have 

elements given by

Bp(i, j) =











ap, if σ
p−1
i < σ

p
j , σ

p−1
i ∼ σ

p
j .

−ap, if σ
p−1
i < σ

p
j , σ

p−1
i ≁ σ

p
j .

0, if σ
p−1
i ≮ σ

p
j .

(2)Bp =
1

ap
Bp.

L
down
p (i, j) =



















a2p(p+ 1), i = j.

a2p, i �= j, σ
p
i ⌣ σ

p
j , σ

p
i ∼ σ

p
j .

−a2p, i �= j, σ
p
i ⌣ σ

p
j , σ

p
i ≁σ

p
j .

0, i �= j and σ
p
i �⌣σ

p
j .

L
up
p (i, j) =



















a2p+1d(σ
p
i ), i = j.

−a2p+1, i �= j, σ
p
i ⌢ σ

p
j , σ

p
i ∼ σ

p
j .

a2p+1, i �= j, σ
p
i ⌢ σ

p
j , σ

p
i ≁ σ

p
j .

0, i �= j and σ
p
i �⌢ σ

p
j .

L0(i, j) =







a21d(σ
0
i ), i = j.

−a21, i �= j, σ 0
i ⌢ σ 0

j .

0, i �= j, σ 0
i �⌢ σ 0

j .

Lp(i, j) =







































a2p+1d(σ
p
i )+ a2p(p+ 1), i = j.

a2p − a2p+1, i �= j, σ
p
i ⌢ σ

p
j , σ

p
i ⌣ σ

p
j , σ

p
i ∼ σ

p
j .

a2p+1 − a2p, i �= j, σ
p
i ⌢ σ

p
j , σ

p
i ⌣ σ

p
j , σ

p
i ≁ σ

p
j .

a2p, i �= j, σ
p
i �⌢ σ

p
j , σ

p
i ⌣ σ

p
j , σ

p
i ∼ σ

p
j .

−a2p, i �= j, σ
p
i �⌢ σ

p
j , σ

p
i ⌣ σ

p
j , σ

p
i ≁ σ

p
j .

0, i �= j and σ
p
i �⌣ σ

p
j .
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for p = 0 while for p > 0 the matrix elements of the Hodge Laplacian are given by

It is well-known that � is a non-zero eigenvalue of Lp if and only if � is an non-zero eigenvalue of Ldownp  or Lupp  . 
The multiplicity of the zero eigenvalues of Lp corresponds to the pth Betti number as follows,

where βp is also the rank Hp
65 (see Appendix C).

Further, dim ker L
down
p  can be written as:

The above Eq. (3) will be an important relation for persistent Dirac models in later sections.
Closely related to the Hodge Laplacian is the Hodge decomposition. The Hodge decomposition is an 

orthogonal decomposition of a vector field into gradient part, harmonic part and curl part. More formally, the 
Hodge decomposition states that a p-th chain group Cp of a simplicial complex K admits the following orthogonal 
direct sum decomposition:

Cp =
︸ ︷︷ ︸

imLdown
p

kerLup
p =kerB�

p+1
︷ ︸︸ ︷

im(Bp+1)⊕ ker(Lp)⊕ im(B
�
p )

︸ ︷︷ ︸

kerLdown
p =kerBp

imLup
p

︷ ︸︸ ︷

,

where ker(Lp) = kerBp ∩ kerB
⊤
p+1.

It is worth mentioning that such flows have also been extended to five component decompositions with edge 
and face vector  fields66, applied to the protein B-factor prediction problems via Hodge  theory8 and also in de 
Rham–Hodge biomolecular data  analysis9,67.

Discrete Dirac models. Weighted Dirac matrix. Recently, weighted Dirac matrices have been proposed 
based on a weighted simplicial  complex63. For a d-dimensional weighted simplicial complex K , let us define 
the np × np metric matrix Gp ( 0 ≤ p ≤ d ) to be a diagonal matrix with positive entries. For any two p-chains 
f1 =

∑np
i=1 ciσ

i and f2 =
∑np

i=0 diσ
i in Cp , the matrix Gp can be used to define the weighted inner product

where (f1)⊤ = [c1, c2, . . . , cp] and (f2)⊤ = [d1, d2, . . . , dp].
Recall from Eq. (2) that the weighted boundary operator can be represented by a matrix Bp = apBp where Bp 

is the unweighted boundary matrix. If ap = 1 , then Bp reduces to the adjoint operator of Bp . Formally, for any 
p-chain f and any (p− 1)-chain g, the adjoint operator B∗

p satisfies

From the inner product relation (5), an explicit expression of B∗
p can be deduced in terms of Bp and the matrices 

Gp . Based on the weighted inner product definition (4), this gives

L0(i, j) =







d(σ 0
i ), i = j.

−1, i �= j, σ 0
i ⌢ σ 0

j .

0, i �= j, σ 0
i �⌢ σ 0

j .

Lp(i, j) =



















d(σ
p
i )+ p+ 1, i = j.

1, i �= j, σ
p
i �⌢ σ

p
j , σ

p
i ⌣ σ

p
j , σ

p
i ∼ σ

p
j .

−1, i �= j, σ
p
i �⌢ σ

p
j , σ

p
i ⌣ σ

p
j , σ

p
i ≁ σ

p
j .

0, i �= j and either σ
p
i ⌢ σ

p
j or σ

p
i �⌣ σ

p
j .

dim ker Lp = βp = dim ker L
down
p − dim imL

up
p

(3)

dim ker L
down
p = βp + dim imL

up
p

= βp + dimCp − dim ker L
up
p

= βp + dimCp − dim kerB
⊤
p+1

= βp + rank B
⊤
p+1.

(4)
〈

f1, f2
〉

=
np
∑

i=1

Gp(σ
i , σ i)cidi = (f1)

⊤
Gp(f2),

(5)�f ,B∗
pg� = �Bpf , g�.
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Since the expression is true for any arbitrary f  and g , this implies

Hence, the following becomes an explicit expression for the adjoint operator B∗
p:

Here B∗
p

65 is the adjoint of the weighted boundary  operator10,68. It is important to note that if the metric matri-
ces Gp are the identity matrices, the above expression then reduces to the transpose of the boundary operator 
multiplied by the constant ap,

This also means the transpose of adjoint operator, i.e. (B∗
p)

⊤ , is equal to Bp only if Gp are identity matrices. To 
see this, apply the transpose to both sides of Eq. (6) and obtain the expression

The matrices (B∗
p)

⊤ and B∗
p can then be used to construct the following weighted Dirac matrix (9).

For a simplicial complex K with np × np−1 adjoint operators B∗
p where np−1 is the number of (p− 1)-simplices 

and np is the number of p-simplices in K , the weighted Dirac matrix Dp is

In particular, we set ap = (p+ 1)−1/2 for all p up to the order of the simplicial complex and consider the matrices 
B
∗
p and (B∗

p)
⊤ in Eq. (7) and (8) respectively. For p = 2 , the weighted Dirac matrix from (9) becomes

This definition can be extended easily to higher dimensions. Note that B⊤
p /

√
p+ 1 is the adjoint operator B∗

p and 
G−1
p−1BpGp/

√
p+ 1 is equal to the transpose of B∗

p . Note that this definition of weighted Dirac is self-adjoint and 
with eigenvalues smaller than or equal to one. The square of the weighted Dirac also forms a diagonal block of 
metric Hodge Laplacian matrices

where the metric Hodge Laplacian matrices are defined as

with

Depending on the matrices Gp , the weighted Dirac matrix may not always be symmetric, despite its eigenspectrum 
can be shown to be always real (see Appendix I).

For the rest of the paper, the metric matrices Gp shall be defined with each metric value for a simplex σ p to 
be dependent on its (p+ 1)-dimensional cofaces in the following  way63:

(f)⊤GpB
∗
p(g) = (f)⊤B⊤

p Gp−1(g).

GpB
∗
p = B

⊤
p Gp−1.

(6)B
∗
p = G−1

p B
⊤
p Gp−1.

(7)B
∗
p = B

⊤
p = apB

⊤
p .

(8)(B
∗
p)

⊤ = G−1
p−1BpGp = apG

−1
p−1BpGp.

(9)Dp =





















0 n0×n0 (B
∗
1)

⊤ 0 n0×n2 · · · 0 n0×np 0 n0×np+1

B
∗
1 0 n1×n1 (B

∗
2)

⊤ · · · 0 n1×np 0 n1×np+1

0 n2×n0 B
∗
2 0 n2×n2 · · · 0 n2×np 0 n2×np+1

...
...

...
...

...
...

0 np×n0 0 np×n1 0 np×n2 · · · 0 np×np (B
∗
p+1)

⊤

0 np+1×n0 0 np+1×n1 0 np+1×n2 · · · B
∗
p+1 0 np+1×np+1





















.

D1 =









0 n0×n0 G−1
0 B1G1/

√
2 0 n0×n2 0 n0×n3

B⊤
1 /

√
2 0 n1×n1 G−1

1 B2G2/
√
3 0 n1×n3

0 n2×n0 B⊤
2 /

√
3 0 n2×n2 G−1

2 B3G3/2
0 n3×n0 0 n3×n1 B⊤

3 /2 0 n3×n3









D
2
2 =







L[0] 0 n0×n1 0 n0×n2 0 n0×n3
0 n1×n0 L[1] 0 n1×n2 0 n1×n3
0 n2×n0 0 n2×n1 L[2] 0 n2×n3

0 n3×n0 0 n3×n1 0 n3×n2 Ldown3







L[p] = Ldown[p] + L
up
[p],

L
down
[p] = B

⊤
p G

−1
p−1BpGp/(p+ 1),

L
up
[p] = G

−1
p Bp+1Gp+1B

⊤
p+1/(p+ 2).
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Here, wσ p > 0 is a positive weight on p-simplex σ p , which can be related to physical, chemical and biological 
properties.

Discrete Dirac matrix. With the weighted Dirac matrix Dp , a discrete Dirac matrix is simply the special case of 
Dp when Gp are identity matrices and ap = 1 for all p ≥ 1.

Previously, a general Dirac matrix has been defined  as49,69,70

where z ∈ C such that |z| = 1 . Since |z| = 1 , the typical values of z occurs when z = z = 1 or z = −z = i . In 
general, the parameter z ∈ C extends the real eigenvectors of Dp(z) to C while the eigenvalue remains unchanged. 
By taking the square of the Dirac operator, we have

which implies that the eigenvalues of diagonal block real-valued Hodge-Laplacian matrices will also be the 
eigenvalues of D2

p(z) . Since the Hodge-Laplacians are positive semi-definite symmetric matrices, the eigenvalues 
of D2

p(z) are non-negative as well. However, eigenvectors from the Dirac matrix may contain complex numbers.
For a simplicial complex K with np−1 × np boundary matrices Bp where np−1 is the number of (p− 1)-sim-

plices and np is the number of p-simplices in K , the discrete Dirac matrix Dp
70 is

Gp(σ
p, σ p) =







wσ d , p = d

wσ p +
�

σ p<σ p+1

Gp+1(σ
p+1, σ p+1), 0 ≤ p < d.

Dp(z) =
[

0 np×np zBp+1

zB⊤
p+1 0 np+1×np+1

]

,

D2
p(z) =

[

L
up
p 0 np×np+1

0 np+1×np Ldownp+1

]

,

(10)Dp =



















0 n0×n0 B1 0 n0×n2 · · · 0 n0×np 0 n0×np+1

B⊤
1 0 n1×n1 B2 · · · 0 n1×np 0 n1×np+1

0 n2×n0 B⊤
2 0 n2×n2 · · · 0 n2×np 0 n2×np+1

...
...

...
...

...
...

0 np×n0 0 np×n1 0 np×n2 · · · 0 np×np Bp+1

0 np+1×n0 0 np+1×n1 0 np+1×n2 · · · B⊤
p+1 0 np+1×np+1



















.

Figure 1.  Illustration of constructions of (a) Discrete Dirac matrix D1 of a triangle and (b) Discrete Dirac 
matrix D2 of a tetrahedron along with its corresponding boundary matrices. The rows and columns of boundary 
matrices corresponds to a respective simplex each. For instance, in the boundary matrix B2 of (a), edge e12 is 
oriented similarly as t123 , hence having an entry 1 in the matrix. As the entries of Dirac operator either take a 
value of −1 , 0 or 1, the entries of Dirac operators are color coded with blue indicating 1, white indicating 0 and 
red indicating −1.
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It is of size 
∑p+1

i=0 ni ×
∑p+1

i=0 ni.
Figure 1 shows a simple construction of discrete Dirac matrices (10) for a triangle and a tetrahedron. In 

Fig. 1a, the triangle is a 2-simplex and hence the largest Dirac operator is D1 . On the other hand, the tetrahedron 
in Fig. 1b is a 3-simplex and thus the largest Dirac operator is D2.

Note that by taking the square of Dp , one would obtain a matrix with diagonal blocks of unweighted combi-
natorial Hodge Laplacians as shown below.

where the unweighted Hodge Laplacian Lp , is given by Lp = Ldownp + L
up
p  with Ldownp = B⊤

p Bp and 
L
up
p = Bp+1B

⊤
p+1 . In our case, the last term contains only Ldownp+1 .

Recall that B⊤
p+1Bp+1 is also known as the lower Hodge Laplacian Ldownp+1  while Bp+2B

⊤
p+2 is known as the 

upper Hodge Laplacian Lupp+1.

Spectrum of the discrete Dirac operator. Spectral of Dirac matrix. Let Qp be the block diagonal ma-
trix

where Inp denotes an np × np identity matrix and Qp satisfies

The Dirac matrix satisfies the supersymmetry condition DpQp = −QpDp . That also means that the anti-
commutator between the Dirac matrix Dp and block diagonal matrix Qp vanishes. Further,

which implies that Qpv is an eigenvector associated with the eigenvalue −�.
Essentially, the above shows that the Dirac operator of a simplicial complex satisfies Dpv = �v where � is the 

eigenvalue associated with the eigenvector v if and only if

where Qpv is the eigenvector associated to the eigenvalue −�.
Since � (resp. −� ) is an eigenvalue of Dp with corresponding eigenvector v (resp. Qpv ), then for any positive 

integer s, �s (resp. (−�)s ) is an eigenvalue of Ds
p with corresponding eigenvector v (resp. Qpv ). The detailed proof 

is in Appendix E.
Now, we consider the relationship between the eigenspectrum of D2

p and Dp . For the case of zero eigenvalues, 
D2

pv = 0 naturally implies Dpv = 0 . Hence, Dp shares the same eigenvectors as D2
p for zero eigenvalues. If �2 is a 

non-zero eigenvalue of D2
p with eigenvector v, then we have the following possible cases for Dp : 

 (i) � is an eigenvalue of Dp with eigenvector w = (Dp + �I)v . i.e. (Dp − �I)w = 0.
 (ii) −� is an eigenvalue of Dp with eigenvector w = (Dp − �I)v . i.e. (Dp + �I)w = 0.

It is easy to derive the above cases by considering (D2
p − �

2I)v = 0 . Then

D2
p =



















L0 0 n0×n1 0 n0×n2 · · · 0 n0×np 0 n0×np+1

0 n1×n0 L1 0 n1×n2 · · · 0 n1×np 0 n1×np+1

0 n2×n0 0 n2×n1 L2 · · · 0 n2×np 0 n2×np+1

...
...

...
...

...
...

0 np×n0 0 np×n1 0 np×n2 · · · Lp 0 np×np+1

0 np+1×n0 0 np+1×n1 0 np+1×n2 · · · 0 np+1×np Ldownp+1



















,

Lp+1 = L
up
p+1 + Ldownp+1 .

Qp =



















In0 0 n0×n1 0 n0×n2 · · · 0 n0×np 0 n0×np+1

0 n1×n0 −In1 0 n1×n2 · · · 0 n1×np 0 n1×np+1

0 n2×n0 0 n2×n1 In2 · · · 0 n2×np 0 n2×np+1

...
...

...
...

...
...

0 np×n0 0 np×n1 0 np×n2 · · · (−1)pInp 0 np×np+1

0 np+1×n0 0 np+1×n1 0 np+1×n2 · · · 0 np+1×np (−1)p+1Inp+1



















,

Q2
p = I∑p+1

i=0 ni
.

(11)

Dpv = �v ⇐⇒ QpDpQpv = −Dpv = −�v

⇐⇒ −QpDpv = −�Qpv

⇐⇒ DpQpv = −�Qpv,

Dp(Qpv) = −�(Qpv),

(12)(Dp − �I)(Dp + �I)v = 0.
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Here, there are two possible cases since by (11), either � or −� is the eigenvalue of Dp . If −� is the eigenvalue 
of Dp , then (Dp + �I)w = 0 for some non-zero eigenvector w. This implies that (Dp − �I)w �= 0 , otherwise it 
contradicts (Dp + �I)w = 0 . Hence, this means that Eq. (12) can be rewritten as

where w = (Dp − �I)v is a non-zero eigenvector for Dp with corresponding eigenvalue −�.
Similarly, if � is an eigenvalue of Dp , then (Dp − �I)w = 0 for some non-zero eigenvector w. This implies that 

(Dp + �I)w �= 0 , otherwise it contradicts (Dp − �I)w = 0 . Therefore, Eq. (12) can be rewritten as

where w = (Dp + �I)v is a non-zero eigenvector for Dp with corresponding eigenvalue �.
This leads us to the following relations connecting Dp , D2

p and Lk ( 0 ≤ k ≤ p+ 1 ). For any v ∈ kerD2
p,

where v = (w⊤
0 ,w

⊤
1 , . . . ,w

⊤
k−1,w

⊤
k ,w

⊤
k+1, . . . ,w

⊤
p ,w

⊤
p+1)

⊤ . In other words, v is a vector consisting of block vec-
tors w⊤

k  for 0 ≤ k ≤ p+ 1 . This means that for every 0 ≤ k ≤ p , w⊤
k ∈ ker Lk . In the case where k = p+ 1 , 

w⊤
p+1 ∈ ker Ldownp+1  . We have,

Note that for w⊤
p+1 , it is the eigenvector from the kernel of Ldownp+1 .

Hence, the kernel of D2
p can be decomposed into a direct sum of kernels of Lk from k = 0 to k = p+ 1:

Further, we have

where 
⊕p

k=0 Hk refers to the direct sum of homology groups.
Therefore, the eigenvectors of Dp reveal both k-th homology and k-th non-homology information within the 

structural data for all 0 ≤ k ≤ p+ 1 . Instead of eigendecomposing HL matrices for all 0 ≤ k ≤ p+ 1 , one can 
simply eigendecompose Dp to obtain all of the eigenspectrums. As the number of zero eigenvalues of Ldownp+1  is 
the rank B⊤

p+2 plus the (p+ 1)-th Betti number βp+1 , the multiplicity of zero eigenvalues in Dp is the rank B⊤
p+2 

plus the total sum of all the Betti numbers from dimension 0 to p+ 1 . That is,

Mathematically, the eigenvectors corresponding to the zero eigenvalues are known as homology generators 
while those from non-zero eigenvalues are the non-homology generators. Both of them can be used in structural 
clustering. More specifically, the homology generators can be used for clustering structures based on their 
loop or circle components, while non-homology generators are related to the spectral clustering, in which 
communities and clusters are based on their distances. Figure 2 demonstrates the structural clustering with 
homology and non-homology generators for a protein (PDBID: 1AXC). We only consider the C α atoms in 
structure. A Vietoris Rips complex is constructed by using a cutoff distance of 10Å. The Dirac matrix D1 and 
its eigenvalues and eigenvectors are calculated. As the non-zero eigenvalues of D1 come in pairs, it suffices to 
consider the eigenvectors corresponding to the positive eigenvalues. For all the non-negative eigenvalues of D1 , 
the eigenvectors are arranged in ascending order according to its corresponding eigenvalues.

Figure 2a illustrates the loop/circle-based clustering using four one-dimensional (1D) homology generators. 
Note that these 1D homology generators w⊤

1  are taken from the homology generators of D1 (with eigenvalues 
0). More specifically, these 1D homology generators are defined by the 1-simplices. In Fig. 2a, a thick edge with 
dark blue color indicates large magnitude of the value, while a thinner edge with light blue color means the 
corresponding 1D homology generator has a value with small magnitude on this 1-simplex. It can be seen that 

(Dp + �I)w = 0,

(Dp − �I)w = 0,

D2
pv = 0 ⇐⇒







L0w0 = 0 , k = 0
Lkwk = 0 , 0 < k < p+ 1

Ldownp+1 wp+1 = 0 , k = p+ 1
,

(w⊤
0 ,w

⊤
1 , . . . ,w

⊤
p+1)

⊤ ∈ ker Ldownp+1 ⊕
p

⊕

k=0

ker Lk .

kerD2
p = ker Ldownp+1 ⊕

p
⊕

k=0

ker Lk .

(13)

kerDp = kerD2
p = ker Ldownp+1 ⊕

p
⊕

k=0

ker Lk

∼= ker Ldownp+1 ⊕
p

⊕

k=0

Hk ,

(14)dim kerDp = rank B⊤
p+2 +

p+1
∑

k=0

βk .
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edges with large magnitudes are the 1-simplices that form circles or loops. Each 1D homology generator forms 
an individual loop or circle. In this way, 1D homology generators can be used for loop/circle-based clustering 
of molecular structures.

Figure 2b illustrates the spectral clustering using four zero-dimensional (0D) non-homology generators. 
The four 0D non-homology generators w⊤

0  are taken from the non-homology generators of D1 with the four 
smallest positive eigenvalues. Note that these 0D non-homology generators are defined on nodes (0-simplices). 
In Fig. 2b, nodes with negative values are colored in red while nodes with positive values are of blue color. It 
can be seen that the nodes in the structure can be naturally clustered into groups based on the signs of these 0D 
non-homology generators. This approach is known as spectral clustering and widely used in data analysis. It 
should be noticed that using the higher order Dirac matrices, we can cluster not only nodes (0-simplices), but 
also higher dimensional simplices.

Spectral of weighted Dirac matrix. The weighted Dirac matrix has different spectral properties based on the 
different weighting schemes. Figure 3 illustrates the spectrum of the weighted Dirac matrix defined from the 
guanine molecule structure (using all-atom representation). We construct an unweighted Vietoris Rips complex 
using a cutoff distance of 1.2Å. The discrete Dirac matrix D1 can be computed using (10). The discrete Dirac 
matrix D1 is eigendecomposed to obtain its eigenvalues and eigenvectors. Moreover, a weighted simplicial com-
plex is constructed by assigning simplex σ with different weight wσ . The metric matrices Gp are computed and 
weighted Dirac matrix D1 can then be constructed. Figure 3 shows the homology generators and Fiedler vec-
tor for an unweighted simplicial complex and three different weighted simplicial complexes. Among the three 
weighted simplicial complexes, Fig. 3b shows a weighted simplicial complex where all weights wσ are equal to 1. 
Two modified weighted simplicial complexes are constructed by modifying the weights of edge e1 ranging from 
10 and 0.01 with all the other weights kept unchanged. With the same underlying simplicial complex, they share 
the same three homology generators, one 1D component and two 2D circles. Figure 3 shows the corresponding 
eigenvectors for these homology generators. The magnitude of the eigenvectors are represented by the thickness 
and darkness. An edge (or vertex) with thicker lines and darker blue color indicates a larger magnitude.

In general, the weight of a simplex has an inverse effect on the corresponding element of the homology 
eigenvectors (i.e., homology generators). When the simplex has a smaller weight, the corresponding element 
of the homology eigenvectors has larger magnitude. Similar patterns also appear in non-homology generators. 

Figure 2.  Illustration of loop/circle-based clustering using four one-dimensional (1D) homology generators (a) 
and spectral clustering using four zero-dimensional (0D) non-homology generators (b). The Dirac matrices D1 
are generated from the Vietoris Rips complex of the C α atoms in PDBID: 1AXC at 10Å. (a) Here 1D homology 
generators w⊤

1
 are taken from the homology generators of D1 with eigenvalues as 0. A thick edge with dark blue 

color indicates large magnitude of the value, while a thinner edge with light blue color means the corresponding 
the 1D homology generator has a value with small magnitude on this 1-simplex. Each 1D homology generator 
forms an individual loop or circle. (b) The four 0D non-homology generators w⊤

0
 are taken from the non-

homology generators of D1 with the four smallest positive eigenvalues. Note that these 0D non-homology 
generators are defined on nodes (0-simplices). Nodes with negative values are colored in red while nodes with 
positive values are of blue color. It can be seen that the nodes in the structure can be naturally clustered into 
groups based on the signs of these 0D non-homology generators.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11183  | https://doi.org/10.1038/s41598-023-37853-z

www.nature.com/scientificreports/

Fig. 3 illustrates the Fiedler vectors (i.e., eigenvector corresponding to the first smallest non-zero eigenvalue) 
of the nonweighted and weighted simplicial complexes. Simplices are colored in red/blue if the element of the 
non-homology eigenvectors has value positive/negative. The thickness of simplices represents the magnitude of 
their values in non-homology generators. It can be seen clearly that the weight of a simplex has an inverse effect 
on its magnitude of the values of eigenvectors.

Figure 3.  Illustration of three homology generators and Fiedler vector from (a) discrete Dirac matrix and (b,c) 
weighted Dirac matrix (from weighted simplicial complexes). For the discrete Dirac matrix, the three homology 
generators represents one 1D component and two 2D circles. By assigning simplex σ with different weight wσ s, 
three weighted simplicial complexes are constructed in (b) and (c). In (b), the weighted simplicial complex 
consists of all weights wσ equal to 1. (c) Shows two weighted simplicial complexes by changing the weights of 
edge e1 from 1 to 10 and 0.01 while the rest of weights remain unchanged. The magnitude of the homology 
generators are influenced by these weights and are reflected based on their thickness and darkness. For the 
homology generators, the edges (or vertices) are thicker and in darker blue color if they have a larger magnitude. 
Similarly, the edges and vertices are colored in red/blue if their elements in the Fiedler vectors have positive/
negative sign. The magnitudes of their values in Fiedler vectors are represented by the thickness of edges and 
size of vertices.
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Results
Persistent Dirac. Mathematical foundation for persistent Dirac analysis. Recently, persistent Laplacian and 
persistent sheaf Laplacians have been  developed61,62. Their essential idea is to explore the persistence of spectral 
information during the filtration process. Here we develop the rigorous mathematical framework for persistent 
Dirac.

Let (R,≤) be a category of real numbers with morphisms given by a → b for any a ≤ b . A functor 
F : (R,≤) → Simp gives a filtration of simplicial complexes of finite type, i.e. F  maps from a category of real 
numbers to a category of simplicial complexes of finite type. For any two real numbers a ≤ b , the functor F  
satisfies the inclusion

which induces a morphism of chain complexes

Let F(∞) =
⋃

a∈R F(a) and C∗ = C∗(F(∞),R) . Note that C∗ can be endowed with an innerproduct �·, ·� . 
Further, a subspace C∗(F(a),R) would inherit the inner product structure of C∗ and a boundary operator given 
by the restriction

Here ∂∗ is the boundary operator of C∗ . For convenience, we shall write Ca
p = Cp(F(a),R) . For a pair of simplicial 

complexes F(a) ⊂ F(b) , we consider the inclusion map ι : F(a) →֒ F(b) . For p ∈ N , the subspace

which consists of the p-chains in Cb
p such that their images are under the boundary operator ∂bp in the subspace 

Ca
p−1 of Cb

p−1 . Also, we have a linear operator

which induces an adjoint operator

with respect to the inner product �·, ·�.
Let na,bp := dim(Ca,b

p ) . Then following commutative diagram is thus induced by ι.

· · · Ca
p−1 Ca

p Ca
p+1 · · ·

· · · Cb
p−1 Cb

p Cb
p+1 · · ·

∂a ∂a

ι ι ι

∂a

∂b ∂b ∂b

∂a

∂b

Notice that ∂a,bp  is a restriction to Ca,b
p  in order to obtain the “diagonal” operators ∂a,bp : Ca,b

p → Ca
p−1 . Similarly, 

with a restriction to Ca,b
p  , we can then define the p-dimensional boundary matrices Ba,b

p  which consists of every 
entry value of ∂a,bp .

The persistent Dirac operator Da,b
p  can then be written as follows.

The maps and spaces are also illustrated in the diagram below

F(a) →֒ F(b),

C∗(F(a),R) →֒ C∗(F(b),R).

∂ap = ∂p|Cp(F(a),R) : Cp(F(a),R) → Cp−1(F(a),R).

Ca,b
p := {x ∈ Cb

p : ∂bp (x) ∈ Ca
p−1} ⊆ Cb

p ,

∂a,bp = ∂bp |Ca,b
p

: Ca,b
p → Ca

p−1,

(∂a,bp )∗ : Ca
p−1 → Ca,b

p

Da,b
p =























0 n0×n0 Ba,b
1 0 n0×n2 · · · 0 n0×np 0 n0×np+1

(Ba,b
1 )⊤ 0 n1×n1 Ba,b

2 · · · 0 n1×np 0 n1×np+1

0 n2×n0 (Ba,b
2 )⊤ 0 n2×n2 · · · 0 n2×np 0 n2×np+1

...
...

...
...

...
...

0 np×n0 0 np×n1 0 np×n2 · · · 0 np×np Ba,b
p

0 np+1×n0 0 np+1×n1 0 np+1×n2 · · · (Ba,b
p )⊤ 0 np+1×np+1























.
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Ca
p+1 Ca

p Ca
p−1

Ca,b
p+1

Cb
p+1 Cb

p Cb
p−1

ι

∂a
p+1

(∂a,b
p+1)

∗

ι

∂a
p

ι

(∂a
p )

∗
∂a,b
p+1

∂b
p+1 ∂b

p

Further, the p-th persistent Hodge Laplacian can be defined as

Similarly, the matrices (Ba,b
p )⊤Ba,b

p  and Ba,b
p+1(B

a,b
p+1)

⊤ are the p-th persistent lower and upper Hodge Laplacians 
(Ldownp+1 )a,b and (Lupp+1)

a,b respectively. Based on (13), the following result shows that the nullity of p-th persistent 
Dirac operator equals to the rank of B⊤

p+2 plus the sum of k-th persistent Betti numbers, where 0 ≤ k ≤ p+ 1.

La,bp =
{

Ba,b
1 (Ba,b

1 )⊤, p = 0

(Ba,b
p )⊤Ba,b

p + Ba,b
p+1(B

a,b
p+1)

⊤, p > 0.

Figure 4.  Illustration of the filtration process of the guanine molecule (a), its associated Dirac matrices (b), and 
persistent attributes (c). In the filtration process, more simplices are formed in simplicial complex and the size 
of Dirac matrix increases. The eigenspectrum of Dirac matrices changes in the filtration process. The changes 
in eigenspectrum are being converted into a series of 12 statistical and combinatorial attributes (i–xii). One of 
the statistical attribute, persistent multiplicity, provides quantitative analysis to the change in zero eigenvalues of 
Dirac matrices while the remaining 11 persistent attributes are derived from the non-zero eigenvalues.
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where 
⊕p

k=0(Hk)
a,b refers to the direct sum of (a, b)-persistent homology groups. The (a, b)-persistent homology 

groups characterizes the homology generators that are born at time a and survive to time b.
Figure 4 illustrates the persistent Dirac analysis of the guanine molecule (using all-atom representation). 

More specifically, Fig. 4a shows the Vietoris–Rips complex of the guanine molecule when filtration parameter 
f = 0.0 Å, 0.75Å, 1.2Å, 1.5Å and 1.8Å. In particular, triangles first appear around 1.2Å and tetrahedron starts to 
appear at 1.5Å. Figure 4b shows the corresponding Dirac matrix D2 . The size of the Dirac matrix D2 consistently 
increases during the filtration process.

Persistent attributes. For any Dirac matrix, its non-zero eigenvalues come in pairs. Each pair contains one 
negative eigenvalue and one positive counterpart. For the set of all its positive eigenvalues, a Dirac Zeta function 
can be defined as  follows69,

Here ζ(−m) =
∑n

i=1 �
m
i  , m ∈ Z is the m-th spectral moments of Dirac matrices and ζ(−1) is the Laplacian graph 

energy. Another way to define Dirac Zeta function is to consider its negative eigenvalues by replacing the �−s
j  

with (1+ e−iπs)|�j|−s . Here �j can be negative. For instance, ζ(2) = 2
∑

j=1 �
−2
j .

Furthermore, the q-Dirac complexity of a simplicial complex K can be defined as

The case where q = 1 is previously introduced by  Knill70. c1(Dp) is equal to the product of all non-zero eigenvalues 
in spectra of Dp since the non-zero eigenvalues come in pairs. The number of non-zero eigenvalues pairs in Dp 
is the (signless) Euler–Poincaré number defined as follows,

where nk is the number of k-simplices and dim kerDp is the multiplicity of zero eigenvalues of Dp.
Using Eq. (14), ℓ can be computed as follows:

Interestingly, the spanning tree number, introduced as one of the spectral indices in molecular  descriptors1, can 
be written as

Alternatively, t(Dp) = log
[

1
ℓ+1 ·

√

c1(Dp)

]

.
To summarize, we consolidate and consider 11 statistical and combinatorial attributes as molecular descrip-

tors for each given set of positive eigenvalues {�1, �2, . . . , �ℓ} where ℓ is the number of non-zero eigenvalue pairs: 

 (i) min{�1, �2, . . . , �k} , also known as the Fiedler value.
 (ii) max{�1, �2, . . . , �n}
 (iii) �̄ = 1

n

∑n
i=1 �i = 1

n ζ(−1).
 (iv) Standard Deviation
 (v) Laplacian Graph Energy ζ(−1).
 (vi) (Signless) Euler–Poincaré Number (number of non-zero eigenvalue pairs) ℓ
 (vii) Generalised Mean Graph Energy 

∑n
i=1

|�i−�̄|
n .

 (viii) Spectral 2nd Moment ζ(−2).
 (ix) ζ(2) = 2

∑n
j=1 �

−2
j .

 (x) Quasi-Wiener Index (n+ 1)ζ(1).
 (xi) Spanning Tree Number t(Dp).

kerDa,b
p = ker(Da,b

p )2 = ker(Ldownp+1 )a,b ⊕
p

⊕

k=0

ker La,bk

∼= ker(Ldownp+1 )a,b ⊕
p

⊕

k=0

(Hk)
a,b,

ζ(s) =
n

∑

j=1

1

�
s
j

=
n

∑

j=1
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In addition to the 11 statistical attributes, we also consider the persistent multiplicity of zero eigenvalues. 

 (xii) Persistent Multiplicity of zero eigenvalues.

Figure 4c shows the persistent multiplicity, persistent mean, persistent standard deviation and persistent (sign-
less) Euler–Poincaré number for the filtration of guanine molecule. Further information such as the persistent 
multiplicities of Lk ( 0 ≤ k ≤ 2) and Ldownk  ( 1 ≤ k ≤ 3 ) can be found in Appendix G. Recall that the persistent 
multiplicity is equivalent to the persistent Betti number. Here, the persistent multiplicity and persistent (signless) 
Euler–Poincaré number of Dp can be quantitatively analysed by comparing the persistent multiplicity of Ldownp+1  
and the k-th persistent Betti numbers for 0 ≤ k ≤ p . It can be seen that these persistent attributes change with 
the filtration value. Each variation of the persistent attribute indicates a certain change in the simplicial complex.

At the very start of the filtration, there are 16 isolated atoms which means that there are 16 connected 
components. Hence, the persistent multiplicity of L0 is 16 since β0 = 16 . As all other Betti numbers are zero 
and there are no higher order simplices present at the start of the filtration, D0 , D1 and D2 are all-zero 16× 16 
matrices. Therefore, the persistent multiplicity of D0 , D1 and D2 are all equal to 16. Using Eq. (15), the persistent 
(signless) Euler–Poincaré number is zero.

As filtration parameter f increases, the size of D0 , D1 and D2 matrix increases as well. This differs from the 
Hodge Laplacian matrix L0 , whose size remains unchanged.

At filtration size 4.7Å, a complete simplicial complex is achieved, i.e., any p+ 1 vertices will form a p-simplex. 
When this happens, the size of Dp no longer increases any further. Here, the size of D0 , D1 and D2 are distinct. 
The size of D0 is 136× 136 since 16×15

2  (no. of 1-simplices) + 16 (no. of 0-simplices) = 136. Similarly, the sizes of 
D1 and D2 are 696× 696 and 2516× 2516 respectively. Furthermore, the persistent multiplicity of D0 , D1 and 
D2 are also distinct. Using Eq. (14), the persistent multiplicity of D0 is 105 (persistent multiplicity of Ldown1  ) and 
1 (0-dimensional persistent Betti number) which sums up to 106. Since the persistent multiplicity of L1 (see 
Appendix G) is zero, then Eq. (3) implies that the rank of B⊤

2  is 105. In addition, the persistent multiplicity of D1 
and D2 are 456 and 1366 respectively. Based on the non-zero eigenvalues, the persistent (signless) Euler–Poincaré 
number of D0 , D1 and D2 is 15, 120 and 575 due to Eq. (15).

Persistent Dirac for molecular structure representation. Recently, a series of persistent models, 
including persistent homology, persistent spectral, persistent Ricci curvature, and persistent Laplacian, have 
demonstrated their great power in molecular  representations3,6,38,71. They have consistently outperformed tra-
ditional graph-based models in various tasks of drug design. Here we study the representation capability of 
Persistent Dirac in molecular data analysis.

We consider the organic-inorganic halide perovskite (OIHP) dataset. More specifically, three kinds of 
Methylammonium lead halides (MAPbX3 , X =Cl, Br, I), i.e., orthorhombic, tetragonal, and cubic phase of 
MAPbX3 are used. For each kind, there are 3 types of X atoms, including chlorine Cl, bromine Br and iodine I. 
The molecular dynamic simulations are systematically carried out on these molecular structures with the initial 
configurations based on pre-defined crystal cell parameters. For each MAPbX3 structure, 1000 configurations 
are equally sampled from its MD simulation trajectory and the last 500 configurations, which represent stable 
structures, are selected for the test of our persistent Dirac model. Essentially, a total of 4500 configurations from 
the 9 types of MAPbX3 structures are mixed together and our persistent Dirac based molecular fingerprint is 
used in the clustering of these configurations.

Computationally, our persistent Dirac is generated based on Alpha complex and the filtration parameter 
is the circumradius. More specifically, for each frame, an Alpha complex is constructed based on Delauney 
triangulation and circumradius of the simplex. The Dirac matrices D0 and D1 are computed from 1Å to 6.5Å 

Figure 5.  The clustering of 9 types of OIHP molecular dynamics (MD) trajectories. Three feature generation 
schemes are considered, including (a) XYZ-coordinates, (b) Discrete Dirac at 3.5Å and (c) Persistent 
Dirac. Each trajectory contains 1000 configurations and t-SNE model is used for clustering (of the last 500 
configurations at equilibrium). The x-axis and y-axis are the two principal components obtained from the t-SNE 
model.
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with stepsize 0.25Å throughout the filtration process. Hence, the eigenvalues of D0 and D1 each contribute to 12 
statistical attributes (i–xii) for 23 timesteps per frame. The feature size sums up to 552. By considering with and 
without hydrogen atoms, the total feature size for persistent Dirac is 552× 2 = 1104 . Likewise, for coordinate-
only model, the input features are xyz-coordinates of all the atoms. Since each structure consists of 553 atoms, 
the feature size is of 553× 3 = 1659 . For the discrete Dirac model, the feature size is 552. The clustering of these 
MAPbX3 structures is then studied using unsupervised learning models, in particular t-distributed stochastic 
neighbor embedding (t-SNE).

Figure 5 illustrates the comparison of the clustering results from three different models, including coordinate-
only model ( XYZ-coordinate) (a), discrete Dirac (b), and persistent Dirac (c). It can be seen that our persistent 
Dirac model demonstrates better capabilities in characterizing the intrinsic structure information and 
discriminating the 9 types of OIHPs clearly. In our persistent Dirac model, the filtration process at various 
scales provided the geometrical information needed to balance the topological information. The combination 
of topological and geometrical information contributes to the success of our persistent Dirac model in OIHP 
clustering. Figure 5b shows the performance of Dirac matrix related statistical attributes at filtration value 3.5Å. 
Even though it shows certain clustering effects, the overall performance is not as good as persistent Dirac. 
Additional clustering tests are performed for discrete Dirac model at 3Å and 4Å in Appendix F. Similarly, 
statistical attributes of discrete Dirac model at a single scale fail to distinguish the 9 types of OIHPs.

Persistent Dirac for solvation free energy prediction
In order to further validate the capabilities of persistent Dirac models, we perform a preliminary test of our 
persistent Dirac model on the Free Solvation (FreeSolv)  database72. The FreeSolv database contains 643 SMILES 
sequences for small molecules and their solvation free energy values in  water73. The FreeSolv database is also 
one of the physical chemistry benchmark tasks in  MoleculeNet74. Recently, structural information has been 
generated from 643 SMILES sequences and applied in graph-based methods to improve overall solvation energy 
 predictions7. Using the structural information, we consider three atom subsets, i.e. (A): all atoms, (B): all atoms 
except hydrogen, and (C): all atoms except hydrogen and carbon, for our persistent Dirac model. For (A), we 
generate the discrete Dirac matrices D0 and D1 using the Alpha complex for the filtration process from 0Å to 
12Å with stepsize 0.1Å. Similarly, we generate the discrete Dirac matrices for (B) and (C) using the Rips complex 
for the filtration process from 0Å to 12Å with stepsize 0.1Å. We compute the 12 statistical attributes (i–xii) 
from the eigenvalues of D0 and D1 for all the 120 timesteps. From (A), (B) and (C), the total feature size sums 
up to 120× 12× 3× 2 = 8640 . Following the training and testing procedure in  MoleculeNet74, we apply the 
random 80/10/10 split and our persistent Dirac features act as input features for a XGBoost model. Specifically, 
the XGBoost model is used with hyperparameters: n_estimators=20000, eta=0.1, max_depth=7, subsample=0.4, 
colsample_bytree=0.8. After repeating the training process 50 times and taking the mean value of the root mean 
squared error (RMSE) from the test predictions, our results showed that the persistent Dirac features with 
XGBoost achieved mean RMSE of 1.64± 0.31 kcal/mol. This result is better than conventional methods from 
 MoleculeNet74 as shown in Fig. 6.

Furthermore, we consider a specially-designed persistent weighted Dirac model. We define the weight of 
each 0-simplex (or atom) as the magnitude of electrostatic charge of the atom, weight of each 1-simplex (edge) 
as the Euclidean distance (in Å) between the two connected atoms and the weight of each 2-simplex (triangle) 
as the area of the triangle (in Å 3 ). The area of the triangle can be approximated using Heron’s formula. By gen-
erating the weighted Dirac matrices D0 and D1 along the same 120 timesteps, 12 statistical attributes (i–xii) are 
then computed from the eigenvalues to form our persistent weighted Dirac features. Figure 6 shows that our 

Figure 6.  The comparison of persistent Dirac and persistent weighted Dirac models with conventional 
methods from  MoleculeNet74 on the FreeSolv database. Both types of persistent Dirac models performed 
better than existing conventional methods such as MoleculeNet’s XGBoost (1.74 ± 0.15 kcal/mol), Multitask 
(1.87 ± 0.07 kcal/mol), Random Forest (RF) (2.03 ± 0.22 kcal/mol) and Kernel Ridge Regression (KRR) 
(2.11 ± 0.07 kcal/mol) models. Note that a lower RMSE value indicates better result.
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persistent weighted Dirac model produced a slightly lower mean RMSE of 1.62± 0.26 kcal/mol as compared 
to the persistent Dirac model. This may suggest that the additional weight information incorporated into the 
weighted Dirac matrices increases the effectiveness of our approach.

Conclusion
Molecular representations are essential to the modeling and analysis of molecular systems. Motivated by the 
great success of persistent Hodge Laplacian, we develop the first persistent Dirac-based molecular representation 
and fingerprint. A rigorous theoretical framework for persistent Dirac is introduced through the commutative 
diagram of discrete Dirac operator over a filtration process. Moreover, a series of persistent attributes, which 
characterize the persistence and variations of the eigenspectrum of Dirac matrices, are proposed and further 
used as molecular fingerprints. The eigenspectrum properties of discrete Dirac matrices have been studied, in 
particular, the geometric and topological properties of both non-homology and homology eigenvectors. We 
also consider weighted Dirac model and the influence of weighting schemes on eigenspectrum information. 
Finally, our persistent Dirac-based models have been used in the clustering of molecular configurations from 
nine types of organic-inorganic halide perovskites (OIHPs). This work could open new perspectives for the use 
of persistent Dirac-based molecular fingerprints. We hope that this can inspire future interdisciplinary work 
between Dirac operators and machine learning along OIHPs or other relevant research directions. An interesting 
direction for further exploration would be the use of non-symmetric persistent Dirac features in predicting 
biological, chemical and physical properties in biomolecular data. For instance, further exploration in the use 
of non-symmetric persistent Dirac features can be considered in the prediction of energy bandgap and other 
material properties in  OIHPs75.

Data avaliability
The OIHP dataset generated and persistent Dirac codes during and/or analysed during the current study are 
available in https:// github. com/ Expec tozJJ/ Persi stent- Dirac- Models. The 3D coordinates of the molecular struc-
tures from FreeSolv database and the solvation free energy values are available in https:// weilab. math. msu. edu/ 
DataL ibrary/ 3D/ Downl oads/ FreeS olv. zip.
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