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Phytochemical analysis for ten 
Peruvian Mentheae (Lamiaceae) 
by liquid chromatography 
associated with high resolution 
mass spectrometry
Carlos A. Serrano 1*, Gretty K. Villena 2, Eric F. Rodríguez 3, Belea Calsino 4, 
Michael A. Ludeña 1 & Gari V. Ccana‑Ccapatinta 5

The profile of secondary metabolites in ten members of tribe Mentheae (Nepetoideae, Lamiaceae) 
from Peru by liquid chromatography associated with high resolution mass spectrometry, is presented. 
Salvianolic acids and their precursors were found, particularly rosmarinic acid, caffeic acid ester 
derivatives, as well as a diversity of free and glycosylated flavonoids as main substances. At all, 111 
structures were tentatively identified.

The tropical Andes are considered one of the most diverse areas on the planet in terms of vascular plants. The 
flora of Perú is extremely rich, and its territory is home to some 25,000 species, almost 10% of all plants in the 
world. However, the percentage of them scientifically studied is quite  low1. Phytochemical research on Peruvian 
biodiversity proved to be fundamental in the development of modern medicine, e.g. the isolation of cocaine 
from Erythroxylum coca was a milestone in the development of local  anesthetics2, similarly the isolation of the 
first antimalarial agent, quinine from Cinchona ledgeriana cortex initiated “the alkaloids golden age”3. Most of 
those phytochemical investigations were conducted overseas, a fact that reflects the absence or the restricted 
access of resources and infrastructure for developing classical phytochemical research in Peru. Today, modern 
platforms maybe applied for the metabolic characterization of Peruvian flora, a task that can be achieved by a 
liquid chromatography associated with high resolution mass spectrometry (LC-HRMS) method since it is less 
time consuming compared to classic methods of isolation and structure identification. Some recent investiga-
tions that exemplify the use of LC-HRMS for describing the phytochemical profile of Peruvian flora include 
the metabolic profile on medicinal plants of the genus Chuquiraga (Asteraceae)4 and that related to Capsicum 
(Solanaceae)  fruits5.

Perú has several traditional medicine systems, that of the northern  Andes6,7, that of the southern  Andes8 
and that of the Amazonian  forest9, each one of them with its main and minor plants and particular practices. 
With the passage of time, those traditional medicines are getting combined a fact that is especially noticeable 
in Lima city, the capital of  Peru10. One aspect that is worth to highlight is that, especially in Andean medicines, 
but not in Amazonian ones, there is an important contribution of plants belonging to the Lamiaceae family to 
the traditional medicine systems.

The large family Lamiaceae has twelve subfamilies. The Nepetoideae subfamily, with 3400 species and 105 
genera, has three  tribes11: Elsholtzieae, Ocimeae and Mentheae, the latter with 65 genera. The Mentheae tribe is 
chemically characterized by having volatile terpenoids and a phenolic acid called rosmarinic acid that makes 
these plants aromatic and with medicinal  properties12,13 Mentheae can also be classified into 3 subtribes: Menthi-
nae (43 genera), Salviinae (10 genera) and Nepetiinae (12 genera)14,15. In Peru (Herbario Nacional Universidad 
de San Marcos-Perú, October 2017), the main genera of Mentheae were Clinopodium (29 species), Hedeoma (1 
specie), Lepechinia (11 species), Minthostachys (7 species) and Salvia (60 species). Clinopodium, Hedeoma, and 
Minthostachys belong to the Menthinae subtribe, while Lepechinia and Salvia belong to the Salviinae subtribe. 
Investigations on the non-volatile components in Peruvian Mentheae are relatively scarce compared to the works 
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related to essential  oils16 . In a previous  work17 the contents of rosmarinic acid, triterpenic acids, oleanolic and 
ursolic were quantified in thirteen Peruvian Mentheae. The highest content of rosmarinic acid was observed in 
Lepechina meyenii (Walp.) Epling and the highest content of triterpenic acids in Clinopodium revolutum (Ruiz 
& Pavón) Govaerts.  Subsequently18, the non-volatile compounds were unambiguously or reasonably identified 
in two Lepechinia species: L. meyenii and L. floribunda (Benth.) Epling, by LC-HRMS, where the presence of 
salvianolic acids and diterpenoids were notable.

LC-HRMS methods have been used to comprehensively analyze the phenolic components of plants, this 
implies procedures for the systematic manually identification of mass  spectra19,20 and also the use of suitable 
 software21,22, in both cases the procedure involves recording of diagnostic ions for classification and then the 
identification of characteristic ionic products and neutral losses for confirmation. In the present communica-
tion, the profile of secondary metabolites by LC-HRMS is reported for ten Peruvian Mentheae: Clinopodium (4 
species), Salvia (4 species), Hedeoma (1 species) and Minthostachys (1 species).

Results
Phytochemical profile. The LC-HRMS metabolite profile of the ethanolic extracts of the ten peruvian 
Mentheae was obtained in the negative mode (ESI (−)) and the detected compounds appear in Table 1. Assign-
ments were made based on the  literature21–37. Isomers of quinic acid (m/z 191.0556), danshensu (m/z 197.0450), 
protocatechuic aldehyde (m/z 137.0239), and caffeic acid (m/z 179.0350) occur in most plants. Equally abun-
dant are the monocaffeoylquinic acids present in seven species. Minthostachys mollis contains four different 
monocaffeoylquinic acids. Several derivatives of ferulic acid and p-coumaric acid could also be identified. The 
4 (para) substitution or the 3,4 substitution with respect to  C3 cannot be determined by MS, however this is 
the substitution reported in Mentheae19,20,23,38–49. Caffeic acid, protocatechuic aldehyde and protocatechuic acid 
share the same substitution pattern. Furthermore, a diversity of flavonoids (flavonols, flavones, flavanones, fla-
vanonols) was found in all the samples, both free and glycosylated. Minthostachys mollis, Clinopodium sericeum 
and Clinopodium pulchellum are the most diverse with respect to their flavonoids. The most frequent flavonoid 
aglycones were luteolin (m/z 285.0404), quercetin (m/z 301.0354), kaempferol (m/z 285.0404) and apigenin (m/z 
269.0455). Eupatorin is present in five of the species  studied50. In Clinopodium revolutum, apigenin and luteolin 
C- hexosides were detected. In all the samples the presence of rosmarinic acid (m/z 359.0772) was detected. In 
Clinopodium revolutum, salvianic acid C (m/z 377.0881), which is the result of hydrating the double bond of ros-
marinic acid, has been detected, and, in Salvia sagitatta, teucrol (m/z 315.0880)51, a decarboxylated rosmarinic 
acid was observed. Isorinic acid (m/z 343.0827) a rosmarinic acid molecule without the 3-OH was present in 
Clinopodium brevicalyx, Salvia sagitatta, Salvia cuspidata and Hedeoma mandoniana. Methyl (m/z 373.0931) 
and ethyl (m/z 387.1088) esters of rosmarinic acid were present in Salvia cuspidata and Clinopodium brevicalyx. 
In Salvia cuspidata and Clinopodium revolutum, the dimer of rosmarinic acid, sagerinic acid (m/z 719.1598), 
which is a molecule with a stabilized cyclobutane ring, was found. Clinopodium pulchellum displayed the pres-
ence of salvianolic acid A (m/z 493.1143) and salvianolic acid F (m/z 313.0722). In Clinopodium brevicalyx, Cli-
nopodium sericeum and Hedeoma mandoniana, the presence of salvianolic acid B (m/z 717.1443) was observed, 
a particularly important substance due to its effect on neurodegenerative  diseases52. However, the plant with the 
greatest diversity of salvianolic acids was Clinopodium sericeum, "romero de jalca", in addition to salvianolic acid 
B, lithospermic acid (m/z 537.1038), two isomers of salvianolic acid A and two isomers of salvianolic acid F. This 
type of substances is very important due to its effect on cell fibrosis (scar formation) in direct relation to  cancer53. 
Among the other substances found, it should be noted that the Rosmarinus type diterpenoids, common in Lep-
echinia18,54 are scarce in this work; only Salvia sagitatta and Salvia cuspidata show the presence of carnosol (m/z 
329.1761) and the phenolic diterpenoid, rosmadial (m/z 343.1552) in the last  one28. Salvia haenkei contains the 
ent-(5R,9R)-15,16-epoxy-10S-hydroxycleroda-3,7,13(16),14-tetraene-17,12S; 18,19 diolide (m/z 355.1190)26, 
while Salvia cuspidata had a lignan, isolariciresinol (m/z 359.1502) previously reported in Linum  seeds31,55, and 
5-epi-icetexone (m/z 341.1396) described as an anti- Trypanosoma cruzii  molecule56. Oleanolic and ursolic trit-
erpenic acids, quantified in a previous report by Serrano et al.17, do not appear in this analysis due to the elution 
program used, which does not reach 100%  acetonitrile57. Figure 1 shows the typical ESI (−) chromatogram of 
Salvia sagitatta and Fig. 2 shows the chromatogram of Clinopodium sericeum. The chemical structures of the 
main metabolites detected are displayed in Fig. 3.

Discussion
This is the first time that the phytochemical profile has been obtained for the ten Peruvian Mentheae (Lamiaceae) 
here reported. The botanical genera studied were Salvia (Salviinae), Clinopodium, Hedeoma and Minthostachys 
(Menthinae). While Salvia and Clinopodium are genera of worldwide distribution, Hedeoma and Minthostachys 
are American and South American genera, respectively. All Salvia species in this work belong to the Salvia sub-
genus Calosphace Benth. (Epling)63. Assignments were based on the search for diagnostic ions, characteristic 
product ions and neutral  losses19,20,25,40,41. The fragmentation patterns shown in said references are particularly 
useful for this work since they are specifically directed to Lamiaceae/Mentheae. The phytochemical profiles of 
those Mentheae here surveyed are quite similar to their European and Asian relatives. All the species analyzed 
show the presence of rosmarinic acid, while, quinic acid, 3,4-dihydroxyphenyl-lactic acid “danshensu”, proto-
catechuic aldehyde and caffeic acid are present in most of the samples. Monocaffeoylquinic acids, also called 
chlorogenic acids, are also frequent but better expressed in Minthostachys. Dicaffeoylquinic acid was detected 
only in Clinopodium revolutum. All samples contained flavonoids with more diversity in Minthostachys and Cli-
nopodium. Flavonoid-free aglycones predominate in several plants: In Salvia sagitatta, cirsimaritin is  abundant64, 
while eupatorin predominates in Clinopodium revolutum50, genkwanin in Salvia haenkei36 and hesperetin in 
Clinopodium pulchellum27. In several plants, rosmarinic acid is the main peak: Clinopodium brevicalyx, Salvia 
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No peak Assignment Rt [M–H]− Experimental mass Δ (ppm) Fragments Detected in* References

1 Quinic acid 1.33 C7H11O6 191.0559 1.57 127.0394 Cb, So, Mm, Sc, Cr, Cs, Cp 23

2 Malic acid 1.36 C4H5O5 133.0139 1.5 Ss, Sc, 23

3 Quinic acid isomer 1.44 C7H11O6 191.0560 2.09 127.8695 Cb, Mm, Cr, Cs, Cp 23

4 Citric acid 1.77 C6H7O7 191.0196 2.09 111.0081 So 23

5 Pyroglutamic acid 1.87 C5H6O3N 128.0348 0.00 Sh 23

6 Succinic acid 1.98 C4H5O4 117.0187 0.85 So, Mm, Ss, Sc, Cr, Cs, Sh, Hm 23

7 Monoacetylglycerol 2.09 C5H9O4 133.0502 0.75 Ss

8 Mesaconic acid 2.96 C5H5O4 129.0190 1.55 Cp

9 3,4-dihydroxyphenyl lactic 
acid “danshensu” 4.05 C9H9O5 197.0454 2.02 123.0445, 135.0446, 179.0346 So, Cb, So, Mm, Sc, Cr, Cs, 

Hm, Sh
24,25

10 Protocatechuic acid 4.64 C7H5O4 153.0190 1.31 109.0289, 135.0448 So, Sc, Hm, Cp 24

11 1-O-Caffeoylquinic acid 6.39 C16H17O9 353.0883 2.83 135.0447, 179.0347, 191.0559 Mm 58,59,58–60

12 Protocatechuic aldehyde 7.73 C7H5O3 137.0239 0.00 109.0289 Cb, So, Mm, Ss, Cr, Cs, Sh, 
Hm, Cp

24

13 Hydroxyheptandioic acid 8.78 C7H11O5 175.0611 2.28 So, Ss

14 p-Coumaroyl quinic acid 8.83 C16H17O8 337.0934 2.96 119.0496, 163.0398, 173.0453, 
191.0559 Mm 58,59,58–60

15 3-O-Caffeoylquinic acid 8.99 C16H17O9 353.0883 2.83 173.0453, 179.0559, 191.056 Mm, Cr 58,59,58–60

16 Caffeic acid O-hexoside 9.02 C15H17O9 341.0883 2.93 179.0347, 233.0458, 251.0564, 
281.0670 So, Ss, Sc 60,41

17 p-Coumaric acid 9.28 C9H7O3 163.0399 2.45 119.0497 Ss 38

18 5-O-Caffeoylquinic acid 9.41 C16H17O9 353.0883 2.83 135.0446, 179.0346, 191.055 Cb, So, Mm, Cr, Hm, Cp 58,59,58–60

19 Eucomic acid 9.54 C11H11O6 239.0561 2.09 195.0660, 178.0586 Cb

20 Caffeic acid 9.64 C9H7O4 179.0348 1.67 135.0446, 161.0446 So, Mm, Ss, Sc, Cr, Cs, Sh, 38,39,41

21 Caffeic acid O-hexoside 9.77 C15H17O9 341.088 2.05 179.0345, 235.0453, 251.0561, 
281.0667 Sc 60,41

22 Tuberonic acid hexoside 9.86 C18H27O9 387.1665 2.58 101.5668, 163.0033, 206.9725 So, Ss, Cr, Sh 23

23 p-Coumaroylquinic acid 
isomer 10.1 C16H17O8 337.0934 2.97 163.0397, 173.0454 So, Mm 58,59,61,27

24 Salvianic acid C 10.21 C18H17O9 377.0882 2.39 161.0240, 179.0347, 359.0776 Cr 41

25 p-Coumaroyl hexoside 10.38 C15H17O8 325.0930 1.85 119.0496, 163.0396 Sc 60

26 Feruloylquinic acid 10.38 C17H19O9 367.1040 3.0 149.0240, 191.0560, 193.0504, 
173.0453 Mm 20,27

27 Quercetin 3,7-di-O-hexoside 10.43 C27H29O17 625.1407 0.32 121.0288, 179.0346, 273.0980, 
301.0354, 303.1084, 463.0882, Cs, Cp 62,29,30

28 4-O-Caffeoylquinic acid 10.45 C16H17O9 353.0880 1.12 135.0445, 179.0345, 191.0557 Sc 58,59,58–60

29 p-Coumaroyl hexoside 10.59 C15H17O8 325.0930 1.85 119.0496, 163.0396 Sc 60

30 Salvianic acid C isomer 10.67 C18H17O9 377.0881 2.12 197.0453, 347.1708, 359.0775 Cr 41

31 Tuberonic acid 10.67 C12H17O4 225.1132 2.22 134.8648, 146.9382, 168.8359, 
187.9417, 213.0961 Mm, Sh, 23

32 Quercetin O-rutinoside 10.78 C27H29O16 609.1458 0.33 121.0289, 179.0345, 301.0356, 
273.0881 Mm, Cp 60,29,30,35

33 Eriodictyol O-rutinosise 10.89 C27H31O15 595.1661 0.34 151.0397, 287.0562 Cs, Sh, Hm 42,29,30

34 Luteolin O-rutinoside 11.00 C27H29O15 593.1504 0.51 285.0403, 447.0928 Cb, Sc, Cr, Cp 16,63,26

35 Apigenin O-rutinoside 11.01 C27H29O14 577.1556 0.35 269.1030 Sc, Cr 16,38,63,26

36 Kaempferol O-hexoside 11.02 C21H19O11 447.0936 1.78 151.0031, 285.0406, Cb, Ss, Cs 20,29,30

37 Quercetin O-hexoside 11.02 C21H19O12 463.0886 1.94 301.0358 So, Mm, Ss, Sc, Cp 60,44,29,30

38 Quercetin O-glucuronide 11.09 C21H17O13 477.0679 2.1 301.0356 So, Ss 44,29,30

39 Feruloyl hexoside 11.12 C16H19O9 355.1036 1.97 149.0240, 193.0502 Sc 60

40 Pentahydroxy-methoxyflavone 
hexoside 11.12 C22H21O13 493.0989 1.42 162.8387, 163.0397, 331.0827, 

315.1089 Cs 29,30

41 Isorhamnetin O-hexoside 11.23 C22H21O12 477.1046 2.72 315.0824, 357.0352, 462.0768 Ss 43,29,30

42 Naringenin O- rutinoside 11.33 C27H31O14 579.1714 0.00 151.0030, 271.0612 Mm, Cb, Cs, Hm, Cp 29,30

43 Eriodictyol O- rutinoside 11.4 C27H31O15 595.1665 0.34 151.0033, 287.0564 Cs 29,30

44 Luteolin O-glucuronide 11.56 C21H17O12 461.0729 1.95 133.0290, 151.0395, 285.0407, So, Ss, Cr, Sh 44,29,30

45 Luteolin O-hexoside 11.57 C21H19O11 447.0937 2.01 151.0398, 241.1084, 285.0407 Mm, Cr 60,29,30

46 Dihydrobaicalin 11.57 C21H19O11 447.0936 1.79 271.0250, 403.1613 Sc 62

47 Sagerinic acid 11.58 C36H31O16 719.1600 1.67 161.0239, 179.0348, 359.0715, 
539.1186 Sc, Cr 38,39,45–47

48 Hesperetin 7-O-rutinoside 11.64 C28H33O15 609.1819 0.16 151.0397, 179.0347, 301.0718, 
257.1035 Mm, Cb, Hm, Cp 29,30,64

Continued
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49 Apigenin O-rutinoside 11.66 C27H29O14 577.1557 0.17 225.1129, 269.0453 Cr 29,30

50 Dimethylrosmarinic acid 11.67 C20H19O8 387.1091 2.84 179.0347, 135.0447, 161.0452 So, Sh

51 Isorhamnetin 3-O-glucuronide 11.7 C22H19O13 491.0834 1.62
151.0396, 179.0346, 302.0388, 
300.0602, 301.0358, 299.0565, 
315.0513

So 29,30

52 Salvianolic acid A isomer 11.75 C26H21O10 493.1142 1.42 179.0344, 197.0450, 269.0821, 
295.1192, 313.0723, 359.0778 Cs 24,25,41,49

53 Tetrahydroxy-methoxyflavone 
O-hexoside 11.78 C22H21O12 477.1041 1.68 162.8398, 163.8391, 315.1451 Cr 29,30

54 Trihydroxymethoxyflavone 
O-hexoside 11.89 C22H21O11 461.1093 1.95 299.0559 Sh, 29,30

55 Salvianolic acid B isomer 11.99 C36H29O16 717.1443 1.81 321.0616, 519.0945 Cs 25,40,41,47,48

56 Apigenin C-hexoside 12.01 C21H19O10 431.0984 0.00 269.0452, 281.1024, 311.1130, 
341.1960, 371.1002 Cr 20

57 Rosmarinic acid 12.04 C18H15O8 359.0775 2.23 161.0240, 179.0345, 197.0452 Cb, So, Mm, Ss, Sc, Cr, Cs, Sh, 
Hm, Cp

25,38,39,45,46,48

58 Luteolin C-hexoside 12.07 C21H19O11 447.0934 2.91 285.0404, 297.1353, 357.1921, 
387.1160 Cr 20

59 Dicaffeoylquinic acid 12.17 C25H23O12 515.1194 0.19 135.0444, 161.0238, 179.0345, 
353.0881 Cr 58,59,58–60

60 Salvianolic acid B isomer 12.53 C36H29O16 717.1443 1.81 295.0611, 321.0408, 339.0512, 
493.1137, 519.0930, 537.1024 Cb, Ss, Hm 25,40,41,47,48

61 Luteolin O-acetylhexoside 12.71 C23H21O12 489.1039 1.23
133.0289, 151.0395, 241.0537, 
257.1035, 267.0667, 285.0404, 
447.0935

Cr 63,26

62 Artemetin 12.8 C20H19O8 387.1089 2.32 327.1241, 342.1067, 357.0992, 
372.1184 Sh, 29,30

63 Isorinic acid 12.95 C18H15O7 343.0827 2.62 161.0241, 327.2181 Cb, Ss, Sc Hm 41,65

64 Lithospermic acid 13.03 C27H21O12 537.1038 0.93 295.0610, 493.1147 Cs 24,41

65 Isosakuranetin O-rutinoside 13.15 C28H33O14 593.1874 0.51 285.0770, 594.1905 Mm, Cp 29,30

66 Methyl rosmarinate 13.28 C19H17O8 373.0935 2.95 179.0347, 194.0540, 359.0778 Sc 20,25,38

67 Quercetin O-(p-coumaroyl)-
hexoside 13.51 C30H25O14 609.1242 0.49 301.0719, 447.0940, 462.0747, 

594.1343 Cr 29,30

68 Eriodictyol 13.6 C15H11O6 287.0563 2.44 107.0133, 135.0445, 151.0030 Cb, Cp 29,30

69 Luteolin 13.62 C15H9O6 285.0408 3.16 133.0289, 151.0032, 241.1085 Cb, Hm 29,30,32

70 Dihydrophilonotisflavone 13.63 C30H19O12 571.0883 1.05 133.0290, 151.0033, 285.0410, 
286.0441 So, Ss 29,30

71 Ferulic acid 13.68 C10H9O4 193.0504 1.55 134.0367, 149.0239, 178.0220 Sc 20,25,66

72 Salvianolic acid A isomer 13.87 C26H21O10 493.1141 1.22
159.8595, 179.0345, 197.0451, 
295.0612, 269.0821, 313.0719, 
359.0774

Cs, Cp 24,25,41,49

73 Protocatechuic acid 
O-(hydroxybenzoyl)hexoside 13.94 C20H19O11 435.0935 1.61 137.0239, 153.0191, 297.1346, 

315.1452 Cr

74 Trihydroxy-methoxyflavone 14.00 C16H11O6 299.0565 3.01 151.0397, 255.0698, 285.0413 Ss, Sh 29,30,32,35

75 Hesperetin O-hexoside 14.27 C22H23O11 463.1250 2.06 151.0395, 179.0347, 301.0720 Cp 29,30,34

76 Caffeic acid ethyl ester 14.66 C11H11O4 207.0661 1.44 179.0347 Cb, Sc

77 Quercetin 14.97 C15H9O7 301.0356 2.33 273.0407, 257.8189, 179.0346, 
151.0392, 121.0288 Sc 67,29,30

78 Caffeic acid dimethyl deriva-
tive 15.01 C11H11O4 207.0661 1.45 16,931.0239, 151.940396, 

147.069552 Cs

79 Salvianolic acid F isomer 15.46 C17H13O6 313.0721 2.88 269.082196, 15,979.0656 Sc, Cs 41

80 Dimethylquercetin 15.49 C17H13O7 329.0673 3.34 314.0756, 301.0716, 179.0347, 
151.0396, 121.0288 Cb 29,30

81 Trihydroxy-dimethoxyflavone 15.53 C17H13O7 329.0672 3.04
151.0398, 201.8020, 257.8197, 
283.0612, 299.0201, 313.0722, 
314.0754

Mm 29,30

82 Trihydroxylinoleic acid 16.03 C18H31O5 327.2183 2.75 269.0457 Cb, Mm, Ss, Sc, Hm

83 Ethyl caffeate 16.14 C11H11O4 207.0660 0.97 179.0346 Ss

84 Apigenin 16.15 C15H9O5 269.0459 3.35 151.0396, 117.0187 Ss, Sc, Cr 40,67,29,30,32

85 Naringenin 16.39 C15H11O5 271.0616 3.32 151.0397, 177.0190 Ss, Cp 68,29,30

86 Salvianolic acid F isomer 16.87 C17H13O6 313.0719 2.23 269.0822, 159.0658 Sc 41

87 Ethyl rosmarinate 17.23 C20H19O8 387.1088 2.07 179.0344, 206.9724, 359.0777 Cb 20,38,39

88 Dimethylquercetin 17.59 C17H13O7 329.0673 3.34 121.0291, 151.0397, 179.0350, 
301.0715, 314.0756 Ss, Cp 66,29,30

89 Hesperetin 17.66 C16H13O6 301.0722 3.32 151.0032, 179.0343, 286.0495 Cp 29,30,34

Continued
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90 Salvianolic acid F isomer 17.87 C17H13O6 313.0721 2.87 159.0448, 269.0821 Cs 41

91
15,16-epoxi-10S-hidrox-
icleroda-3,7,13(16),14 
tetraeno-17, 12S; 18,19 diolido

17.94 C20H19O6 355.1190 2.25 311.1291 Sh 55

92 Trihydroxyoleic acid 18.13 C18H33O5 329.2336 2.43 171.0195, 224.7632, 250.1448 Mm, Cb Cs 37

93 Hydroxyhexadecandioic acid 18.63 C16H29O5 301.2025 3.32 Cs 37

94 Trihydroxy-trimethoxyflavone 18.73 C18H15O8 359.0766 0.28 301.6655, 314.2232, 329.0299, 
344.0546 Mm, Cb, Cp

95 Trihydroxy-methoxyflavanone 
(hesperetin isomer) 19.15 C16H13O6 301.0721 2.87 161.0240, 139.0032 Cp 28,30

96 trihydroxymethoxyflavone 19.23 C16H11O6 299.0565 3.01 151.0397, 284.0327 So, Mm, Cr, Sh, Cp, Sd 69,32

97 Cirsimaritin 19.34 C17H13O6 313.0724 3.19 298.0488, 283.0249 Ss, Cr 70,35

98 Isolariciresinol 19.61 C20H23O6 359.1502 1.95 345.1346, 344.1582, 313.0714 Sc 55,31

99 Salvianolic acid F isomer 19.77 C7H13O6 313.0722 3.19 269.0459, 159.8597 Cp 41

100 Rosmadial 20.03 C20H23O5 343.1552 1.75 299.1652, 315.1598 Sc

101 Eupatorin 20.06 C18H15O7 343.0829 3.21 328.0595, 313.0359, 298.0125 Cb, Mm, Ss, Cr, Cp 48,50

102 Teucrol 20.3 C17H15O6 315.0880 3.5 179.0349, 135.0447, 161.0244 Ss 51

103 Dihydroxy-methoxyflavone 20.32 C16H11O5 283.0617 3.53 268.0386, 151.0034, 107.0327 Mm, Cp 29,30

104 Dihydroxy-dimethoxyfla-
vanone 20.36 C16H13O5 285.0773 3.51

153.0190, 161.0453, 179.0349, 
151.0397, 243.0668, 270.0535, 
164.0012

Mm 29,30

105 Genkwanin 20.47 C16H11O5 283.0616 3.18 268.0386, 239.0922, 165.0192 Ss, Cr, Sh 43

106 Sakuranetin 20.57 C16H13O5 285.0771 2.81 241.1076, 165.0188, 121.0289 Cr 29

107 Octadecendioic acid 20.68 C18H31O4 311.2232 2.89 310.2107 So, Sh 23

108 Octadihydroxyoctadecadi-
enoic acid 21.15 C18H31O4 311.2229 1.93 197.8076 Sc 23

109 Carnosol 22.2 C20H25O4 329.1761 2.7 285.1861 Ss, Sc 38,39,54

110 5-Epi-icetexone 22.45 C20H21O5 341.1396 0.88 297.1500, 299.1652 Sc 56

111 9,10-Dihydroxystearic acid 23.47 C18H35O4 315.2547 3.47 Ss 23

Table 1.  Compounds detected in the ethanolic extracts of then Peruvian Mentheae by LC-HRMS. 
*Clinopodium brevicalyx (Cb), Salvia oppositiflora (So), Minthostachys mollis (Mm), Salvia sagittata (Ss), 
Salvia cuspidate (Sc), Clinopodium revolutum (Cr), Clinopodium sericeum (Cs), Salvia haenkei (Sh), Hedeoma 
mandoniana (Hm), Clinopodium pulchellum (Cp).

Figure 1.  ESI (−) chromatogram of Salvia sagitatta.
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oppositiflora, Clinopodium sericeum and Hedeoma mandoniana. Some type of salvianolic acid is present in all 
the samples, although in some cases, they are very small modifications of the rosmarinic acid molecule. Dimers 
and trimers of rosmarinic acid are present in Clinopodium brevicalyx, Salvia oppositiflora, Salvia cuspidata, 
Clinopodium sericeum, Hedeoma mandoniana and Clinopodium pulchellum. In Clinopodium sericeum, not only 
is the diversity of salvianolic acids important but also their abundance in salvianolic acid A, which would allow 
the preparation of the said substance from  it71.

Conclusion
Peruvian Mentheae are a rich source of flavonoids, phenolic acids and terpenoids. The present study involved 
LC-HRMS analysis of ten species. A total of 111 compounds were detected. Most of these were identified by key 
ion filtering strategy and comparison with literature data. This methodology can be used to the authentication 
and differentiation of larger numbers of Mentheae species: The San Marcos Herbarium, Lima-Perú, in 2017 had 
108 Mentheae.

Methods
Plant material. The plants used in this study are as follows: Clinopodium brevicalyx Epling (Harley & 
Granda) (Menthinae) (HUT 59506), Salvia oppositiflora (R. and P.) (Salviinae) (HUT 59502), Minthostachys 
mollis Griseb. (Menthinae) (HUT 59766), Salvia sagittata R. and P. (Salviinae) (HUT59499), Salvia cuspidata 
subsp. cuspidata (R. and P.) (Salviinae) (HUT 59505), Clinopodium revolutum (R. and P.) (Menthinae) (HUT 
58329), Clinopodium sericeum (Briq. et Benth) Govaerts (Menthinae) (HUT 58,332), Salvia haenkei Benth. 
(Salviinae) (HUT 59500), Hedeoma mandoniana Wedd. (Menthinae) (HUT 59763), Clinopodium pulchellum 
Kunth (Govaerts) (Salviinae) (HUT 59765). All of them were collected in Peru (2014–2018) by the author (C.S.) 
according to the procedures of the Universidad San Antonio Abad and following the guidelines of the Herbar-
ium Truxillense of the Universidad Nacional de Trujillo (HUT)—Perú https:// facbio. unitru. edu. pe. Specimens 
were identified and deposited by the botanist Eric Frank Rodríguez (Herbarium Truxillense).

Sample preparation for metabolite profiling. Fifty milligrams of pulverized aerial parts were sub-
jected to an ultrasonic bath for five minutes with 1 mL of ethanol for three times. The filtrates were evaporated 
in vacuo and stored at 4 °C until use.

LC‑HRMS. Chromatographic separation was performed on a Thermo Scientific Dionex Ultimate 3000 
UHPLC system with an Acclaim RP  C18 150 × 4.6 mm × 1.8 µm chromatographic column at 25 °C and a gradi-
ent of (a) 0.1%  H2CO2 in water and (b) acetonitrile: [time, % (b)]: (0.5); (5,5); (10.30); (15.30); (20,70); (25.70); 
(35.5) and 12 min of equilibration before each injection. The flow rate was 1 mL  min−1, and the injection volume 
was 10 μL. The extracts were dissolved in 1.5 mL of methanol and filtered through 0.22 µm PTFE. For high reso-
lution mass spectrometry, a Q-Exactive MS (Thermo Fisher Germany) equipped with electrospray ionization 
(ESI) in negative mode was used. The MS collection parameters were as follows: spray voltage 2500 V; capillary 
temperature, 400 °C. Sheath gas flowed at a rate of 75 units. Auxiliary gas flowed at 20 units. Scanning range of 

Figure 2.  ESI (−) chromatogram of Clinopodium sericeum.

https://facbio.unitru.edu.pe
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100–1500 m/z. Resolution of 35,000. The mass tolerance threshold was 5 ppm. Data acquisition and processing 
were performed with XCalibur 2.3 (Thermo Fisher Scientific).

Diagnostic ions for classification. Quinic acids derivatives: 337.0929 p-coumaroylquinic acid, 367.1035 
feruloylquinic acid, 353.0878 caffeoylquinic acid, 515.1195 dicaffeoylquinic acid.

Phenylpropionic acids: 163.0401 p-coumaric acid, 179.0350 caffeic acid, 359.07772 rosmarinic acid.
Flavonoids: 253.0506 chrysin, 269.0455 apigenin, 285.0404 luteonin and kaemferol, 301.0354 quercetin.
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