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A universal null‑distribution 
for topological data analysis
Omer Bobrowski 1,2* & Primoz Skraba 2*

One of the most elusive challenges within the area of topological data analysis is understanding the 
distribution of persistence diagrams arising from data. Despite much effort and its many successful 
applications, this is largely an open problem. We present a surprising discovery: normalized properly, 
persistence diagrams arising from random point‑clouds obey a universal probability law. Our 
statements are based on extensive experimentation on both simulated and real data, covering point‑
clouds with vastly different geometry, topology, and probability distributions. Our results also include 
an explicit well‑known distribution as a candidate for the universal law. We demonstrate the power of 
these new discoveries by proposing a new hypothesis testing framework for computing significance 
values for individual topological features within persistence diagrams, providing a new quantitative 
way to assess the significance of structure in data.

Topological Data Analysis (TDA) focuses on extracting structural information from data, in order to enhance 
their processing in statistics and machine learning. This field has been rapidly developing over the past two 
decades, bringing together mathematicians, statisticians, computer scientists, engineers, and data scientists. The 
motivation behind TDA is that topological methods are highly versatile, coordinate-free, and robust to various 
 deformations1. Topological methods have been applied successfully in numerous applications, in areas such as 
 neuroscience2–4, medicine and  biology5–8, material  science9,10, dynamical  systems11,12, and  cosmology13,14.

One of the key challenges in TDA is to distinguish between “signal”—meaningful structures underlying the 
data, and “noise”—features that arise from the local randomness and inaccuracies within the  data15–17. The most 
prominent solution developed in TDA to address this issue is persistent homology. Briefly, it identifies structures 
such as holes and cavities (“air pockets”) formed by the data, and records the scales at which they are created 
and terminated (birth and death, respectively). The common practice in TDA has been to use this birth-death 
information to assess the statistical significance of topological  features18–21. However, research so far has yet to 
provide an approach which is generic, robust, and theoretically justified. A parallel line of research has been the 
theoretical probabilistic analysis of persistent homology generated by random data, as means to establish a null-
distribution. While this direction has been  fruitful22–25, its use in practice has been limited. The main gap between 
theory and practice is that these studies indicate that the distribution of noise in persistent homology: (a) does 
not have a simple closed-form description, and (b) strongly depends on the model generating the point-cloud.

Our main goal in this paper is to refute the last premise, and to make the case that the distribution of noise 
in persistent homology of random point-clouds is in fact universal. Specifically, we claim that the limiting dis-
tribution of persistence values (measured using the death/birth ratio) is independent of the model generating the 
point-cloud. This result is loosely analogous to the central limit theorem, where sums of many different types of 
random variables always converge to the normal distribution. The emergence of such universality for persistence 
diagrams is highly surprising.

We support our universality statements by an extensive body of experiments, including point-clouds gener-
ated by different geometries, topologies, and probability distributions. These include simulated data as well as data 
from real-world applications (image processing, signal processing, and natural language processing). Our main 
goal here is to introduce the unexpected behavior of statistical universality in persistence diagrams, in order to 
initiate a shift of paradigm in stochastic topology that will lead to the development of a new theory. Developing 
this new theory, and proving the conjectures made here, is anticipated to be an exciting yet a challenging long 
journey, and is outside the scope of this paper. Based on our universality conjectures, we develop a powerful 
hypothesis testing framework for persistence diagrams, allowing us to compute numerical significance measures 
for individual features using very few assumptions on the underlying model.
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Persistent homology for point‑clouds
In order to approximate the structure formed by point-clouds, a common practice in TDA is to construct a 
special type of hypergraphs known as geometric simplicial complexes, whose faces are determined by the spa-
tial configuration of the points. We consider the two most commonly used constructions— the Čech and the 
Vietoris-Rips complexes, both are parameterized by a scale parameter r (see “Methods” section). The homol-
ogy groups ( Hk ) of a simplicial complex capture structural information about the complex. Loosely speaking, 
H0 contains information about connected components, H1—about closed loops surrounding holes, H2—about 
closed surfaces surrounding cavities (“air pockets”). Generally, we say that Hk describes ‘k-dimensional cycles’. 
For more details, see “Methods”.

For both the Čech and Rips complexes, Hk is highly sensitive to the choice of the scale parameter r. To 
overcome this, persistent homology considers the entire range of scales, tracking the evolution of k-cycles as the 
value of r increases. In this process (called a ‘filtration’), cycles are created (born) and later filled-in (die). This 
information is most often represented via persistence diagrams, 2-dimensional scatter plots, where each point 
p = (b, d) ∈ R

2 represents the birth and death times (scales) of a single cycle in the filtration, see Fig. 1. We 
denote the persistence diagram corresponding to Hk by dgmk.

The original motivation for using persistent homology is to detect meaningful structures emerging in data. 
The simplest approach is by looking for points p ∈ dgmk far from the diagonal ( d = b ). These points represent 
cycles with a long lifetime ( d − b ), which are “significant”, whereas points near the diagonal are due to the noisy 
nature of the samples (see Fig. 1). While this approach is intuitive, justifying it theoretically and providing quan-
titative statements, are among the greatest challenges in the field. For geometric complexes, a strong case can be 
 made26 that it is better to use the ratio π = d/b to discriminate between signal and noise in dgmk ( k > 0 ), since 
the ratio π is (a) scale invariant, and (b) more robust to outliers. For further discussion see “Methods”.

Noise distribution in persistence diagrams. We assume that every persistence diagram can be decom-
posed into dgmS

k ∪ dgmN

k  , corresponding to the signal and noise parts. The signal corresponds to meaningful 
topological features which are latent in the data (e.g., points sampled near an annulus will always contain a hole 
in the middle). The noise part consists of features which are the result of randomness in the data. For formal 
definitions and a discussion, see Sect. 2 of the Supplementary Information. The fundamental challenge is to 
decide for each feature p in the diagram, whether p ∈ dgmS

k or p ∈ dgmN

k  , and provide quantitative guarantees 
on this decision. The distribution of dgmN

k  thus serves as a null-distribution, and revealing it would enable us to 
use powerful hypothesis testing methods.

The probabilistic analysis of dgmN

k  has been  fruitful22,23,25–27,  a more detailed discussion is provided in Sect. 1 
of the Supplementary Information. However, while the mathematical theory is quite rich, translating it into 
statistical tools has lagged behind. The two main reasons are: (a) these results show that various limits exist, 
but in most cases without any explicit description, (b) these limits strongly depend on the underlying distribu-
tion. A more practical  approach13models persistence diagrams using Gibbs measures, whose parameters can be 
estimated from the data. Due to the limitations imposed by the theoretical analysis, the statistical literature for 
topological inference is mostly based on the premise that the distribution of persistence diagrams is inaccessible. 
A prominent approach in this case is based on statistical  bootstrap18,19,28. Other useful methods include distance 
to  measures29, witness  complexes30, and multi-cover  bifiltrations31,32.

Results
The distribution of persistent cycles. Let S be a d-dimensional metric measure space, and let 
Xn = (X1, . . . ,Xn) ∈ Sn be a sequence of random variables (points), whose joint probability law is denoted by 
Pn . Let P = (Pn)

∞
n=1 , and denote S = (S ,P) , which we refer to as the sampling model. Fix a filtration type T  (e.g., 

Figure 1.  A persistence diagram generated by a point-cloud sampled from a noisy circle. The shape studied 
here is the union of balls (in gray), which is equivalent to the Čech complex. As the radius  r increases, four 
different 1-cycles appear (in different color). The radii at which each cycle appears and filled are recorded by the 
persistence diagram on the right. The green cycle stands out, being the furthest from the diagonal, and indeed 
this cycle is a only “real” feature of the sample, while the others can be considered as “noise”.
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Čech or Rips), and a homological degree k > 0 , and consider the k-th noise persistence diagram dgmN

k (Xn;T ) , 
which in short we denote by dgmk . We study the distribution of the random persistence values 

{

π(p)
}

p∈dgmk
 

(where π(p) = death (p)/ birth (p) ), and refer to them as the π-values of the diagram. Theoretical analysis 
shows that the largest π-value ( death / birth ratio) of points in the noise ( dgmN

k  ) is o((log n)1/k)26, while the π
-values of the signal features ( dgmS

k ) are �(n1/d)33. Thus, the π-values provide a strong separation (asymptoti-
cally) between signal and noise in persistence diagrams. We stress that in this paper we study the entire ensemble 
of persistence values, not only the maximal ones.

Weak universality. We begin by considering the case where Pn is a product measure, and the points X1, . . . ,Xn 
are iid (independent and identically distributed). Given dgmk as defined above, denote the empirical measure 
of all π-values

where δx is the Dirac delta-measure at x. In Fig. 2 we present the CDF of �n for the Čech complex with various 
choices of S and k. Similar plots are available for the Rips complex in Sect. 3 of the Supplementary Information. 
We observe that if we fix d (dimension of S ), T  , and k, then the resulting CDF depends on neither the space S 
nor the distribution Pn . This leads to our first conjecture.

Conjecture 1 Fix d,T , and k > 0 . For any S ∈ Id,

where �∗
d,T ,k is a probability distribution on [1,∞).

The precise notion of convergence and the extent of the class Id are to be determined as future work. We con-
jecture that Id is quite large. In our experiments, the space S varied across a wide range of manifolds and other 
spaces. The distribution Pn is continuous and iid, but otherwise fairly generic (possibly even without moments, 
see the Cauchy example in Fig. 2). We name this phenomenon “weak universality”, since on one hand the limit 
is independent of S (hence, universal), while on the other hand it does depend on d,T , k and the iid assumption. 
This is in contrast to the results we discuss next.

Strong universality. The following procedure was discovered partly by chance. While non-intuitive, the results 
are striking. Given a random persistence diagram dgmk , for each p ∈ dgmk apply the transformation

�n = �n(S,T , k) := 1

|dgmk|
∑

p∈dgmk

δπ(p),

lim
n→∞

�n = �∗
d,T ,k ,

(1)ℓ(p) := A log log (π(p))+ B,

Figure 2.  The distribution of π-values in the Čech complex. We take the empirical CDFs of the π-values (log-
scale), computed from various iid samples. The legend format is T /P/d/k , where T  is the complex type, P is the 
probability distribution, d is the dimension of the sampling space, and k is the degree of homology computed. 
By ‘box’, ‘torus’, ‘sphere’, ‘projective(-plane)’, and ‘Klein(-bottle)’ we refer to the uniform distribution on the 
respective space or its most natural parametrization, while ‘normal’ and ‘cauchy’ refer to the corresponding non-
uniform distributions. See “Methods” and Sect. 3 in the Supplementary Information for further details.
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where

and where L̄ = 1
|dgmk |

∑

p∈dgmk
log log (π(p)) and � is the Euler-Mascheroni constant (= 0.5772156649. . . ). We 

refer to the set 
{

ℓ(p)
}

p∈dgmk
 as the ℓ-values of the diagram. In Fig. 3 we present the empirical CDFs of the ℓ

-values, as well as the kernel density estimates for their PDFs, for all the iid samples that were included in Fig. 2. 
The plots for the Rips complex are similar, and can be found in Sect. 3 of the Supplementary Information. We 
observe that all the different settings ( S,T , k ) yield exactly the same distribution under the transformation given 
by (1). We refer to this phenomenon as “strong universality”.

While strong universality for iid point-clouds is by itself a very unexpected and useful behavior, a natural 
question is how generally it applies in other scenarios. In Fig. 3 we also include a selection of non-iid samples 
and real-data (see Experimental results and Methods for details). While the distribution of the π-values for these 
models is vastly different than the iid case, all of these examples exhibit the same strong universality behavior.

To summarize, our experiments highly indicate that persistent ℓ-values have a universal limit for a wide class 
of sampling models S , denoted by U . For our main conjecture, we consider the empirical measure of all ℓ-values,

Conjecture 2 For any S ∈ U , T  , and k ≥ 1,

where L∗ is independent of S , T  , and k.

Observe that in this Conjecture, the only dependence on the distribution generating the point-cloud is in the 
value of B (2) (similar to the role the mean and the variance play in the central limit theorem). In Sect. 5 of the 
Supplementary Information, we examine the value of B for different iid settings. As suggested by Conjecture 1, 
our experiments confirm that the value of B (for the iid case) depends on d,T , k , but is otherwise independent 
of S . Revealing the exact relationship between all parameters remains future work.

(2)A =
{

1 T = Rips,

1/2 T = Čech,
B = −�− AL̄,

Ln = Ln(S,T , k) := 1

|dgmk |
∑

p∈dgmk

δℓ(p).

lim
n→∞

Ln = L
∗,

Figure 3.  The distribution of ℓ-values. (top) All the iid samples included in Fig. 2 (26 curves). (bottom) A 
selection non-iid and real-data point clouds. The left column shows the empirical CDF, and the middle column 
is the kernel density estimate for the PDF, with the LGumbel distribution shown as the dashed line. The right 
column shows the QQ plots compared this distribution.
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Remark We note that models with homogeneous spacing between the points, such as perturbed lattice models, 
or repulsive point processes, do not follow Conjecture 2. See Sect. 2.4 in the Supplementary Information.

A candidate distribution. A natural question is whether the observed limiting distribution L∗ is a familiar one, 
and in particular, if it has a simple expression. Surprisingly, it seems that the answer might be yes. We denote the 
left-skewed Gumbel distribution by LGumbel , whose CDF and PDF are given by

The expected value of this distribution is the Euler-Mascheroni constant ( � ) used in (2). In Fig. 3, the black 
dashed lines represent the CDF and PDF of the LGumbel distribution. In addition, the right column presents 
the QQ-plots of all the different models compared to the LGumbel distribution. These plots provide very strong 
evidence for the validity of our final conjecture.

Conjecture 3 L∗ = LGumbel.

Remark The Gumbel distribution often emerges as the limit of extreme value distributions (i.e., minima or 
maxima). We wish to emphasize that the limiting LGumbel distribution in Conjecture 3 describes the entire 
ensemble of all ℓ-values and so it does not describe any extreme values. Consequently, while there may exist an 
indirect connection to extreme value theory, it is by no means evident or straightforward. The appearance of the 
LGumbel distribution in this context, is therefore quite surprising.

Remark The plots in Fig. 3 exhibit a remarkable fit with the LGumbel distribution, with one minor exception 
observed in the deviation of the tails of the QQ-plots. This slight deviation can be attributed to slow convergence 
rates. Existing theoretical  results26 indicate that the largest π-value tends to infinity with n, but its growth rate is 
logarithmic. Consequently, the largest ℓ-value is of order log log log(n) , and so particularly the tails will exhibit a 
slow rate of convergence. Since the point-clouds we are able to process consist of at most millions of points, our 
ability to accurately capture the tail of the distribution is quite limited. It is important to note that this limitation 
holds regardless of the validity of Conjecture 3. While the limiting distribution has a non-compact support, our 
experiments cover a restricted range of death/birth values. Therefore, if we draw the QQ-plot against any other 
distribution with non-compact support, we will observe similar deviations.

Experimental results. We present a large body of experimental evidence collected to support our con-
jectures. As the results do not seem to be significantly impacted by the choice of n, we leave this detail to the 
Supplementary Information (Section 3). Complementing the statistical plots presented here and in the Supple-
mentary Information, we also performed a Kolmogorov-Smirnov goodness-of-fit test for our entire collection 
of point-clouds. The details are provided in Sect. 3.4 of the Supplementary Information. The test did not detect 
significant difference between the distribution of ℓ-values and the LGumbel distribution in any of the point-
clouds, providing further support for the validity of Conjectures 1, 2, 3.

Sampling from iid distributions. We began by considering samples from the uniform distribution on various 
compact manifolds, with diverse geometry and topology. Next, we tested non-uniform distributions in Rd , by 
taking products of well-known distributions on R . We attempted to test a wide range of settings. The beta dis-
tribution has a compact support ([0, 1]), while the normal and Cauchy distributions are supported on R . The 
standard normal distribution is an obvious choice and Cauchy was chosen as a heavy-tailed distribution without 
moments. Finally, we considered more complex models—sampling from the configuration space of a closed 
five-linkage, and stratified spaces (intersecting manifolds of different dimensions). The results for many of the 
experiments are in Figs. 2 and 3 (see Sect. 3 of the Supplementary Information for the complete set of experi-
ments). All of the iid sampling models we tested support Conjectures 1, 2, 3.

Non-iid distributions. To better understand the extent of universality, as well as to consider more realistic mod-
els, we tested more complex cases. We tested two vastly different models: sampling points from the path of a 
d-dimensional Brownian motion, and a discrete-time sample of the Lorenz dynamical system—a well-studied 
chaotic system. The results in Fig. 3 confirm that these non-iid models exhibit strong universality as well. Sur-
prisingly, the results for the Brownian motion demonstrate the best fit with the LGumbel distribution, among all 
the settings we tested (see Figs. 10 and 11 in the Supplementary Information). This could be related to the fractal, 
or self-similarity, behavior of the Brownian motion, but remains a topic for future study.

Testing on real data. The most important test for Conjectures 2 and 3 is with real world data. We tested three 
different examples (see Methods for mode details). (1) Natural images: We sampled 3× 3 patches from natural 
gray-scale images taken from van Hateren and van der Schaaf  dataset34. We applied the dimension reduction 
procedure proposed by Lee et al.35, which results in a point-cloud on a 7-dimensional sphere embedded in R8 . 
We tested both the 7-dimensional point-cloud, as well as its lower-dimensional projections. (2) Audio recording: 
We applied the time-delay embedding  transformation36 to an arbitrary speech recording to create a d-dimen-
sional point-cloud. (3) Sentence embeddings: We used a pretrained sentence  transformer37, to convert the entire 

(3)F(x) = 1− e−ex , and f (x) = ex−ex .
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text in a book into a 384-dimensional point-cloud. Our experiments using both the Čech and Rips complexes, 
show a remarkable matching to the universal distribution (see Fig. 3 for a subset).

Application: hypothesis testing. Based on Conjectures 2–3, we present a hypothesis testing framework 
for individual cycles in persistence diagrams. We address finite and infinite cycles separately.

Finite cycles. Given a persistence diagram dgm =
{

p1, . . . , pm
}

 , our goal is to determine for each point pi 
whether it is signal or noise. This can be modelled as a multiple hypothesis testing problem with the i-th null-
hypothesis, denoted H(i)

0  , is that pi is a noisy cycle. Assuming Conjectures 2 and 3, we can formalize the null 
hypothesis in terms of the ℓ-values (1) as

In other words, cycles that deviate significantly from the LGumbel distribution should be declared as signal. If 
the observed persistence ℓ-value is x, then its corresponding p-value is computed via

Since we are testing multiple cycles simultaneously, we applied the Bonferroni correction to the p-values, which 
sufficed for our experiments. The signal part of a diagram (for significance level α ) can thus be recovered, via

Infinite cycles. Computing persistent homology for an entire filtration is often intractable. The common prac-
tice is to fix a threshold τ , and compute dgmk(τ ) for the partial filtration. This often introduces cycles that 
are “infinite”—i.e., born prior to τ , but die after τ . The question we address here is how to efficiently deter-
mine whether such cycles are statistically significant. Let p = (b, d) ∈ dgmk(τ ) be an infinite cycle, i.e., b ≤ τ is 
known and d > τ is unknown. While we do not know ℓ(p) , we observe that ℓ(p) > τ/b , which gives an upper 
bound for the p-value,

If p-valuei(τ ) is below the required significance value (e.g. α/|dgmk(τ )| ), we can declare p as significant, despite 
not knowing the true death-time. Otherwise, we can determine the minimal value τ ∗ required so that p-valuei(τ ∗) 
is below the significance value. We then compute dgmk(τ

∗) , and if the cycle represented by p remains infinite 
(i.e. d > τ ∗ ), we declare it significant. We observe that for measuring significance, we do not need to know the 
exact value of d , only whether it is smaller or larger than τ ∗ , and we need only to compute the filtration up to τ ∗ , 
rather than the actual death time d . The key point is that the death time d may be much larger than τ ∗.

The procedure we just described works well for studying a single infinite cycle. However, it is likely that 
dgmk(τ ) contains multiple infinite cycles. Moreover, increasing the threshold may result in new infinite cycles 
emerging as well. We therefore propose the iterative procedure described in Algorithm 1. Briefly, at every step the 
algorithm picks one infinite cycle, and chooses the next threshold τ so that we can determine if it is significant 
or not. The value πmin(x) in the Algorithm 1, is the minimum π-value required so that the resulting p-value (4) 
is smaller than x. Formally,

where F is the CDF of the LGumbel distribution. In the algorithm, we choose the earliest-born infinite cycle 
( min(I) ), while we could have chosen the latest-born ( max(I) ), or any intermediate value. This choice represents 
a trade-off between the number of iterations needed and the overestimation of τ . Choosing the earliest born 
cycle results in the smallest threshold, but with potentially more iterations, while choosing the last cycle will 
have fewer iterations with a possible overestimation of τ.

Algorithm 1 Finding the threshold for infinite cycles
τ ← τ0

do

D ← dgm
k
(τ )

I ← {b : (b, d) ∈ D, d = ∞, and τ/b < πmin(α/|D|)}

τ ←
{

min (I) · πmin(α/|D|) I �= ∅
τ I = ∅

while |I| > 0

return τ

Examples. We present two examples for our hypothesis testing framework. In all our experiments, we set the 
desired significance level to be α = 0.05.

H
(i)
0 : ℓ(pi) ∼ LGumbel.

(4)p-valuei = P

(

ℓ(pi) ≥ x | H(i)
0

)

= e−ex .

dgmS

k(α) =
{

p ∈ dgmk : e−eℓ(p) <
α

|dgmk|

}

.

p-valuei < p-valuei(τ ) := e−eτ/b .

πmin(x) = ℓ−1
(

F−1(1− x)
)

= ℓ−1( log log (1/x)),
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•  Computing p-values: We begin with a toy example, sampling 1000 points on an 8-shape (a wedge of circles) 
in R2 (see Fig. 4), where we vary the width of the neck. We expect one cycle to always be significant (the outer 
one), but the significance of the second cycle depends on the width of the neck. For each width value we 
computed the persistence diagram, and checked how many cycles were significant (i.e., p-value < α

|dgmk |
 ). 

The results are presented in Fig. 4. For very small neck widths, our sample is indistinguishable from the 
8-shape where the neck is fully connected, and hence both cycles are detected.

Next, we apply this method to a real-world dataset, specifically the van-Hateren natural image database men-
tioned earlier. The main claim by de-Silva &  Carlsson30 is that the space of 3× 3 patches has a 3-circle structure 
in R8 , leading to the conclusion that the patches are concentrated around a Klein-bottle38. This was supported 
by five relatively long 1-cycles in the persistence diagram computed over the patches. To provide quantitative 
statistical support for this claim, we randomly selected a subset of the patches, processed  them30, and computed 
p-value for all cycles (using the Rips complex). We repeated this experiment for varying numbers of patches, 
and computed the average number of detected signal cycles over 250 trials. The results are presented in Fig. 5. 
Firstly, we observe that there exists a single 1-cycle that is nearly always detected (the primary circle), while other 
cycles appear as we increase the sample size. Secondly, we observe that the fifth cycle is intermittently detected. 
Plotting a 2-dimensional projection of the points, we see that this cycle contains very sparse areas, increasing its 
birth time and consequently the p-value.

To conclude, using this approach, we are able to correctly detect the signal cycles discovered by de-Silva & 
 Carlsson30, as well as quantitatively declare the significance level for each cycle.

• Infinite cycles: To test Algorithm 1, we used a point-cloud on a 2-dimensional torus in R3 . Computing the 
p-values of the two signal 1-cycles requires a massive complex and becomes computationally intractable for 
even a few thousand points. Using Algorithm 1, the filtration size is incrementally increased until the signal 
was detected. At 50k points, this saves approximately 80% of the edges that would otherwise be needed. 
This ratio would significantly increase for higher dimensional simplexes. See Sect. 7 in the Supplementary 
Information for the complete details.

Figure 4.  Computing p-values for the 8-shape (a wedge of circles). (top-left) Persistence diagrams for two 
instances of the 8-shape with different neck gaps, with the significance lines shown for α = 0.05 (the dotted and 
dashed lines correspond to W = 0.1 and W = 0.4 , respectively). (top-right) The average number of signal cycles 
detected in 100 repetitions, as a function of the neck gap. (bottom) In green we show significant cycles. On the 
left ( W = 0.1 ) we see two significant cycles (p-values = 0.0005, 0.012), and on the right ( W = 0.4 ) only the outer 
cycle is significant (p-value=0.0015).
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Discussion
In this work, we revealed a highly surprising phenomena: viewed through the lens of the ℓ-values, almost all 
persistence diagrams follow the same universal distribution. This claim is supported by an exhaustive set of 
experimental results, ranging from iid samples to real data. We expect two major outcomes of this paper: (1) 
revealing the full extent of Conjectures 1, 2, 3 will provide fertile grounds for a whole new line of theoretical 
research in stochastic topology; (2) the universality properties enable the development of powerful statistical 
tools in TDA with hypothesis testing being only the tip of the iceberg. For example, the conjectures may lead to 
stronger bounds on distances between persistence diagrams coming from data, or further algorithmic advances 
based on the universal distribution.

Methods
Persistent homology. In order to turn point-clouds into shapes that can be studied topologically, the com-
mon practice in TDA is to use their geometry to generate simplicial complexes. A simplicial complex can be 
thought of as a “high-dimensional graph” where in addition to vertices and edges, we include triangles, tetrahe-
dra, and higher dimensional simplexes. Formally, we say that X is an abstract simplicial complex over a set S, if X 
consists of finite nonempty subsets of S, and is closed under inclusion (i.e., A ∈ X and B ⊂ A implies B ∈ X ). We 
refer to elements in X of size k + 1 as either k-simplexes or k-faces.

For every simplicial complex X we can compute its homology groups, denoted Hk(X) . Homology is a classical 
construction in algebraic  topology39, describing the structure of simplicial complexes in terms of chains. Chains 
are formal linear combinations of simplexes of the same dimension – 

∑

i �iσi , where σi are k-simplexes, and �i 
are some coefficients. Commonly, the coefficients are taken in a finite field (e.g., Z2 ), in which case, the space of 
k-chains forms a vector space, denoted Ck . The key ingredient in defining homology is the boundary operator 
∂k : Ck → Ck−1 . This is a linear map describing how (k − 1)-simplexes are attached to k-simplexes. Elements 
in the kernel of ∂k are called k-cycles (i.e., chains with zero boundary), while elements in the image of ∂k+1 are 
called k-boundaries. The k-th homology is then defined as the space of all k-cycles which are not k-boundaries, 
formally given as the quotient Hk = ker ∂k/im ∂k+1.

Loosely speaking, the homology groups Hk(X) ( k ≥ 0 ) represent structural information about the complex 
X. For example, the basis of H0(X) corresponds to the connected components, the basis of H1(X)—to closed 
loops surrounding holes, and the basis of H2(X)—to closed surfaces surrounding cavities (can be thought of as 
“bubbles” or “air-pockets”). For a more formal definitions and background, we refer the reader to the literature 
on algebraic  topology39,40.

In this paper we are interested in geometric complexes, i.e., abstract simplicial complexes whose vertex set is 
a point-cloud, and simplexes are determined by the geometric configuration of the points. The two most com-
mon constructions in TDA are both parameterized by a scale parameter (radius) r > 0 , and defined as follows:

• Vietoris-Rips complex: We include a subset of (k + 1) points as a k-simplex, if all points are within distance 
r from each other.

• Čech complex: We place a ball of radius r around each point, and then include a subset of (k + 1) points as 
a k-simplex, if the intersection of the corresponding balls is non-empty.

See Fig. 2 in the Supplementary Information for examples. Denoting by Xr either of the above complexes, an 
important observation is that this construction is “increasing”, in the sense that for r < s , we have Xr ⊆ Xs . 
Such sequences are also known as filtrations. While we can study the homology of each individual complex 

Figure 5.  Testing the 3-circle model in the natural image patches. (left) Four different 2-dimensional 
projections of the 8-dimensional patches point-cloud. The projection on the top-right shows a 1-cycle that 
is quite “thin” and contains large gaps. (right) The p-value curve for the patches dataset as a function of the 
number of samples. We observe that we are not detecting 5-cycles in 100% of the cases. This is most likely due to 
the “thin” cycle.
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Xr separately, a more powerful approach is to consider the entire range of parameters (in this case r ∈ [0,∞) ) 
and track the evolution of Hk(Xr) along this range. A key property of homology is that it is functorial, i.e., every 
map between simplicial complexes induces a linear map between their respective homology groups. Using the 
inclusion maps i : Xr →֒ Xs , we have the corresponding linear maps in homology i∗ : Hk(Xr) → Hk(Xs) for all 
r < s . Persistent homology41,42 uses this collection of linear maps to describe how homology groups change over 
the filtration. This is done by assembling all the homology groups and the maps between them into an algebraic 
structure called a persistence module. A key result in topological data  analysis43 is that persistence modules can 
be uniquely decomposed into a direct-sum of “basis-like” elements. These elements correspond to k-cycles that 
appear (born) at some parameter value, and disappear (die) at a later value in the filtration. Given this decom-
position, we can summarize the structure of the persistence module, using a collection of points (b, d) ∈ R

2 , 
corresponding to the birth and death times of these basis elements. This representation is known as a persistence 
diagram (see Fig. 1). Persistent homology has been extensively studied, and employed in numerous applications. 

Multiplicative persistence. The significance of topological features is often measured by the lifetimes of 
persistent cycles, i.e., � = ( death − birth ) . This method is intuitive in toy examples (see Fig. 1), as it captures 
the geometric “size” of topological features. However, a strong case can be  made26 that for geometric complexes 
the ratio

is in fact a more robust statistic to discriminate between signal and noise in persistence diagrams (for k > 0 ). 
There are two main justifications for this statement. Firstly, the ratio π is scale invariant, so that cycles that have 
exactly the same structure but exist at different scales are weighed the same. Secondly, datasets often contain outli-
ers that may generate cycles with a large diameter, and consequently their lifetime � will also be large. However, 
the value of π for such outliers should remain low, compared to features that occur in dense regions (see Fig. 6).

In  previous  work26, the asymptotic scaling for the largest π-value was studied. Denoting 
πmax
k := maxp∈dgmk

π(p) , the main result (Theorem 3.1) shows that with high probability

for some constants A,B > 0 . This is in contrast to signal cycles, who we  know33  are of the order of n1/d . Thus, 
the π-values provide a strong separation (asymptotically) between signal and noise in persistence diagrams.

Remark These previous results are phrased for special cases (i.e., the uniform distribution on a d-dimensional 
 box26 and a d-dimensional flat  torus33). Nevertheless, the proofs can be adapted to a wide class of compact spaces 
and distributions, with the same asymptotic rates.

Experimented point‑clouds. In this section we provide the details on the models generating the various 
point-clouds tested. Tables summarizing all the tested settings, as well as the full results, are available in Sect. 3 
of the Supplementary Information. We first discuss a few methodological points with respect to the experiments. 

π = ( death / birth )

A

(

log n

log log n

)1/k

≤ πmax
k ≤ B

(

log n

log log n

)1/k

,

Figure 6.  Motivation for multiplicative persistence. The point-cloud on the left generates three 1-dimensional 
cycles (marked by the arrows). On the right we see the corresponding persistence diagram for the Čech filtration 
with matching cycle colors. The coordinates of the points are p1 = (0.2, 0.675) (red), p2 = (0.4, 1.35) (green), 
and p3 = (2, 4) (blue). Their corresponding lifetimes are �1 = 0.475 , �2 = 0.95 , and �3 = 2 . This might 
lead us to declare the blue cycle as the most significant, while it seems to be generated by outliers. In addition, 
while the structure of the other two cycles (red and green) is identical, their lifetime is different. Both issues are 
resolved if we take the death/birth ratio instead. In this case, we have π1 = π2 = 3.375 , while π3 = 2.
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(1) Most experiments on the Čech complex (particularly in 2 or 3-dimensions), were done in practice using the 
much more computationally efficient Delaunay-Alpha complex (especially for lower dimensions), which 
has an identical persistence diagram.

(2) The experiments were run primarily on the Apocrita HPC cluster, using several different software packages 
including  Gudhi44,  Ripser45,  Eirene46,  Dionysus47, and  Diode48.

(3) The persistence diagrams for these experiments and the associated code can be found at can be found 
at https:// doi. org/ 10. 7910/ DVN/ CNIHYV and https:// github. com/ primo zskra ba/ Persi stenc eUniv ersal ity 
respectively.

Remark In all the considered settings, it is necessary to assume that the diagrams we analyze consist only of noisy 
cycles, without any signal. This assumption is essential, particularly when estimating the CDF or the value of the 
normalization parameter B. In cases where the signal is known (e.g., an annulus), we can manually exclude the 
signal features. However, in cases where the signal is unknown (e.g., audio sampling, sentence embeddings), we 
cannot do so. Nevertheless this issue is not significant in practice. The diagrams we generate typically contain 
thousands to millions of points. Thus, unless we anticipate a massive amount of signal features, the inclusion 
of signal cycles in our estimates will have a negligible effect, especially in the log log scale. This observation is 
particularly important for the applicability of our hypothesis testing framework.

Sampling from iid distributions. The first setting tested is where points are sampled from a random model in an 
iid fashion. Let X = (X(1), . . . ,X(d)) denote a single point in one of the iid samples. We describe briefly how X 
is generated in each of the models.

• Box: X is uniformly distributed in [0, 1]d.
• Ball: X is uniformly distributed in a unit d-dimensional ball. Sampling was done using the rejection-sampling 

method.
• Annulus: X is uniformly distributed in a d-dimensional annulus with radii in the range [1/2, 1]. Sampling 

was done using the rejection-sampling method.
• Sphere: X is uniformly distributed on a d-dimensional unit sphere, embedded in Rd+1 . Sampling was done 

by generating a standard ( d + 1)-dimensional normal variable, and projecting it on the unit sphere.
• Beta(a, b): The coordinates X(1), . . . ,X(d) are sampled independently from the Beta(a,b) distribution.
• Cauchy: The coordinates X(1), . . . ,X(d) are sampled independently from the Cauchy distribution.
• Normal: The coordinates X(1), . . . ,X(d) are sampled independently from the standard normal distribution.
• Torus: We generate points on the 2-dimensional torus embedded in R3 as follows. We generate two inde-

pendent variables φ and θ uniformly in [0, 2π] . Then we take the coordinates to be: 

 We used R1 = 2 and R1 = 1.
• Klein: We sample an embedding of the Klein bottle into R4 as follows. We generate two independent variables 

φ and θ uniformly in [0, 2π] . The value of X is then computed as 

• Projective: We sample an embedding of the real projective plane into R4 . We generate independent variables 
U0 , V0 and W0 from the standard normal distribution. Next we take (U ,V ,W) = (U0,V0,W0)√

U2
0+V2

0+W2
0

∈ S
2 , and 

define 

• Linkage: This model samples the configuration space of unit pentagonal linkages, i.e. a pentagon where 
adjacent edges are of unit length. To sample this space, we first fix two vertices at p1 = (0, 0) and p2 = (1, 0) 
respectively. Next, we generate two independent variables φ and θ uniformly in [0, 2π] , and set 

 If �p3 − p5� > 2 , the sample is rejected as there is no linkage with the chosen angles. Otherwise, there are 
two possible choices of the last point p4 . Let (q(1), q(2)) denote the midpoint of p3p5 . Then 

 where S is independent of φ, θ , and P(S = 1) = 1
2 and P(S = −1) = 1

2 . See Fig. 1 in the Supplementary 
Information for an example.

• Neptune: We construct a sample from the surface of the statue of Neptune. We used a triangulation of the 
 surface49, consisting of 4,007,872 triangles. To generate a sample, we first compute the area of each triangle 

X(1) = (R1 + R2 cos(φ)) cos(θ), X(2) = (R1 + R2 cos(φ)) sin(θ), X(3) = R2 sin(φ).

X(1) = (1+ cos(θ)) cos(φ), X(2) = (1+ cos(θ)) sin(φ),

X(3) = sin(θ) cos
(

φ
2

)

, X(4) = sin(θ) sin
(

φ
2

)

.

X(1) = UV , X(2) = UW , X(3) = V2 −W2, X(4) = 2VW .

p5 = (cos(φ), sin(φ)), p3 = (1+ cos(θ), sin(θ)).

p4 = q+ S

√

1− �q− p5�2
�q− p5�

(

p
(2)
5 − q(2), q(1) − p

(2)
5

)

https://doi.org/10.7910/DVN/CNIHYV
https://github.com/primozskraba/PersistenceUniversality
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and then choose a triangle at random with probability inversely proportional to the area of the triangle. We 
then pick a point uniformly in the chosen triangle. See Fig. 1 in the Supplementary Information.

• Hennenberg: We construct a sample of the Henneberg surface in R3 (see Fig. 1 in the Supplementary Infor-
mation). We start by generating two independent variables φ and θ uniformly in [0, 2π] . We then construct 
the sample by 

• Stratified spaces: To construct X, we consider two spaces M1 ⊂ M2 such that the dimension of M1 is less 
than M2 . Then one of the two spaces is chosen with some probability p (which is a parameter of the model), 
and the chosen space is sampled uniformly. Although several models were tried, in the examples we show a 
plane [−1, 1]2 embedded in the middle of a cube [−1, 1]3 . In other words, if the point (x, y) is chosen from 
the plane, the coordinates would be (x, y, 0).

Sampling from non-iid distributions. In addition to the iid setting, we also tested two examples of non-iid point-
clouds. The first example is sampling the path of a d-dimensional Brownian motion Wt . To sample Wt at times 
t = 1, . . . , n we use the fact that Wt has stationary independent increments. We start by taking Z1, . . . ,Zn to be 
iid d-dimensional standard normal variables, and then we define Xi = Wt=i =

∑n
i=1 Zi.

The second example we examined is a discrete-time sample of the Lorenz dynamical system, which is gener-
ated as follows. We start by picking a random initial point, uniformly in [0, 1]3 . We then generate the sample 
using the differential equations,

We use σ = 45 , ρ = 54 , and β = 10 , and a numerical approximation with dt = 0.1 to generate a trajectory for 
the number of samples required. Note that each instance is a single trajectory. See Fig. 9 in the Supplementary 
Information for examples.

Testing on real data. Finally, we tested the strong-universality conjectures against two examples of real data—
patches of natural images, and sliding windows of voice recordings. In this section we provide more details about 
these examples.

• Image patches: The images were taken from van Hateren and van der  Schaaf34 database. This database con-
tains a collection of about 4,000 gray-scale images. We follow the procedure described in Lee et al.35. We randomly 
select patches of size 3× 3 from the entire dataset. This gives us a point-cloud in R9 . Let x = (x1, . . . , x9) ∈ R

9 
represent the log-values of a single patch, and follow the following steps: 

(1) Compute the average pixel value x̄ , and subtract it from all 9 pixels in the patch, i.e. y = x − x̄
(2) Compute the “D-norm” (a measure for contrast), �y�D =

√

yTDy.
(3) Use the D-norm to normalize the pixel values, z = y/

∥

∥y
∥

∥

D
.

(4) Use the Discrete Cosine Transform (DCT) basis to change the coordinate system, v = �ATz.

The values of D,A,� , as well as more details about this proecedure can be found in the  literature35,38. The process 
above results in a point-cloud lying on the unit 7-dimensional sphere in R8.

For the topological  analysis38, the point-cloud is further filtered, in order to focus on the “essential” informa-
tion captured by the patches. This is done in two steps: 

(1) Keep only “high-contrast” patches—whose D-norm is in the top 20%.
(2) Compute the distance of each of the remaining patches to their k-nearest neighbor (with k = 15 ), and keep 

only the patches in the bottom 15%.

We repeat the exact procedure performed Carlsson et al.38 for two main reasons. Firstly, we wanted to test our 
hypothesis testing framework to assign p-values to the cycles found using this procedure. Secondly, this proce-
dure makes the sample distribution more intricate, and adds dependency between the sample points. We wanted 
to challenge our conjectures with data as complex as possible. In addition to taking the original 8-dimensional 
point-cloud, we also examined its lower dimensional projections for dimensions d = 3, . . . , 7 . The sample size 
used was n = 50, 000 for all dimensions.

X(1) = 2 cos(θ) sinh(φ)− 2

3
cos(3θ) sinh(3φ),

X(2) = 2 sin(θ) sinh(φ)+ 2

3
sin(3θ) sinh(3φ),

X(3) = 2 cos(2θ) cosh(2φ).

dX(1)

dt
= σ

(

X(2) − X(1)
)

,

dX(2)

dt
= X(1)

(

ρ − X(3)
)

− X(2),

dX(3)

dt
= X(1)X(2) − βX(3).
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• Sound recordings: We took an arbitrary audio recording (the voice of one of the authors), and applied the 
time-delay embedding  transformation36 to convert the temporal signal into a d-dimensional point-cloud. The 
voice recording is a 20 seconds excerpt, sampled at 16KHz, 48Kbps. We denote the corresponding discrete 
time signal as Vt . To convert the signal into a point-cloud we used the following: 

 The values we took for the example here were � = 3 , and τ = 7 . This, in particular, generates overlap between 
the windows, which guarantees strong dependency both between the points, and between the coordinates of 
each point. The sample size taken was n = 50, 000.

• Sentence embeddings: Choosing several freely available texts of sufficient length—we chose the Bible, Ulysses 
by James Joyce, and Moby Dick by Herman Melville, obtained from Project Gutenberg. Each book was first 
tokenized into sentences using the Natural Language Toolkit (NLTK)50. Each sentence was then embedded 
into a 384 dimensional space using a sentence transformer. These are pretrained models which can be used 
to compute the embeddings. We used the all-MiniLM-L6-v2  model37. This model has been trained on over 
a billion sentences. The persistence diagram was then computed for resulting point cloud using Euclidean 
distance. The texts were chosen to so that they generated between 9000-30,000 sentences.

Data availibility
The experimental data and code for all the results shown can be found at https:// github. com/ primo zskra ba/ Persi 
stenc eUniv ersal ity and https:// doi. org/ 10. 7910/ DVN/ CNIHYV, respectively.
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