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Performance investigation 
of state‑of‑the‑art metaheuristic 
techniques for parameter 
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Brian Azzopardi 5,7 & Wei Hong Lim 6*

One of the greatest challenges for widespread utilization of solar energy is the low conversion 
efficiency, motivating the needs of developing more innovative approaches to improve the design of 
solar energy conversion equipment. Solar cell is the fundamental component of a photovoltaic (PV) 
system. Solar cell’s precise modelling and estimation of its parameters are of paramount importance 
for the simulation, design, and control of PV system to achieve optimal performances. It is nontrivial 
to estimate the unknown parameters of solar cell due to the nonlinearity and multimodality of 
search space. Conventional optimization methods tend to suffer from numerous drawbacks such as a 
tendency to be trapped in some local optima when solving this challenging problem. This paper aims 
to investigate the performance of eight state-of-the-art metaheuristic algorithms (MAs) to solve the 
solar cell parameter estimation problem on four case studies constituting of four different types of 
PV systems: R.T.C. France solar cell, LSM20 PV module, Solarex MSX-60 PV module, and SS2018P PV 
module. These four cell/modules are built using different technologies. The simulation results clearly 
indicate that the Coot-Bird Optimization technique obtains the minimum RMSE values of 1.0264E-05 
and 1.8694E−03 for the R.T.C. France solar cell and the LSM20 PV module, respectively, while the wild 
horse optimizer outperforms in the case of the Solarex MSX-60 and SS2018 PV modules and gives the 
lowest value of RMSE as 2.6961E−03 and 4.7571E−05, respectively. Furthermore, the performances 
of all eight selected MAs are assessed by employing two non-parametric tests known as Friedman 
ranking and Wilcoxon rank-sum test. A full description is also provided, enabling the readers to 
understand the capability of each selected MA in improving the solar cell modelling that can enhance 
its energy conversion efficiency. Referring to the results obtained, some thoughts and suggestions for 
further improvements are provided in the conclusion section.
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IC-WOA	� Improved Chaotic Whale Optimization Algorithm
IGHS	� Innovative Global Harmony Search
IPSO	� Improved Particle Swarm Optimization
ISCE	� Improved Shuffled Complex Evolution Algorithm
JA	� JAYA Algorithm
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LMCOA	� Lozi Map based Chaotic Optimization Algorithm
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MRFO	� Manta Ray Foraging Optimization
MSPCOA	� Mutative Scale Parallel Chaos Optimization Algorithm
MSSO	� Modified Simplified Swarm Optimization
NMS	� Nelder-Mead Algorithm
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NPSOPC	� Niche Particle Swarm Optimization in Parallel Computing
PDE	� Penalty based DE
PSA	� Parallel Swarm algorithm
PS	� Pattern search
PSO	� Particle Swarm Optimization
RADE	� Repaired Adaptive Differential Evolution.
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SCA	� Sine Cosine Algorithm
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SSA	� Salp Swarm Algorithm
STLBO	� Simplified Teaching Learning Based Optimization
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VC-PSO	� Particle Swarm Optimization with Velocity Clamping
VIM	� Villalva’s Iterative Method
WDO	� Wind Driven Optimization
WOA	� Whale Optimization Algorithm

Various environmental issues such as air pollution, water pollution and global warming have recently become the 
main concerns of the scientific community, the policy makers and the public at large. This increased awareness 
has culminated in United Nation’s Sustainable Development Goals (SDGs)1. Rapid technological advancement 
due to the spread of Industrial Revolution 4.0 (IR 4.0) in newer regions of the world and unchecked population 
growth have been the two major factors responsible for a manifold increase of energy consumption. Most of this 
increased demand has been met from the conventional power plants fired with fossil fuels. These fuels offered 
good efficiency, as well as the ease of transportation. Access to these fuels was easy too. Nevertheless, the wide-
spread utilization of these fossil fuels in power and utility industry have caused irreversible adverse effects on 
the environment resulting in climate change, global warming, air pollution and water pollution; overall making 
reliance on these fossil fuels unsustainable. The detrimental side effects brought by these environmental hazards 
can trigger additional issues, especially those related to the human health and morbidity. Other issue with the 
fossil fuels is their diminishing stocks on our planet. These stocks are estimated to last only for a century or two 
depending on the rate at which these are extracted from the earth. To address this problem of diminishing stocks 
and to obviate the undesirable effects of the fossil fuels, there is a growing trend of exploring alternative energy 
sources that are both renewable and more environmental-friendly in nature, such as wind, tidal, biomass, solar, 
water and geothermal energy to satisfy the ever-growing energy demands.

Among all aforementioned renewable energy sources, solar energy is envisioned as a promising alternative 
of conventional fossil fuels for power generation. A typical PV system used to directly convert the solar energy 
into electricity consists of fundamental components known as solar cell, i.e., a semiconductor diode with P–N 
junction exposed to the light. A PV module is formed by connecting some solar cells in series, whereas a PV panel 
is constructed by connecting several PV modules in series and parallel. Meanwhile, a PV array may comprise 
single or multiple PV modules. Finally, a complete PV system involves PV arrays, DC to DC boost converter, 
maximum power point tracking systems and inverters (only for grid connected PV systems)2. As compared to 
conventional fossil fuels and other renewable energy sources, solar energy has more desirable characteristics 
such as the omnipresent source of electricity, lower operational costs, ease of installation, scalability and noise-
free generation3. It is also noteworthy that the production cost of solar cells has decreased significantly from 
$76.67 per watt in 1977 to $0.37 per watt in 20174. These competitive advantages of solar energy have attracted 
substantial amounts of financial incentives from both public and private sectors to promote its wide range of 
applications (e.g., electric power generation, water heating, and water pumping), enabling it to be the third 
largest renewable energy source in global after hydropower and wind energy5. In 2010, the worldwide installed 
solar capacity was 72.04 GW and it has increased by almost ten times to 707.50 GW during 20205. It was antici-
pated that the installed solar capacity can reach 1 TW by the end of 2021 based on the rapid growing trend of 
solar energy6. Despite the benefits offered against other renewable energy sources; solar energy is not without 
its limitations. One of the major constraints is the high initial cost required for the installation of PV system 
to generate electricity. Maintenance costs are also incurred periodically to repair or replace the degraded PV 
modules that normally remain exposed to outdoor environments during their operations. It is also notable that 
the power generated by a PV system is not controllable because it varies with various environmental factors such 
as irradiation and temperature. Extensive amounts of researches have been carried out to identify and resolve 
the issues related to PV system from different perspectives in order to enhance its power generation efficiency 
with lower overall costs.

The appropriate modelling of solar cells or PV modules are imperative to analyse and evaluate the actual 
behaviour of PV systems under diverse operating conditions. An accurate and efficient PV model can be utilized 
for the simulation, design, control, and optimisation of PV system (e.g., maximum generated output power). 
Most often, precise modelling of PV cells involves the proper selection of modelling technique and good estima-
tion of model parameters. The behaviour of solar cell is represented using current–voltage (I–V) characteristics, 
where the latter are determined by solving the partial differential equations (PDEs) used for describing physical 
phenomena of elementary charges (holes and electrons) movement in the matter of a semiconductor and in the 
vicinity of potential barrier. To tackle high complexity issue encountered in solving PDEs, more computationally 
efficient equivalent circuit models consisting of diode and resistors are derived with Kirchhoff equations and used 
to emulate the electrical behaviour of PV cell7. Some notable equivalent circuit models used to represent solar 
cell include the single diode model (SDM)8, double diode model (DDM)9 and triple diode model (TDM) with 
five, seven and nine unknown parameters, respectively. The accuracy and complexity of these equivalent circuit 
models tend to increase along with the number of unknown parameters. Appropriate circuit models need to be 
carefully selected for PV applications by considering the proper trade-offs between their accuracy and complexity. 
For instance, both of the SDM and DDM are commonly used for domestic purpose, whereas the TDM10 is more 
feasible for industrial application given its capability to avoid the faulty issues caused by recombination process.

Apart from the appropriate selection of modelling technique for solar cell, the accurate estimation of its model 
parameters is also crucial to correctly simulate the behaviour of solar cell under different operating conditions 
in order to ensure optimal performance of PV system. Nevertheless, it is nontrivial to estimate the solar cell 
model parameter accurately due to the nonlinear characteristic of I–V curve. The exact values of these solar cell 
model parameters are often not available due to their tendency to change with different operating conditions 
and influence from other factors such as the physical structures, types and aging effect of solar cell. Motivated by 
these challenging issues, a large number of parameter estimation techniques has been proposed by researchers 
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to identify the unknown parameters of solar cell models accurately and efficiently11. A popular approach used to 
determine the best combination of these unknown model parameters is to represent the parameter estimation of 
solar cell or PV model as an optimization problem and solve the objective function derived based on nonlinear 
I–V curve of solar cell or PV module12. Traditional optimization methods with deterministic nature such as 
Newton Raphson13, Gauss–Seidel method14 and Lambert-W functions15 tend to be trapped in local optima and 
produce poor quality solutions due to the complex search space of PV model parameter estimation problem with 
nonlinear and multimodal properties. In addition, the performances of these traditional optimization methods 
are also highly dependent on the initial solutions produced as well as the continuity, convexity and differenti-
ability of given objective functions, thereby restricting their practical applications in real-world scenario16.

Motivated by the drawbacks of traditional optimization methods, there are growing trends of employing 
metaheuristic algorithms (MAs) to tackle PV model parameter estimation problems represented with SDM, 
DDM or TDM. Depending on the source of inspirations used for emulating search mechanisms, existing MAs can 
be broadly classified into four types17, namely evolutionary algorithms, swarm intelligence algorithms, physics-
based algorithms and human-based algorithms. In contrast to the traditional optimization methods, these MAs 
offer more competitive advantages in extracting the optimal model parameters of solar cell or PV module given 
their better global search capability, lower sensitivity on the initial solutions and lesser dependence on gradient 
information of objective function. The process flow diagram of using MAs for parameter assessment of solar 
cell or PV module is depicted in Fig. 1.

This process is followed in most studies. Reference to some interesting recent works follow. The authors pro-
posed improved electromagnetism-like algorithm for parameter extraction of polycrystalline, monocrystalline 
and thin film PV modules18. The quick convergence rate of the algorithm is highly dependent on the accuracy 
of the measured data and is more suitable for DDM and TDM. In19, the authors proposed tree seed algorithm 
for parameter estimation of PV module. The proposed algorithm is robust and has a high accuracy, its perfor-
mance remains in doubt under variation in irradiance. In another study20, the authors proposed an improved 
queuing search optimization (QSO) algorithm dependent on the differential evolution technique (DE) and 
bound-constraint amendment procedure for parameter estimation of PV modules. The proposed technique 
applied DE algorithm to each solution generated by the QSO algorithm in order to increase population diver-
sity. In21, the authors proposed an improved Moth Flame Algorithm (MFO) with local escape operators. The 
local escape operator technique improves the MFO algorithm’s exploration efficiency and the diversity of the 
population. The researchers suggested dI/dV-assisted deterministic method to extract the parameters using SDM 
of PV cell. The study suggests that not only the number of iteration steps but also the single-step computation 
complexity should be taken into account for comparing deterministic optimization algorithms22. The authors 
proposed Harris Hawks optimization algorithm to extract the parameters of PV modules using TDM. The study 
used unimodal, multimodal and fixed-dimension benchmark functions to verify the quality and efficiency of 
the proposed method23. In another study the authors investigated a decent basis for proper investigation and 
the implementation of atomic orbital search algorithm to estimate the PV parameters using SDM, DDM and 
TDM. The proposed method exhibited the lowest root mean square error among the compared metaheuristic 
techniques24. In25, the researchers suggested optimization of PV module parameters using a modified quasi-
oppositional logistic chaotic rao-1 (QOLCR) algorithm. The work indicates that the QOLCR approach converges 
faster than the basic Rao-1 algorithm and its other variants.

Meanwhile, Table 1 summarizes the existing review papers related to parameter extraction of solar cell and PV 
module in terms of their author names, year of publication, techniques reviewed and types of review. Although 
MAs generally exhibited better performance than the traditional optimization methods when solving PV model 
parameter estimation problems, some MAs might have slow convergence speed to locate global optimum or 
tend to produce inconsistent results in different trials due to their stochastic characteristic. Extensive research 
efforts are still being put to design more robust parameter identification approaches that can solve PV model 
parameter estimation problem. For example, thermo-economic optimization of flat-plate solar collector systems, 
optimum allocation of distributed generation and optimum power flow to minimize active power losses remain 
unexplored26–28. Motivated by No Free Lunch (NFL) Theorem29, numerous new MAs were designed to solve 

Figure 1.   Process flow diagram of parameter estimation of solar cell.
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the global optimization problems but their performances were only evaluated based on standard benchmark 
functions. It is crucial to conduct further investigation to validate the practicability of these emerging MAs in 
real-world applications. Hence, the proposed work evaluates the performance of eight state-of-the-art MAs in 
estimating the PV cell parameters on four case studies using four different types of PV cells/modules under wide 
range of irradiance and temperature levels. On the basis of the literature review the following research gaps have 
been identified.

•	 There is a need of comparative study which analyses the performance of state-of-the-art MAs in estimating 
PV model parameters.

•	 There exists a research gap in evaluating the performance of MAs in identifying parameters of different PV 
cell technologies under wide range of irradiance and temperature levels.

•	 There is a need to thoroughly investigate the performance of recently develop MAs using statistical techniques 
to demonstrate their robustness.

This article aims to analyse the performances of eight recently developed MAs for solving different case stud-
ies of PV model parameter estimation problems, particularly in terms of their accuracy, reliability, convergence 
speed and computational complexity. These eight selected MAs include Spotted Hyena Optimizer (SHO)38, Sooty 
Tern Optimization (STO)39, Aquila Optimization (AO)40, Harris Hawks Optimization (HHO)41, Wild Horse 
Optimization (WHO)42, Arithmetic Optimization Algorithm (AOA)43, Atom Search Optimization (ASO)44 and 
Coot Bird Optimization (CBO)45. The main contributions of this paper are summarized as follows:

•	 A detailed comparative study of recently developed MAs for parameter estimation of solar PV modules.
•	 A qualitative and quantitative analysis to evaluate the performance of state-of-the-art MAs for PV module 

parameter estimation based on key performance indices such as root mean square error (RMSE), computa-
tional complexity, current–voltage (I–V) characteristic curves, power-voltage (P–V) characteristic curves, 
and rate of convergence.

•	 An exhaustive statistical analysis using Friedman and Wilcoxon test to validate the robustness of the MAs.
•	 The performance evaluation of eight MAs for PV parameter estimation for four different solar PV modules on 

the basis of manufacturing technology, modelling of solar cells and environmental factors (i.e., temperature 
and irradiance levels).

The remaining sections in this paper are organized as follows: The mathematical modelling for the equivalent 
circuit of a solar cell is explained in Section “Formulation of solar cell/module parameter estimation problem”. 

Table 1.   Comparison of previously published review papers for parameter assessment of solar cell/PV 
module.

Authors Techniques reviewed Type of review Remarks

Nayak et al.30 VIM, modified NR method, NLSA Simulation
The accuracy of MAs depends on tolerance band and initial condi-
tions
Comparison is carried out based on execution time

Jordehi31 ABC, Penalty-based DE, Improved JADE, PSO, IGHS, BMO, modi-
fied TLBO, COA, SA, AIS Theoretical

Measurement noise result is an important aspect which leads to 
inaccuracy in estimating the model parameters
Tuning of the control parameters of metaheuristics is imperative

Abbassi et al. 32

DE, RADE, PDE, IADE, ABCO, AGA, APSO, BBO-M, BMO, CPSO, 
DEIM, HS, IGHS, GGHS, IBCPSO, ADE, LS, NR, PSA, SBMOA, 
GOTLBO, STLBO, TVIWAC-PSO, ABSO, AIS, ANN, BBO, BFA, 
BPFPA, GA, IGHS, IPSO, LM, MPCOA, PS, RADE, SA, TLBO, 
VC-PSO, NMS

Theoretical

A multitude of objective functions should be compared to efficiently 
select most appropriate parameters that describe the I-V character-
istics of PV cell
CPU execution time and the convergence rate are important attrib-
utes in identifying the performance of the optimization methods

Khursheed et al. 33
Numerical Approach, Lambert W-function, Explicit model, HSA, 
ANN, TLO, SBMOA, FWA, PSO, GA, BP-FPA, MSSO, ERWCA, 
IC-WOA, NMS-ABC, HBPFPA, TLABCA, GCPSO-NRM

Theoretical
Aging and damages due to weather conditions is vital to develop 
accurate models and obtain realistic results
The performance of recently developed methods should be tested on 
new PV technologies such as organic and multi-junction cells

Oliva et al.34 GA, DE, HS, SA, PSO, CSO, ABC, WOA, GSA, FPA, SCE, WDO Theoretical
WOA with small modifications exhibited the best performance
Combination of MH with other approaches will improve the 
exploration thereby increasing the robustness and convergence rate 
of the method

Yang et al. 35
GA, DE, ABSO, ABC, WOA, IALO, CS, BMO, FPA, GWO, BFA, 
AIS, SSA, PSO, MSPCOA, SA, FWA, WDO, ERWCA, LMCOA, HS, 
TLO, ICA, MLBSA, PSA, SCE,

Theoretical
SA is not influenced by the change in irradiance level
The accuracy of DDM is slightly higher than SDM based on the 
RMSE and MAE

Abdulrazzaq et al.36 SDM implicit – PSO, SDM explicit – PSO, LSM – PSO, LSM – 
Newton Simulation

NR method provides the best results for the mono-crystalline PV 
cell
PSO exhibited the longest average convergence time because of the 
implicit nature of the Lambert W-function

Venkateswari et al.37 Mutant PSO, performance-guided Jaya, FPA, GOFPANM, DE, BFA Simulation
In monocrystalline cell FPA and SSA for SDM and DDM exhibits 
the best performance, respectively
In thin-film cell PSO and BPFPA for SDM and DDM showed best 
performance, respectively
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Section “Estimation of solar cell/module” introduces the basic concepts and search mechanisms of all eight 
selected MAs. A comprehensive performance evaluation of eight MAs in solving four case studies of solar cell 
or PV module parameter estimation problem are discussed and summarized in Section “Results and discussion”. 
Finally, Section “Conclusion” delivers the conclusive remarks.

Formulation of solar cell/module parameter estimation problem
Equivalent circuit of SDM.  Figure 2 illustrates the equivalent circuit of SDM commonly used to represent 
a standard solar cell. SDM is chosen because of its simpler control topology, minimal circuit complexity, and the 
ease of hardware execution. A diode is connected in parallel with the photogenerated current source to define 
the non-physical factor for diode ideality in p–n junction. Meanwhile, the shunt resistor (Rsh) and series resistor 
(Rs) are presented to consider the ohmic losses due to carrier recombination and metallic junction, respectively. 
The electrical behaviour of a solar cell can be expressed by calculating its output current Il as shown in Eq. (1)46:

where Il is the output current; Ip is the photocurrent, Idiode is the current flowing through diode.
As per Shockley equation, the diode current is expressed as:

where, a is the ideality factor of diode; T is the cell temperature expressed in Kelvin; kB is the Boltzmann constant 
with value of 1.3806 × 10−23 m2kg/s2K; q is the elementary charge with value of 1.602 × 10−19 C; Vl signifies the 
voltage at output terminal and Id denotes the reverse saturation current of the diode.

The current going via shunt resistance can be expressed as follows, Eq. (3):

By combining Eqs. (1), (2) and (3), we arrive at:

(1)Il = Ip − Idiode − Ish

(2)Idiode = Id

[

exp

(

q(Vl + IlRs)

akBT

)

− 1

]

(3)Ish =
Vl + IlRs

Rsh

(4)Il = Ip − Id

[

exp

(

q(Vl + IlRs)

akBT

)

− 1

]

−
Vl + IlRs

Rsh

IP

Idiode

Rsh

Rs

Ish Il

Vl

(a)

(b)

IP
Rsh

Rs

Ish Il

VlNs

Np

Figure 2.   Equivalent circuit of SDM used to represent (a) solar cell (b) PV panel.
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It is very clear from Eq. (4) that five model parameters ( Ip , Id , a,Rs and Rsh ) must be estimated by using 
measured I–V data for the solar cell.

Similarly, the electrical behaviour of a PV module can be expressed by Eq. (5), as follows:

where Ip and Id represent the photocurrent and saturation current of PV array, respectively; Ns depicts the number 
of solar cells connected in series; Np depicts the number of solar cells connected in parallel. It is noteworthy that 
the more solar cells connected in parallel can increase the current of PV array, whereas more solar cells connected 
in series can provide greater output voltages.

Objective function.  As shown in the equivalent circuit of SDM, there are five unknown parameters rep-
resented in a solution vector of X = (Ip, Id , a,Rs ,Rsh) to be identified. To solve the solar cell or PV module 
parameter estimation problem, an objective function needs to be defined and then optimized using a selected 
MA. Root mean square error (RMSE) is a popular objective function employed for the solar cell or PV module 
parameter estimation problem and it aims to minimize the errors between the experimental I-V data and simu-
lated I-V data as follows, Eq. (6)47:

For solar cell;

For PV module;

where n is the index of experimental point in given I-V data; N depicts the total numbers of observations in 
experimental I–V data; X is a decision variable vector consists of five unknown parameters to be optimized, 
where the search range of each parameter is defined in Table 2 47.

Estimation of solar cell/module
Spotted hyena optimizer (SHO).  This algorithm is proposed by Dhiman and Kumar38 in the year of 
2017. The inspiration for this algorithm is derived from the social behaviour of spotted hyena (Crocuta). Spot-
ted hyenas are complex, smart, and incredibly social animals with a notorious behaviour. They have the capacity 
to combat indefinitely for territory and food. When a new food source is discovered, spotted hyenas generate a 
sound warning that is very similar to that of human laugh to interact with one another.

Spotted hyenas adopt three types of mechanism: searching, encircling and attacking to acquire new food 
source. Figure 3 depicts the searching mechanism of SHO algorithm and Fig. 4 presents its process flow diagram.

Encircling prey.  Spotted hyenas can recognize the position of prey with the help of sight or smell and surround 
it. The mathematical formulation of this mechanism is defined by the following Eqs. (9) and (10).

(5)Il = IpNp − IdNp



exp





q
�

Vl +
RsIlNs
Np

�

a1kBTNs



− 1



−
Vl +

RsIlNs
Np

RshNs
Np

(6)minimize (RMSE) =

√

√

√

√

1

N

N
∑

n=1

f nSolarcell/PVmodule(Vl , Il ,X)

2

(7)

{
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[
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(
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)

− 1
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−
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(
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)

(8)











f nPV module(Vl , Il ,X) = IpNp − IdNp

�

exp

�

q
�
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RsIlNs
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�
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�

− 1

�
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RsIlNs
Np

RshNs
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− Il
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�

(9)
−→
Dh =

∣

∣

∣

−→
B .

−→
Pp (x)−

−→
P (x)

∣

∣

∣

Table 2.   Search range of each parameter to be optimized.

Parameter (SI Unit)

For solar cell For PV module

Lower bound Upper bound Lower bound Upper bound

Ip (A) 0 1 0 10

Id (µA) 0 0.5 0 50

Rs (Ω) 0.01 0.5 0.01 2

Rsh (Ω) 0.001 100 0.001 2000

a 1 2 1 100
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where, −→Dh represents the distance between spotted hyena and prey, the current iteration is denoted by x . −→B  and 
−→
E  represents coefficient vector. Position of prey is represented by −→Pp , while −→P  denotes the position vector of 
spotted hyena.

Hunting.  Spotted hyenas generally live and hunt in teams, relying on a network of trusted groups and their 
ability to identify prey location. The hunting mechanism can be defined mathematically as follows:

where, −→Ph denotes the location of first best spotted hyena. The location of another spotted hyena is presented by 
−→
Pk . N represents the number of spotted hyenas and is evaluated as:

(10)−→
P (x + 1) =

−→
Pp (x)−

−→
E .

−→
Dh

(11)
−→
Dh =

∣

∣

∣

−→
B .

−→
Ph −

−→
Pk

∣

∣

∣

(12)−→
Pk =

−→
Ph −

−→
E .

−→
Dh

(13)−→
Ch =

−→
Pk +

−−→
Pk+1 + · · · +

−−→
Pk+N

(14)N = number of solutions [
−→
Ph ,

−→
P h+1,

−→
P h+2, . . . . . . . . . . . . , (

−→
P h +

−→
M )]

Group of
hyenas

Prey

Searching prey
Attacking prey

Figure 3.   Searching and attacking behaviour of Spotted hyena.

Figure 4.   Process flow diagram of SHO algorithm.
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where −→M is the random vector defined in the range [0.5, 1].

Attacking prey.  The attacking mechanism of spotted hyena can be presented mathematically as

where the function of −→P (x + 1) is to save the best solution ever found and −→Ch denotes the cluster of number of 
best optimized solution.

Sooty tern optimization (STO).  Sooty tern optimization (STO) algorithm is a bio-inspired algorithm 
proposed by Dhiman and Kaur39, in 2019. The algorithm is inspired by the migration and the attacking behavior 
of sooty tern in our mother nature. Figure 4 illustrates the searching behavior of STO algorithm. Sooty tern 
are intelligent sea birds belongs to the Laridae family and are mostly found in tropical oceans across the world. 
These birds are omnivorous and found in different sizes and masses. Sooty tern belongs to the oviparous family 
and mostly lives in sea and comes only for breeding on the island. These birds migrate in groups from one place 
to another place so as to search the adequate food sources for their survival. In a group, all birds follow the best 
sooty bird in order to reach their food sources in optimum time. Although, these birds have unique migration 
movement they also have unique attacking mechanism. These birds use spiral movement during their attack 
in the air. Figures 5 and 6 shows the searching behavior and process flow of STO algorithm. The mathematical 
formulation of STOA search mechanism is provided as follows:

Step 1 Initialize the position of sooty tern (search agents) arbitrarily in the defined space:

where, n signifies the space dimension.
Step 2 Evaluate the cost of all sooty tern, depending on the problem (minimization or maximization) the 

position of best sooty tern ( −→p bs ) represents the best search agent.
Step 3 Initialize the parameters SA and CB which are responsible for the movement of sooty tern in the search 

space. These parameters are defined as:

where, Cf  is the controlling variable whose value is linearly decreased from Cf  to zero,

where, Rand is the arbitrary number in the range [0,1].
Step 4 Update the position of sooty tern based on the following equations:

(15)−→
P (x + 1) =

−→
Ch

N

(16)
−→
P s =

(

−→
p 1,

−→
p 2, . . . . . . . . . . . . . . . . . . . . .

−→
p n

)

(17)SA = Cf −

(

z ∗
(

Cf
/

Maxiterations

))

z = 0, 1, 2, 3, . . . . . . . . . . . . . . . . . . . . . . . . . . . .,Maxiterations .

(18)CB = 0.5 ∗ Rand

(19)x
′

= Radious ∗ sin(i)

Prey

Sooty tern

Collision avoidance

Figure 5.   Searching behavior of sooty tern optimization algorithm.
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where, Radious represents the radius of the spiral movement, i is the variable in the range [ 0 ≤ k ≤ 2π ], u and v 
are the constant parameters.

Step 5 Update the parameters SA and CB.
Step 6 Update the position of best sooty tern if it is better than the previous optimal solution.
Step 7 Reinitialize the position of sooty tern that go beyond the defined space.
Step 8 The algorithm terminates when the minimal error or maximum number of iterations is reached. 

Alternatively, resume steps (3) to (7).
Step 9 The location of finest sooty tern ( −→p bs ) reflects the global ideal solution.

Aquila optimization (AO).  Aquila optimization algorithm (AO) is a nature inspired population-based 
algorithm proposed by Abualigah et al.40 in 2021. Aquila, also commonly known as eagles, are dark colored birds 
that belong to the group Accipitridae and are known for their sharp and intelligent hunting behavior. These wild 
birds are fast, agile and has large sturdy feet with sharpened talons, which help them to attack and grab their prey 
over longer distances. The main source of food of these birds are squirrels, rabbits, hares, marmots, deeps and 
other small ground animals. The algorithm is inspired from the skillful hunting behavior of aquila that can be 
considered as the second-best hunting behavior after human beings. AO is mathematically modeled around four 
hunting methods of aquila which includes high soar with vertical stoop, short glide attack with contour flight, 
slow descent attack through low flight, grab prey through walk. These four attacking approaches are mathemati-
cally modeled and designed to showcase each step of hunt through expanded exploration, narrowed exploration, 
expanded exploitation and narrowed exploitation in order to maintain equilibrium between exploration and 
exploitation. The searching behavior and process flow of AO algorithm is revealed in Figs. 7 and 8. The math-
ematical representation of AO is given as follows:

Step 1 Initialize the population of aquila (search agent) arbitrarily in the defined space:

(20)y
′

= Radious ∗ cos(i)

(21)z
′

= Radious ∗ i

(22)r = u ∗ ekv

(23)−→
C s = SA ∗ pS

(24)
−→
Ms = CB ∗

(

−→
p bs −

−→
p s

)

(25)−→
D s =

−→
C S +

−→
Ms

(26)−→
p s =

(

−→
D s ∗

(

x
′

+ y
′

+ z
′
))

∗
−→
p bs

Figure 6.   Process flow diagram of STO algorithm.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11134  | https://doi.org/10.1038/s41598-023-37824-4

www.nature.com/scientificreports/

where, n signifies the space dimension.
Step 2 Evaluate the cost of all aquila, depending on the problem (minimization or maximization) the position 

of best aquila ( Xbest ) represents the finest search agent.
Step 3 Initialize the constant parameters of AO.
Step 4 Update the mean value of the current solution XM.

where, M is the number of solution.
Step 5 Update the parameters x, y, G1, G2, Levy(D) which are defined as:

(27)−→
X =

(−→x 1,
−→x 2, . . . . . . . . . . . . . . . . . . . . .

−→x n

)

(28)XM(t) =
1

M

M
∑

i=1

Xi(t), ∀i = 1, 2, . . . . . . . . . . . . ., n

(29)x = r ∗ sin(θ)

X

X

Figure 7.   Searching behaviour of aquila optimization algorithm.

Figure 8.   Process flow diagram of AO algorithm.
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r1 is defined in the range 1 to 20, U is 0.00565, D1 lies between 1 to length of the search space, ω is 0.005.

where, rand is the arbitrary number in the range [0, 1], t and T is the existing iteration and the maximum number 
of iterations. 

where, s is the constant value 0.01, u and v are random values lies in the range [0,1], β is constant value 1.5 and 
σ is defined as:

Step 6 Update the position of aquila as per the following equations:if t ≤
(

2
3

)

∗ T if rand ≤ 0.5

Update the position of aquila using expanded exploration (X1):

where, X1(t + 1) is the solution of the next iteration of t.else,

if cost (X1(t + 1)) < cost (X(t))
      X(t) = X1(t + 1)

if
cost 
(X1(t + 1) < cost(Xbest(t))
      Xbest(t) = X1(t + 1)

Update the position of aquila using narrowed exploration (X2):

where, X2(t + 1) is the solution of the next iteration of t.else:if rand ≤ 0.5

if cost (X2(t + 1)) < cost (X(t))
     X(t) = X2(t + 1)

if
cost 
(X2(t + 1) < cost(Xbest(t))
     Xbest(t) = X2(t + 1)

Update the position of aquila using expanded exploitation (X3):

where, X3(t + 1) is the solution of the next iteration of t.else:

if cost (X3(t + 1)) < cost (X(t))
     X(t) = X3(t + 1)

if
cost 
(X3(t + 1) < cost(Xbest(t))
     Xbest(t) = X3(t + 1)

Update the position of aquila using narrowed exploitation (X4):

(30)y = r ∗ cos(θ)

(31)where, r = r1 + U ∗ D1

(32)θ = −ω ∗ D1 + θ1

(33)θ1 =
3 ∗ π

2

(34)G1 = 2 ∗ rand − 1

(35)G2 = 2 ∗

(

1−
t

T

)

(36)Levy(D) = s ∗
u ∗ σ

|v|
1
β

(37)σ =







Ŵ(1+ β) ∗ sine
�

πβ
2

�

Ŵ

�

1+β
2

�

∗ β ∗ 2

�

β−1
2

�







(38)X1(t + 1) = Xbest(t) ∗

(

1−
t

T

)

+ (XM(t)− Xbest(t) ∗ rand)

(39)X2(t + 1) = Xbest(t) ∗ Levy(D)+ XR(t)+
(

y − x
)

∗ rand

(40)X3(t + 1) = (Xbest(t)− XM(t)) ∗ α − rand + ((UB− LB) ∗ rand + LB) ∗ δ

(41)X4(t + 1) = QF ∗ Xbest(t)− (G1 ∗ X(t) ∗ rand)− G2 ∗ Levy(D)+ rand ∗ G1
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where,

where, X4(t + 1) is the solution of the next iteration of t.

if cost (X4(t + 1)) < cost (X(t))
   X(t) = X4(t + 1)

if
cost 
(X4(t + 1) < cost(Xbest(t))
   Xbest(t) = X4(t + 1)

Step 7 Reinitialize the position of aquila that go beyond the defined space.
Step 8 The algorithm terminates when the minimal error or maximum number of iterations is reached. 

Alternatively, resume steps (4)–(6).
Step 9 The location of finest aquila ( Xbest ) signifies the global optimal solution.

Harris hawks optimization (HHO).  Harris hawks optimization algorithm is inspired from the collabora-
tive behaviour and chasing style of Harris hawk41. Harris hawks can exhibit a wide range of chasing styles based 
on the dynamic nature of situations and the prey’s escaping styles. Harris hawks finds the optimal solution by 
using two phases: exploitation and exploration. Figures 9 and 10 depicts HHO’s searching behaviour and its 
process flow diagram.

Exploration phase.  In HHO each Harris’ hawks represents the candidate solution, and the best candidate solu-
tion in each phase is regarded to be the intended near the prey. In HHO, Harris’ hawks perch at random in vari-

(42)QF(t) = t
2∗rand−1

(1−T)2

Soft besiege

Hard besiege

Prey

Harris hawk

Figure 9.   Searching behaviour of Harris Hawk optimizer.

Figure 10.   Process flow diagram of HHO algorithm.
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ous locations and wait for prey using one of two approaches. If we assume an equal chance q for each perching 
strategy, they will perch relying on the locations of other family members (to be close enough to them when 
attacking) and the rabbit, as shown in Eq. (43).

where, X(t) signifies the current position of hawks, Xrand(t) is the randomly selected hawk at tth iteration, r1, r2, r3, 
and r4 represents the random number in the range of [0,1]. Xrabbit(t) is the location of rabbit. UB and LB defines 
the upper and lower bound of the variables. Xm denotes the average location of hawks.

The average location of hawks can be computed by using Eq. (44).

where, N signifies the total number of hawks.

Exploitation phase.  The Harris’ hawks perform the surprise pounce in this phase by targeting the intended prey 
identified in the previous stage. Prey, on the other hand, frequently attempts to flee dangerous situations. As a 
result, distinct chasing patterns emerge in real-world situations. The HHO proposes four strategic options to 
model the attacking stage based on prey escaping behaviours and chasing strategies of Harris’ hawks. These are 
soft besiege, hard besiege, soft besiege with progressive rapid dives and hard besiege with progressive rapid dives.

In the first strategy of soft besiege prey didn’t escape from the hawks because their energy has been drained 
and it happens when escaping energy (E) and the chance of escape (r) both are greater than equal to 0.5. The 
mathematical model of this strategy is described as

where �X presents the difference between current location and position vector of rabbit in tth iteration while 
J = 2(1− r5) and r5 is the random number defined in the range [0, 1].

In the second strategy of hard besiege where |E| < 0.5 and r ≥ 0.5 , the prey has exhausted, therefore, it can’t 
escape from the hawk. The position of hawks are defined as:

In the third strategy of soft besiege with progressive rapid dives where |E| ≥ 0.5 and r < 0.5 prey has energy 
to escape from the hawks and hawks follow the soft besiege. This strategy is mathematically defined as:

where S represents random vector, D signifies the problem diminution and LF is the levy flight function.
The hawks’ updated position can be modelled as:

In the fourth strategy of hard besiege with progressive rapid dives prey can’t escape because of less energy and 
hawks follow hard besiege where |E| < 0.5 and r < 0.5 . The mathematical model of this strategy is defined as:

Wild horse optimization (WHO).  Wild horse optimization (WHO) algorithm is a nature inspired algo-
rithm proposed by Naruei and Keynia42 in 2021. The algorithm gets its motivation from the behavior of the 
wild horses. It is a population based gradient free stochastic algorithm that considers the problem as black box 
and finds near optimal solution for wide range of complex optimization problems. Horses are mostly classified 
around their social behavior as territorial and non-territorial horses. WHOA focuses on non-territorial horses 
where the horses live in family or social groups which includes a stallion and several other mares and foals. The 
algorithm mathematically models the grazing, mating, dominance and leadership quality of wild horses to solve 
optimization problems. Foal horses have more grazing in the initial stages of their life and less as they get older. 
Foals have an interesting behavior that they leave their parent group before puberty in order to prevent being 

(43)X(t + 1) =

{

Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5

(Xrabbit(t)− Xm(t))− r3(LB+ r4(UB− LB)) q < 0.5

(44)Xm(t) =
1

N

N
∑

i=1

Xi(t)

(45)X(t + 1) = �X(t)− E|JXrabbit(t)− X(t)|

(46)�X(t) = Xrabbit − X(t)

(47)X(t + 1) = Xrabbit(t)− E ∗ |�X(t)|

(48)M = Xrabbit(t)− E|J ∗ Xrabbit(t)− X(t)|

(49)N = M + S ∗ LF(D)

(50)X(t + 1) =

{

M if F(M) < F(X(t))
N if F(N) < F(X(t))

(51)X(t + 1) =

{

M if F(M
′
) < F(X(t))

N
′
if F(N

′
) < F(X(t))

(52)where, M ′ = Xrabbit(t)− E|J∗Xrabbit(t)− Xm(t)|

(53)N
′

= M
′

+ S ∗ LF(D)
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mated from their father. Stallion is the most dominant horse in the group and all other mares and foals follow 
or change their direction of movement with respect to stallion. Figure 11 presents the process flow diagram of 
WHO algorithm. The mathematical representation of the WHOA is provided as follows:

Step 1 Initialize the population of horses (search agents) arbitrarily in the definite space:

where, n signifies the space dimension.
Step 2 Initialize the constant parameters crossover percentage (PC) and stallion percentage (PS) and divide 

the population into several groups where the number of groups are

where, G is the number of stallions and N is the population size. The number of members in each group are

Step 3 Evaluate the cost of all the horses, depending on the problem (minimization or maximization), the 
position of the best horses represents stallions in each group.

Step 4 Evaluate the adaptive parameter TDR as follows:

Step 5 Find out another adaptive parameter Z as:

where,

where, R2 is a arbitrary number with unchanging distribution in range [0,1],
−→
R 1 & −→R 3 are random vectors with uniform distribution [0, 1],
P is a vector that contains 0 and 1 which equals the dimension of the search problem.
Step 6 Update the position of foals and stallion of each group as per the following equations:for number of 

foals of any group

where, Xj
i,G is the position of foal, Stallionj is the position of Stallion, R is the uniform random number in the 

range [-2, 2].else

(54)−→
X =

(−→x 1,
−→x 2, . . . . . . . . . . . . . . . . . . . . .

−→x n

)

(55)G = [N × PS]

(56)GM = [N − G]

(57)TDR = 1− iter ×

(

1

maxiter

)

(58)Z = R2�IDX +
−→
R 3�(∼ IDX)

P =
−→
R 1 < TDR; IDX = (P == 0)

if rand > PC

(59)X
j
i,G = 2Zcos(2πRZ) ∗

(

Stallionj − X
j
i,G

)

+ Stallionj

Figure 11.   Process flow diagram of WHO algorithm.
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end for each stallion of each group

else

where, WH is the position of the water hole, StallionGi is the position of the leader of the ith group.
Step 7 If the position of Stallion if better than its previous position then update the position of stallion, if the 

position of foal in any group is better than stallion position then exchange foal and stallion position as per the 
following equation:

Step 8 Reinitialize the position of horses that go beyond the defined space.
Step 9 The algorithm terminates when the minimal error or maximum number of iterations is reached. 

Alternatively, resume steps (4) to (8).
Step 10 The location of finest Stallion signifies the global optimal solution.

Arithmetic optimization algorithm (AOA).  Authors in43 anticipated a novel optimization algorithm 
known as arithmetic optimization algorithm (AOA). AOA makes use of the distribution behaviour of the major 
arithmetic operators in mathematics that includes multiplication (M), division (D), subtraction (S), and addi-
tion (A). This optimization mainly consists of two stages: exploration and exploitation. Exploration pertains to 
the use of search agents of an algorithm to cover a large portion of the search space to prevent local solutions. 
Exploitation enhances the precision of the found solutions throughout the exploration stage. Figures 12 and 
13 depicts the AOA searching technique and its process flow diagram. The math optimizer accelerated (MOA) 
function maintains balance between exploration and exploitation and is defined as:

where Iter and Max_Iter signifies the current iteration and the maximum number of iterations, Min and Max 
represents the accelerated function minimum and maximum values.

Exploration stage.  In AOA, exploration operators randomly explore the search area on many regions and tend 
to produce a best optimal solution focused on two major search strategies (Division (D) search strategy and 
Multiplication (M) search strategy), as modelled in Eq. (64).

where UBj and LBj signifies the upper and lower bound of jth location. xi,j(C_Iter + 1) denotes the ith solution in 
next iteration at jth location. µ indicates the control parameter used for adjusting the search strategy. ǫ denotes 
a small integer number. best

(

xj
)

 represents the jth location of the best optimal solution found so far. MOP is the 
math optimizer probability and is defined as:

(60)X
p
G,k = Crossover

(

X
q
G,i ,X

z
G,j

)

i �= j �= k, p = q = end

if rand > 0.5

(61)StallionGi = 2Zcos(2πRZ)×
(

WH − StallionGi

)

+WH

(62)StallionGi = 2Zcos(2πRZ)×
(

WH − StallionGi

)

−WH

(63)StallionGi =

{

XG,i if cost
(

XG,i

)

< cost
(

StallionGi

)

StallionGi if cost
(

XG,i

)

> cost
(

StallionGi

)

(64)MOA(Iter) = Min+ Iter ∗

(

Max −Min

Max_Iter

)

(65)xi,j(C_Iter + 1) =

{

best
(

xj
)

÷ (MOP + ǫ)×
((

UBj − LBj
)

× µ+ LBj
)

, r2 < 0.5

best
(

xj
)

×MOP ×
((

UBj − LBj
)

× µ+ LBj
)

, otherwise

D

M

S

A

Area of optimal solution

ExplorationExploitation

Figure 12.   Searching mechanism of Arithmetic Optimization.
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Exploitation stage.  In this stage two mathematical operators’ subtraction (S) and addition (A) are used as they 
produce highly dense result. These operators are capable to reach the target due to their low dispersion charac-
teristic. The exploitation strategy can be represented mathematically by using Eq. (65).

This phase makes the most of the search space by conducting a thorough search. In this stage (first rule in 
Eq. (65)), the first operator (S) is conditioned by r3 < 0.5, and the other operator (A) is ignored until this opera-
tor completes its current task.

Atom search optimization (ASO) algorithm.  Atom search optimization (ASO) is a physics-based 
metaheuristic optimization technique that mimics the theory of molecular dynamics44. In ASO, each atom’s 
location within the search space symbolizes a solution as analysed by its mass, with a finest solution implying a 
heavier mass and vice versa. All atoms in the population will attract or repel one another based on their distance 
from one another, causing the lighter atoms to flock toward the heavier ones. Heavier atoms have less speed, 
which enables them to rigorously demand a new local solution. While lighter atoms accelerate more rapidly due 
to low mass, they search extensively for new promising regions throughout the search space. Figure 14 shows the 
process flow diagram of ASO algorithm.

Mathematical representation of interaction force.  The priming power of atomic motion is the interaction force 
resulting from the L-J potential. At tth iteration, the interaction force generated by jth atom on ith can be repre-
sented by using Eq. (68) as follows:

where, σ signifies the collision diameter, ε represents the magnitude of the interactive force. rij(t) is the distance 
between jth and ith atom at time t  . Fij denotes the interactive force.

where, kbest signifies the atoms with best fitness values and K maintains the balance between exploration and 
exploitation and decreases gradually over the course of iterations and is defined as:

(66)MOP(Iter) = 1−
Iter1/α

Max_Iter1/α

(67)xi,j(C_Iter + 1) =

{

best
(

xj
)

−MOP ×
((

UBj − LBj
)

× µ+ LBj
)

, r3 < 0.5

best
(

xj
)

×MOP ×
((

UBj − LBj
)

× µ+ LBj
)

, otherwise

(68)Fij(t) =
24ε(t)

σ (t)
2

(

σ(t)

rij(t)

)13

−

(

σ(t)

rij(t)

)7 rij(t)

rdij (t)

(69)Fdi (t) =
∑

jεKbest

randjF
d
ij (t)

Figure 13.   Process flow diagram of AOA algorithm.
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where, N is the total number of atoms.
However, in order to solve the optimization problem Eq. (71) is revised as:

where, n(t) denotes the depth function implemented for repositioning the repulsion or attraction region, which 
can be signified as follows:

where, α represents depth weight and T denotes the number of iterations.

Mathematical representation of geometric constraint.  In molecular dynamics, the geometric constraint is very 
crucial in atomic motion. Assume that each atom in ASO has a covalence bond with the finest atom for the sake 
of simplicity. The constraint of ith atom can be written as follows:

where, Xi(t) is the location of ith atom at time t, bi,best denotes the fixed bond length in between ith atom and best 
atom, Xbest represents the location of best atom found so far. The constraint force is defined as:

where, �(t) denotes the Lagrangian multiplier and is defined as:

β signifies the multiplier weight.

Mathematical representation of atomic motion.  The acceleration of the ith atom at time t can be computed using 
the interaction force and the geometric constraint as shown in Eq. (76).

where, md
i  is the mass of ith atom at time t in dth dimension, Fdi  is the interactive force on ith atom, Gd

i  symbolises 
the constraint force on ith atom at time t. The mass of ith atom at time t is defined as:

(70)K(t) = N −

{

(N − 2)∗

√

t

T

}

(71)F
′

ij(t) = −n(t)[2(hij(t))
13 − (hij(t))

7]

(72)n(t) = α(1−
t − 1

T
)3e

−20t
T

(73)θi(t) =
[

|Xi(t)− Xbest(t)|
2 − b2i,best

]

(74)Gd
i (t) = �(t)

(

Xd
best(t)− Xd

i (t)
)

(75)�(t) = βe−
20t
T

(76)adi (t) =
Fdi (t)

md
i (t)

+
Gd
i (t)

md
i (t)

(77)Mi(t) = exp
Fiti (t)−Fitbest (t)

Fitworst(t)−Fitbest (t)

Figure 14.   Process flow diagram of ASO algorithm.
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Fitbest(t) and Fitworst(t) is the fitness of the search agents with best and the worst fitness value at the tth itera-
tion and are defined as:

where, Fiti(t) is the fitness of the ith agent at the tth iteration. The velocity of search agents are updated as:

where, vdi (t + 1) is the velocity of ith search agent in the dth dimension at (t + 1)th time and vdi (t) is the velocity of 
ith search agent in the dth dimension at tth time. The position of ith search agent in dth dimension is updated as:

Coot bird optimization (CBO).  Coot bird optimization (CBO) algorithm is a swarm intelligence algo-
rithm proposed by Naruei and Keynia45 in 2021. COOT are medium size water birds that belong to the rail 
family, Rallidae. These birds have frontal shields on the forehead and dark red eyes with colored bills. Coots have 
rounded wings with physically weak fliers but have long lobed toes and strong legs which help them to run on 
uneven surfaces. CBO algorithm emulates three different modes of movement of Coots on the water surface that 
are irregular movement, regular movement and chain movement. In the third phase of chain movement coots 
move behind the leading leaders in the form of chains so as to quickly find the food sources. CBO algorithm 
mathematically models these three Coots movement so as to find the global optimal solution of any optimiza-
tion problem. Figures 15 and 16 depict the CBO algorithm’s search behavior and its process flow diagram. The 
mathematical representation of CBO algorithm is provided as follows:

Step 1 Initialize the population of Coots (search agents) randomly in the defined space:

where, n signifies the space dimension.
Step 2 Initialize the constant parameters P and divide the population into leaders and coots as

(78)mi(t) =
Mi(t)

∑N
j=1 Mj(t)

(79)Fitbest(t) = min
i∈{1,2,........,N}

Fiti(t)

(80)Fitworst(t) = max
i∈{1,2,.....,N}

Fiti(t)

(81)vdi (t + 1) = randdi v
d
i (t)+ adi (t)

(82)Xd
i (t + 1) = Xd

i (t)+ vdi (t + 1)

(83)−→
X =

(−→x 1,
−→x 2, . . . . . . . . . . . . . . . . . . . . .

−→x n

)

(84)NL = [N × P]

Random
position (Q)

Coot current
position

Random
position (Q)

Random
position (Q)

Figure 15.   Searching mechanism of coot birds.
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where, NL, N is the number of leaders and population size. The number of Coots are

Step 3 Evaluate the cost of all Coots, depending on the problem (minimization or maximization), the location 
of the finest Coot (leader) signifies global optimal solution (gBest).

Step 4 Evaluate the adaptive parameter A, B as follows:

where, L is the current iteration and Iter is the maximum iteration.
Step 5 Find out another constant parameters R, R1, R3 as:

R, R1, R3 are the random vectors along the problem dimension.else
R, R1, R3 are the random numbers.
Step 6 Evaluate the constant parameter K as follows:

where, i is the index number of Coot and K is the index number of leader.
Step 7 Update the position of Coots as follows:

else

else

Step 8 If the position of Coot is better than leader position then exchange Coot and leader position.
Step 9 Update the leader position as per the following equations:

(85)NCoots = [N − Leaders]

(86)A = 1− L×

(

1

Iter

)

(87)B = 2− L×

(

1

Iter

)

if rand < P

(88)K = 1+ (iMODNL)

if rand > 0.5

(89)CootPos(i) = leaderPos(K)+ 2 ∗ R1 ∗ cos(2Rπ) ∗ (LeaderPos(K)− CootPos(i))

if rand < 0.5, i ∼= 1

(90)CootPos(i) = 0.5 ∗ (CootPos(i − 1)+ CootPos(i))

(91)CootPos(i) = CootPos(i)+ A ∗ R2 ∗ (Q − CootPos(i))

if rand < 0.5

Figure 16.   Process flow diagram of CBO algorithm.
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else

Step 10 If the position of leader is better than gBest then exchange leader and gBest position.
Step 11 Reinitialize the position of Coots that go beyond the defined space.
Step 12 The algorithm terminates when the minimal error or maximum number of iterations is reached. 

Alternatively, resume steps (4)–(11).
Step 13 The location of Coots with respect to gBest signifies the global optimal solution.

Results and discussion
All MAs described in Section “Estimation of solar cell/module” are employed in this section to tackle the solar 
cell or PV module parameter estimation problem. Four different case studies known as R.T.C. France solar cell, 
Solarex MSX-60 (polycrystalline), LSM 20 (monocrystalline), and SS2018P (polycrystalline) are considered 
for the performance comparisons of eight selected MAs in solving various types of solar cell or PV module 
parameter estimation problems. Particularly, the experimental values of current and voltage for R.T.C. France 
solar cell are taken from (Table 10, appendix)48 at standard temperature condition i.e., 1000 W/m2 at 33 ℃. For 
the LSM 20 PV panel that is made up of 20 monocrystalline solar cells connected in a series arrangement, the 
experimental measurements for current and voltage are obtained from (Table 11, appendix)49 and determined at 
the environmental condition of 360 W/m2 and 24 °C. The SS2018P PV module involves 36 polycrystalline solar 
cells arranged in series, where its current and voltage readings were evaluated at the room temperature at 25 °C 
under different irradiation levels of 720 W/m2 , 870 W/m2 , and 1000 W/m2 . The current and voltage of SS2018P 
PV module are also tested at a varied resistive load (0.1–250 Ω, 2 A) (Table 13, appendix)50. Solarex MSX-60 
polycrystalline PV module is made up of 36 solar cells connected in series, where its current and voltage are 
measured at a constant temperature of 25 °C under a constant irradiance of 1000 W/m2 (Table 12, appendix). All 
selected MAs are implemented and simulated using the MATLAB 2021a platform installed in a laptop with the 
specifications of Intel ® core ™ i7-HQ CPU, 2.4 GHz, 16 GB RAM. Table 3 displays the parameter settings adopted 
by all eight MAs when solving the four case studies of solar cell or PV module parameter estimation problems.

Case Study 1 In this case study, the performances of all selected MAs to estimate the unknown parameters of 
SDM that represents the R.T.C. France solar cell operated under standard temperature condition are evaluated. 
The optimal values of five parameters (Ip, Isd, a, Rs, Rsh) produced by all MAs to represent the SDM of R.T.C. 
France solar cell are presented in Fig. 17a and b. Meanwhile, the experimental and simulated characteristics 
curves of current–voltage (I–V) and power–voltage (P–V) for R.T.C. France solar cell are illustrated in Figs. 18 
and 19, respectively.

It is evident from Fig. 17b that CBO produces the best estimation of SDM parameter to represent the R.T.C. 
France solar cell with minimum RMSE value of 1.0264E−05, followed by WHO and HHO to produce the RMSE 
with second best and third best values of 2.3902E−05 and 2.5000E−05, respectively. In contrast, both of SHO 
and ASO are reported to produce the worst and second-worst RMSE values of 7.2951E−01 and 6.9590E−01, 
respectively. The sluggish search rate of poor solution accuracy demonstrated by ASO can be justified by its search 
mechanisms that solely rely on the atom force motion paradigm in molecular dynamics. On the other hand, the 
search mechanisms of SHO are proven not robust enough to handle the complex search space with nonlinear 
and multimodal characteristics, therefore it tends to suffer with premature convergence issue when solving the 
parameter estimation problem of the R.T.C. France solar cell (Fig. 20). A detailed comparison of eight selected 
algorithms with the techniques reported in the literature is illustrated in Table 6 (Appendix).

Case Study 2 The performance of all algorithms is examined in this case study for a multi-crystalline Solarex 
MSX-60 PV module at constant temperature of 25 °C and irradiance value of 1000 W/m2 using the SDM. The 
current–voltage and power voltage characteristics curves for Solarex MSX-60 PV module have been redrawn, 
as shown in Figs. 21 and 22, respectively.

Figure 20a displays the estimated values of all five parameters of SDM. According to the results indicated in 
Fig. 20b, WHO performs the best, followed by CBO, STO and HHO. WHO algorithm produces the RMSE value 
as 2.6961E−03. The RMSE values obtained by CBO, STO and HHO as 2.7975E−03, 3.2030E−03, and 6.336E−03, 
respectively. The good performance of WHO technique is due to a proper stability between exploration and 
exploitation phase. The worst results are obtained by SHO, ASO, AO and AOA, respectively. A detailed compari-
son of eight selected algorithms with the techniques reported in the literature is illustrated in Table 7 (Appendix).

Case Study 3 In this case study, the performance of all the algorithms is assessed for monocrystalline LSM 20 
PV module at low irradiance of 360 W/m2 and temperature of 24 °C, by implementing the SDM. The optimal 
values of all five parameters for SDM of the LSM 20 PV module are illustrated in Fig. 23a. The characteristics 
curve of current–voltage for LSM 20 PV module is redrawn which is clearly depicted in Fig. 24.

Based on the findings in Fig. 23b, CBO performs best, followed by WHO, HHO, STO, and SHO. The CBO 
algorithm yields the best RMSE value of 1.8694E−03. WHO, HHO, STO, and SHO obtained RMSE values of 
1.9927E−03, 3.167E−03, 4.0588E−03, and 4.4960E−03, respectively. The CBO algorithm’s good efficiency is 
attributed to the prevention of early convergence under small irradiance values. AO, AOA, and ASO acquire the 
worst RMSE values of 1.3763E−02, 3.5107E−02, and 3.3558E−01, respectively. A detailed comparison of eight 
selected algorithms with the techniques reported in the literature is illustrated in Table 8 (Appendix).

Case Study 4 In this case study, the SDM is used to evaluate the performance of all methods for a polycrys-
talline SS2018 PV module at a constant temperature of 25 °C and different irradiance levels of 1000 W/m2, 870 
W/m2, and 720 W/m2. Figure 25a–c depicts the optimal value of all five parameters for SDM of the SS2018 PV 

(92)LeaderPos(i) = B ∗ R3 ∗ cos(2Rπ) ∗
(

gBest − LeaderPos(i)
)

+ gBest

(93)LeaderPos(i) = B ∗ R3 ∗ cos(2Rπ) ∗
(

gBest − LeaderPos(i)
)

− gBest
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module at irradiance levels of 1000 W/m2, 870 W/m2, and 720 W/m2, respectively (Fig. 26). The current–volt-
age and power–voltage characteristics curves for the SS2018 PV module at 1000 W/m2 are redrawn, as shown 
in Figs. 27 and 28.

Based on the findings in Fig. 26, WHO performs best, followed by STO and CBO at 1000 W/m2. Similarly 
at 870 W/m2 WHO algorithm yields the best RMSE, followed by CBO and HHO. While at 720 W/m2, CBO 
algorithm produces the best RMSE, followed by WHO, STO, and HHO. A detailed comparison of eight selected 
algorithms with the techniques reported in the literature is illustrated in Table 9 (Appendix).

Convergence analysis.  Figure 29 describes the convergence curves of SDM for all the four-case studies to 
estimate the computational competence of all the selected metaheuristic techniques. It is very clear from Fig. 29 
(a) that for the case of the R.T.C. France solar cell, the CBO technique obtains an accurate solution for the same 
number of function evaluations (i.e.,50,000) with a minimum computational time of 0.15 s as compared to other 
metaheuristic algorithms. CBO’s best performance is due to good exploration. Similarly, the best performance 
of the CBO algorithm can be seen in the instance of the thin film LSM20 PV module. The WHO and HHO 
algorithms generate the second-best results as compared to the CBO algorithm. The worst values of RMSE come 
from AO, SHO, STO, AOA, and ASO. This is because these algorithms have a problem `called premature con-
vergence, which is caused by uneven exploitation and exploration.

In the case of the Solarex MSX-60 PV module and the SS2018 PV module, as shown in Fig. 29c and d, WHO 
gives the best optimized results in terms of RMSE. However, WHO algorithm lacks in terms of computational 
speed as compared to CBO algorithms. The CBO and STO algorithms generate the second-best results as com-
pared to the WHO algorithm. The worst values of RMSE come from AO, SHO, AOA, and ASO. This is because 
these algorithms get stuck in local minima, which is caused by poor exploration of the solution space.

Robustness and statistical investigation.  This subsection offers statistical judgments based on mean, 
minimum, maximum, and standard deviation in terms of RMSE for all previously described procedures, as well 
as a comparative study with the reliability of the different approaches in a total of thirty runs, as shown in Table 4. 

Table 3.   Parameter settings of each algorithm.

Algorithms Parameter Value

SHO

Number of iterations 50,000

Search agents 30

Control parameter ( 
−→
h ) [5, 0]

−→
M Constant [0.5, 1]

STO

Number of iterations 50,000

Control parameter ( Cf ) 2

Constant (u and v) 1

Population size 30

AO

Number of iterations 50,000

Search agents 30

Constant (ω) 0.005

Constant (U) 0.00565

Adjustment parameter (α, δ) 0.1

HHO

Number of iterations 50,000

Search agents 30

Constant (β) 1.5

WHO

Number of iterations 50,000

Search agents 30

Crossover percentage (PC) 0.13

Stallions’ percentage (PS) 0.2

AOA

Number of iterations 50,000

Search agents 30

α 5

μ 0.5

ASO

Number of iterations 50,000

Search agents 30

Depth weight 50

Multiplier weight 0.2

CBO
Number of iterations 50,000

Search agents 30
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Figure 17.   Simulation results for R.T.C. France solar cell (a) optimized value of all parameters (b) RMSE value.
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The mean of the RMSE is computed to assess the precision of the procedures, and the standard deviation is cal-
culated to assess the dependability of the chosen parameter estimate method.

The result of the statistical study shows that the CBO technique outperforms other optimization techniques 
for both case studies R.T.C. France Solar cell and LSM20 PV module which validates its superior exploration and 
exploitation capability. On the other hand, WHO technique provides best results for the case of Solarex MSX-60 
PV module and SS2018 PV module because of low standard deviation and high accuracy. HHO gives the third 
best performance for case study 1 and 3 as it suffers from poor population diversity. According to NFL29, it is not 
necessary that if one algorithm gives superior performance on a specific problem, it may perform the same on 
other problems. There is no one-size-fits-all solution to problem-solving, and the most effective approach will 
depend on the specific context and constraints of the problem at hand.

The Wilcoxon rank-sum test is a nonparametric metric used to compare the results of two approaches. It is 
employed to examine the population distributions of two independent samples to see if they are equal. This test 
quantifies the relevance of a variation between two samples and does not assume that the data is normally dis-
tributed, making it a useful alternative when normality assumptions cannot be met. The Wilcoxon rank-sum test 
works by first ranking the combined data from both samples, then determining the sum of ranks for each sample. 
The null hypothesis denotes that the rankings of the comparison methodologies’ results are not notably differ-
ent. The alternative hypothesis looks into whether the outcomes of the comparative approach may be described 
by rank. The Wilcoxon rank-sum was calculated with a significance threshold of 5%. The sign “ + ” indicates 
that the compared algorithm won the other algorithm significantly, the sign “≈” indicates that the implemented 
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Figure 18.   I–V Characteristics curve of simulated and experimental values by different optimization techniques 
for single diode model of R.T.C. France solar cell.
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Figure 19.   P–V Characteristics curve of simulated and experimental values by different optimization 
techniques for single diode model of R.T.C. France solar cell.



25

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11134  | https://doi.org/10.1038/s41598-023-37824-4

www.nature.com/scientificreports/

(b)

(a)

SHO STO AO HHO WHO AOA ASO CBO
1E-3

0.01

0.1

0.5

1

2.7975E-03

2.6812E-01

5.4382E-01

2.6961E-03

6.3360E-03

3.2030E-03

4.4790E-01

R
M
SE

1.1124E-01

Figure 20.   Simulation results for Solarex MSX-60 PV module (1000 W/m2, 25 °C) (a) optimized value of all 
parameters (b) RMSE value.
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algorithm performed similarly to the other algorithm, and the sign “ − ” indicates that the employed algorithm 
performed poorly in comparison to the other algorithm.

In addition to normal statistical analysis, such as best, mean, worst, and standard deviation, the Friedman 
rank test51 is used to establish the significance of the data. It is often used in the analysis of repeated-measures 
designs in which multiple observations are made on the same subjects under different conditions. The test works 
by first transforming the data into ranks, and then summing the ranks for each subject across the conditions. The 
Friedman rank test is appropriate for continuous or ordinal data, and when the assumptions of normality and 
equal variances are not met. This non-parametric test is also used to rank the algorithms for each studied PV 
module. The null hypothesis (p-value 5%) in the Friedman test indicates that there is no discernible difference 
between the compared methods. The contrary hypothesis denotes a significant variance between the compared 
methods throughout all 30 runs. Each algorithm is ranked in this test depending on its performance. The best 
algorithms are determined by small ranks. The Friedman rank test findings at a 95% confidence level are shown 
in Fig. 30. According to Fig. 30, for the case of R.T.C. France solar cell, CBO is having the best performance 
followed by WHO, HHO, AOA, STO, AO, ASO, and SHO. While in the case of Solarex MSX-60 PV module, 
the best performance is given by WHO algorithm. In the case of LSM 20 PV module CBO algorithm shows its 
supremacy as compared to other algorithms. In the instance of the SS2018 PV module, the WHO algorithm 
outperforms all other algorithms.

The average execution time of each algorithm on all four PV models is computed and provided in Fig. 31 in 
order to evaluate the efficiency of all metaheuristic techniques implemented in this research study. Metaheuristic 
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Figure 21.   I–V Characteristics curve of simulated and experimental values by different optimization techniques 
for single diode model of Solarex MSX-60 PV module at STC.
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Figure 22.   P–V Characteristics curve of simulated and experimental values by different optimization 
techniques for single diode model of Solarex MSX-60 PV module at STC.
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algorithms take a certain amount of time to run based on a number of factors, such as the size and complexity 
of the problem, the convergence criteria, and how good the first solution is. It is very clear from Fig. 31 that the 
minimum average execution time is taken by the CBO technique as 1.19 s. while AOA, WHO, and HHO have 
more or less the same average execution time. The ASO technique takes a long time to execute, 26.05 s.

Qualitative analysis of algorithms.  This subsection discusses the metaheuristic methods presented in 
Section “Estimation of solar cell/module” for parameter estimation of solar cells/modules based on key perfor-
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Figure 23.   Simulation results for Leibold PV module (LSM 20) (360 W/m2, 24 °C) (a) optimized value of all 
parameters (b) RMSE value.
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mance indices which includes computational complexity, convergence speed, utilization of memory of previous 
states, search methodology, merits and demerits. Table 5 shows an evaluation of all the algorithms.

The computational complexity is described as the system’s need for computation resources as a function of 
the number of search agents (population). The expected computation time and computation storage required 
for the solution define the resources. A metaheuristic algorithm’s computational complexity is based on three 
regulations: solution initialization, fitness function calculation, and solution updating. N represents the number 
of solutions generated during initialization process. The total number of iterations is denoted by T and D denotes 
the dimension of the optimization problem. Table 5 shows that the WHO algorithm has the highest whereas the 
STO the least computational complexity in comparison to other algorithms.

The algorithm’s convergence speed is defined as the rate at which it can locate the best solution. An efficient 
algorithm must have a high rate of convergence and avoid premature convergence. Premature convergence is 
defined as the convergence of a metaheuristic algorithm prior to achieving a global optimal solution, which is 
usually caused by a lack of diversity or imbalance between the searching stages. As observed from Table 5 HHO, 
WHO and CBO algorithm have fast rate of convergence while AO and AOA have the slow rate of convergence.

The memory of prior states influences the number of storage resources utilized during the execution of a 
metaheuristic algorithm. This parameter has an insignificant impact for a small-scale optimization problem 
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Figure 24.   I–V Characteristics curve of simulated and experimental values by different optimization techniques 
for single diode model of Leibold solar module (LSM 20).

Figure 25.   Simulation results for SS2018 PV module (a) optimized value of all parameters at 1000 W/m2 (b) 
optimized value of all parameters at 870 W/m2 (c) optimized value of all parameters at 720 W/m2.
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Figure 26.   RMSE value for SS2018 PV module at (a) 1000 W/m2 (b) 870 W/m2 (c) 720 W/m2.
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Figure 27.   I–V Characteristics curve of simulated and experimental values by different optimization techniques 
for single diode model of SS2018P PV module at 1000 W/m2.
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(like estimating the parameters for solar cells), but as the number of solar cells in a PV module increase, it may 
become an important attribute in determining the performance of the algorithm. As per the study depicted in 
Table 5 among all algorithms only WHO utilizes the memory of previous states, therefore shouldn’t be considered 
for parameter estimation of large-scale PV modules.

The particular manner by which the algorithm tackles the problem is referred to as the search methodology. 
Most SI-based algorithms use one of three search methodologies: mutation, selection, or crossover. Mutation is 
known as the technique for global exploration. The process of selecting the best solution in the search space is 
known as selection. Crossover increases the search space’s diversity52. WHO algorithm discovers the solution by 
utilizing all three search methodologies. It, therefore, requires more memory space in comparison to all other 
algorithms.

Conclusion
This paper presents an exhaustive investigation of recently developed state-of-the-art MAs for PV cell parameter 
estimation, with a focus on the underlying theory and experimental efficiency of each technique on four case 
studies based on four distinct PV cell/module technologies under wide range of irradiance and temperature lev-
els. The properties and attributes of different MAs have been examined for PV parameter estimation of various PV 
module technologies under distinct environmental conditions. The proposed study evaluates the performance of 
prior art MAs based on key performance indices such as convergence rate, implementation complexity, accuracy 
along with their merits and demerits. The main outcomes of the proposed work are:

•	 CBO algorithm gives the best RMSE value of 1.0264E−05 for R.T.C. France solar cell under 1000W/m2, 
1.8694E−03 for LSM 20 PV module at 360W/m2, and 1.6884E−03 for SS2018 PV module at 720W/m2, 
respectively.

•	 WHO evaluates the best RMSE value of 2.6961E−03 for Solarex MSX-60 under 1000W/m2 and 4.7571E−05 
under 1000W/m2 and 3.3603E−04 870W/m2 for SS2018 PV module, respectively.

•	 ASO, AO and AOA have lower accuracy and thus result in high RMSE value for different PV module tech-
nologies.

•	 CBO algorithm has the highest rate of convergence for R.T.C. France at 1000W/m2, LSM 20 at 360W/m2 and 
SS2018 PV module at 720W/m2, respectively.

•	 WHO algorithm has the highest rate of convergence for Solarex MSX-60 under 1000W/m2 and SS2018 PV 
module under 870W/m2 and 1000W/m2, respectively.

•	 Algorithms like ASO, AO, STO, and SHO take large execution time due to their high computational complex-
ity and poor trade-off between exploration and exploitation.

This study establishes that there is no one-size-fits-all MA to solve the optimization problem, and the most 
effective approach will depend on the specific PV cell technology and the operating condition. As compared to 
earlier studies on this topic, this study has substantially expanded the diversity of algorithms, simulated outcomes, 
and comparison of recently anticipated techniques. As a result of this assessment, improved and hybridization of 
discussed algorithms can be developed for various renewable energy applications. A hardware setup consisting of 
a low-cost microcontroller can be used to implement these metaheuristics algorithms in real time applications.
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Figure 28.   P–V Characteristics curve of simulated and experimental values by different optimization 
techniques for single diode model of SS2018P PV module at 1000 W/m2.
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Figure 29.   Convergence plot for (a) R.T.C. France solar cell (b) LSM20 PV module (c) Solarex MSX-60 PV 
module (d) SS2018 PV module.
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Table 4.   Statistical outcomes of RMSE of different algorithms for all three models. Significant values are in 
bold.

PV module Algorithm

RMSE

Min Mean Max SD Rank-Sum

R.T.C. France solar cell

SHO 7.2951E−01 7.2951E−01 7.2951E−01 3.2600E−03  − 

STO 8.6106E−04 9.4761E−04 2.6964E−02 1.1722E−03  − 

AO 1.3481E−03 1.5153E−03 1.2788E−02 1.3731E−03  − 

HHO 2.5000E−05 8.8800E−05 2.4324E−02 9.1477E−04 ≈

WHO 2.3902E−05 3.0000E−05 2.8170E−02 3.1727E−04 ≈

AOA 6.0411E−04 6.2354E−04 1.0885E−02 5.4195E−04  − 

ASO 6.9590E−01 6.9697E−01 7.8716E−01 1.7870E−03  − 

CBO 1.0264E−05 1.8600E−05 7.4254E−02 2.1891E−04  + 

LSM20 PV module

SHO 4.4960E−03 6.4182E−02 1.2059E−01 4.5861E−04  − 

STO 4.0588E−03 4.6891E−03 8.9984E−02 5.1076E−03  − 

AO 1.3763E−02 1.3763E−02 2.6624E−01 1.0162E−02  − 

HHO 3.1670E−03 3.3336E−03 5.0246E−01 2.7905E−03  − 

WHO 1.9927E−03 2.2954E−03 9.5377E−02 6.8037E−04 ≈

AOA 3.5107E−02 3.5107E−02 7.0219E−02 1.5608E−03  − 

ASO 3.3558E−01 3.3551E−01 2.6751E−01 1.0136E−02  − 

CBO 1.8694E−03 2.0604E−03 7.9177E−01 5.4145E−04 ≈

Solarex MSX-60 PV module

SHO 1.1124E−01 1.2816E−01 1.1078E−00 6.3931E−02  − 

STO 3.2030E−03 5.3431E−03 7.6117E−01 3.3049E−02  − 

AO 4.4790E−01 4.5228E−01 7.7609E−01 3.5513E−02  − 

HHO 6.3360E−03 2.8033E−02 1.2292E−00 1.2387E−02  − 

WHO 2.6961E−03 3.0963E−03 8.2015E−01 7.9895E−04  + 

AOA 5.4382E−01 5.4668E−01 7.5013E−01 2.4043E−02  − 

ASO 2.6812E−01 3.3548E−01 2.5471E−01 1.6006E−02  − 

CBO 2.7975E−03 4.1348E−02 8.2282E−01 8.7457E−04 ≈

SS2018P PV module

SHO 7.8158E−02 8.8517E−02 2.1059E−01 2.6029E−02  − 

STO 6.1898E−05 6.1650E−05 1.3300E−02 8.9852E−04  − 

AO 2.9642E−02 2.9642E−02 3.0433E−02 9.1209E−03  − 

HHO 1.0315E−04 4.8579E−04 1.5552E−01 2.8096E−03  − 

WHO 4.7571E−05 3.9300E−06 3.0389E−02 5.5913E−04  + 

AOA 3.0362E−02 3.0554E−02 5.9491E−02 2.3538E−03  − 

ASO 2.8581E−01 3.3551E−01 2.9293E−01 4.4798E−03  − 

CBO 8.3023E−05 4.0300E−04 4.1757E−01 5.8557E−04 ≈
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Figure 30.   Friedman mean rank of all algorithms for (a) R.T.C. France solar cell (b) Solarex MSX-60 PV 
module (c) LSM20 PV module (d) SS2018 PV module.

Figure 31.   Comparison of computation time for all algorithms.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Appendix
See Tables 6, 7, 8, 9, 10, 11, 12, 13.

Table 6.   Evaluation of all compared metaheuristic algorithms with the techniques reported in literature for 
the SDM of R.T.C. France solar cell.

Algorithms Ip (A) Rs (Ω) Rsh (Ω) Id (µA) a RMSE

SHO 1 0.001 1.18 0.5 1.55 7.2951E−01

STO 0.785 0.0394 10.998 0.177 1.44 8.6106E−04

AO 0.6923 0.001 3.99 0.001 1.28 1.3481E−03

HHO 0.7659 0.0347 27.2342 0.348 1.5108 2.5000E−05

WHO 0.7622 0.0386 40.0396 0.2161 1.46 2.3902E−05

AOA 0.7441 0.05 100 0.0031 1.3 6.0411E−04

ASO 1 0.5 25.5045 0.143 1.44 6.9590E−01

CBO 0.7619 0.042 38.5567 0.121 1.41 1.0264E−05

FODPSO53 0.7609 0.0364 51.9512 0.3187 1.4806 9.7486E−04

NPSOPC54 0.7608 0.0363 53.7583 0.3325 1.4814 9.8856E−04

CPMPSO55 0.7607 0.0363 53.7185 0.3230 1.4811 9.8602E−04

ABC56 0.7608 0.0364 54.6433 0.3251 1.4817 9.8620E−04

TLABC57 0.7608 0.0364 53.7164 0.3230 1.4812 9.8602E−04

BHCS58 0.7608 0.0364 53.7185 0.3200 1.4800 1.0000E−03

MPCOA59 0.7607 0.0364 54.6328 0.3366 1.4817 9.4457E−04

Table 7.   Evaluation of all compared metaheuristic algorithms with the techniques reported in literature for 
the SDM of Solarex MSX-60 PV module.

Algorithms Ip Id (μA) Rs Rsh a CPU Time (s) RMSE

SHO 3.5 0.5 0.001 3.05 2.05 36.6 1.1124E−01

STO 3.7313 0.231 0.0049 359.7437 1.35 0.1 3.2030E−03

AO 4.271765 0.01 0.001 0.331239 7.61543 0.23 4.4790E−01

HHO 3.7741 0.263 0.001 170.6833 1.8996 10.01 6.3360E−03

WHO 3.7859 0.5 0.001 2000 2.0103 0.37 2.6961E−03

AOA 3.3865 0.5 0.0238 2000 100 11.01 5.4382E−01

ASO 1 0.201 1.6606 567.3439 35.54 93.44 2.6812E−01

CBO 3.7702 0.228 0.001 649.7869 1.87 0.15 2.7975E−03

HS60 3.8115 0.2265 0.2128 1976.07 1.3707 NA 1.7756E−02

COA61 3.81 0.1783 0.2184 2004.977 1.3514 NA 1.7050E−02

NM61 3.8084 0. 0005 0.3692 169.047 1.0003 NA 9.6132E−02

BC62 3.8080 0. 0012 0.3160 146.080 1.04 NA 4.2026E−02

A&I63 3.7983 0.0679 0.2510 582.728 1.28 NA 2.5025E−02

ER-WCA​60 3.8121 0. 1399 0.2235 914.689 1.33 NA 1.6973E−02
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Table 8.   Evaluation of all compared metaheuristic algorithms with the techniques reported in literature for 
the SDM of LSM 20 PV module.

Algorithms Ip Id (μA) Rs Rsh a CPU Time (s) RMSE

SHO 0 0.5 0.001 2000 59.27 2.35 4.4960E−03

STO 0.1878 0.0101 0.0012 3.6133 58.86 0.11 4.0588E−03

AO 0.0877 0.01 0.001 27.749 3.35 0.25 1.3763E−02

HHO 0.1573 0.168 0.0998 50.183 1.96 13.14 3.1670E−03

WHO 0.1567 0.5 0.001 2000 2.77 0.36 1.9927E−03

AOA 0.062 0.01 0.001 2000 100 0.11 3.5107E−02

ASO 1.6606 0.243 1 585.0286 18.44 5.56 3.3558E−01

CBO 3.7702 0.228 0.001 649.7869 1.87 0.33 1.8694E−03

SMA64 0.1550 0.0001 7.2958 1545.1678 1.07 NA 7.8030E−04

ACT​49 0.15449 0.0025 6.3944 1973.35 1.268 NA 8.3839E−04

MRFO65 0.1944 0.4509 0.0019 4.579 3.10 NA 8.2751E−04

ALO66 0.1856 0.4529 0.0012 3.784 3.63 NA 7.6603E−03

Table 9.   Evaluation of all compared metaheuristic algorithms with the techniques reported in literature for 
the SDM of SS2018PV module (at 1000 W/m2).

Algorithms Ip Id (μA) Rs Rsh a CPU Time (s) RMSE

SHO 1.2 0.500 0.001 2.3 2.52 8.1 7.8158E−02

STO 1.2102 0.040 0.001 6.2091 1.35 0.14 6.1898E−05

AO 1.0985 0.500 0.001 1091.972 55.06 0.67 2.9642E−02

HHO 1.1719 0.0589 0.001 92.0987 1.3757 10.85 1.0315E−04

WHO 1.2669 0.5 0.001 1.6745 100 0.36 4.7571E−05

AOA 1.1009 4.95 1.994 2000 100 0.11 3.0362E−02

ASO 1.6606 0.379 1 247.8556 65.04 3.1 2.8581E−01

CBO 1.1919 0.447 0.001 384.8235 2.32 0.15 8.3023E−05

ALO66 1.0849 0.3339 0.0130 1923.00 2.25 NA 1.3875E−02

SCA67 1.0400 0.1643 0.0831 971.14 23.51 NA 1.0735E−02

MRFO65 1.1964 0.3645 0.0011 1926.54 1.27 NA 4.7010E−02

WOA68 1.2734 0.4987 0.0063 1.6472 55.0 NA 1.6398E−01

Table 10.   Experimental measurement of current and voltage for R.T.C. France solar cell35.

Voltage (V) Current (A)

0.0057 0.7605

0.0646 0.76

0.1185 0.759

0.1678 0.757

0.2132 0.757

0.2545 0.7555

0.2924 0.754

0.3269 0.7505

0.3585 0.7465

0.3873 0.7385

0.4137 0.728

0.4373 0.7065

0.459 0.6755

0.4784 0.632

0.496 0.573

0.5119 0.499

0.5265 0.413

0.5398 0.3165

0.5521 0.212

0.5633 0.1035
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Table 11.   Experimental measurement of current and voltage for LSM 20 PV panel36.

Voltage (V) Current (A)

0 0.154

0.37 0.154

0.67 0.154

0.99 0.154

1.31 0.153

1.67 0.153

3.1 0.152

4.6 0.152

6 0.151

7.45 0.15

8.55 0.144

9.3 0.134

9.75 0.123

10.04 0.112

10.26 0.102

10.99 0.055

11.2 0.037

11.31 0.0281

11.37 0.0227

11.41 0.019

11.44 0.016

11.46 0.0142

11.48 0.0127

11.5 0.012

11.55 0.006

11.58 0.003

11.6 0.002

11.61 0.001

11.62 0.001

11.63 0.0006

11.632 0.0003

11.633 0.0002

11.636 0.0001

11.64 0.0001

11.65 0
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Table 12.   Experimental measurement of current and voltage for Solarex MSX-60 PV module21.

Voltage (V) Current (A)

0 3.8174

0.8115 3.8015

1.623 3.7944

2.4346 3.7855

3.2461 3.7769

4.0576 3.7683

4.8692 3.7597

5.6807 3.7511

6.4923 3.7425

7.3038 3.7339

8.1153 3.7253

8.9269 3.7167

9.7384 3.7081

10.55 3.6995

11.3615 3.6909

12.173 3.6823

12.9846 3.6736

13.7961 3.6646

14.6076 3.6548

15.4192 3.6415

16.2307 3.6158

17.0423 3.5464

17.8538 3.3461

18.6653 2.8771

19.4769 2.1119

20.2884 1.1577

21.1 0.0847
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