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Spontaneous 
and information‑induced bursting 
activities in honeybee hives
Itsuki Doi 1*, Weibing Deng 2 & Takashi Ikegami 1

Social entrainment is important for functioning of beehive organization. By analyzing a dataset of 
approximately 1000 honeybees (Apis mellifera) tracked in 5 trials, we discovered that honeybees 
exhibit synchronized activity (bursting behavior) in their locomotion. These bursts occurred 
spontaneously, potentially as a result of intrinsic bee interactions. The empirical data and simulations 
demonstrate that physical contact is one of the mechanisms for these bursts. We found that a subset 
of honeybees within a hive which become active before the peak of each burst, and we refer to these 
bees as "pioneer bees." Pioneer bees are not selected randomly, but rather, are linked to foraging 
behavior and waggle dancing, which may help spread external information in the hive. By using 
transfer entropy, we found that information flows from pioneer bees to non‑pioneer bees, which 
suggest that the bursting behavior is caused by foraging behavior and spreading the information 
through the hive and promoting integrated group behavior among individuals.

It is well known that populations of agents, whether animate or inanimate, sometimes exhibit complex self-
organization and emergence phenomena. An example of such self-organization in social organisms is known 
as "social entrainment/synchronization"1. The synchronization of group behavior is essential for a group’s daily 
survival, as it enables the achievement of common goals, such as breeding, defense against predators, collective 
hunting, and energy conservation through gathering. Moreover, for a group to function as a superorganism 
beyond a mere collection of individuals, synchronization phenomena are likely indispensable. Groups of star-
lings and sardines are well-known examples of groups that function as  superorganisms2, 3. Grouping reduces the 
susceptibility to predator attacks. Drosophila increases the probability of mating by synchronizing its circadian 
rhythm with that of the  group4–6. Also, it is known that honey bees use waggle dance to notify the location of 
feeding area and to synchronize circadian clock within a hive is needed to transfer the  information7.

In honeybees, numerous studies have been published regarding temporal synchronization among groups 
within the hive, particularly focusing on circadian rhythms. Southwick et al. (1987) suggested that bees use 
direct contact or vibrations, rather than volatile substances, to synchronize activity levels among  individuals8. 
Korst et al. suggested that trophallaxis is a major form of communication mechanism among  honeybees9. A 
recent study suggests that direct contact, for example via contact pheromones or tactile communication, is not 
necessary for the synchronization of circadian rhythm in the  hive10. Furthermore, in some species of ants, which 
are also eusocial insects like honeybees, synchronization not only occurs on long timescales such as circadian 
rhythms but also in the form of self-organizing synchronization of periodic activities that occur in approximately 
30-min cycles. The phenomenon was discovered in the 1990s, yet it is believed that these activity cycles are not 
functional but rather the inevitable outcome of interactions within social  groups11, 12.

We can find parallels to the complex processes occurring within the brains and there are studies that discuss 
animal groups in comparison to cognitive science  research13, 14. The brain is well-known for generating a large 
number of periodic/non-periodic synchronization activities, which are derived not only from responses to exter-
nal stimuli but also from so-called "spontaneous activities" that regularly carry out firing activities without exter-
nal  inputs15, and this phenomenon is believed to play a role in stabilizing the performance of cortical  circuits16.

In the past decade, tracking technologies have made significant progress in tracking individuals within bio-
logical populations, allowing for more detailed analysis of individual behavior within the  group17–20. This con-
sequently enables us to examine which individual (micro) characteristics contribute to self-organization at the 
population (macro) level. Gernat et al. (2018) developed a high-throughput automatic monitoring system of 
artificial honeybee hive of a single layer in a transparent cage. By attaching a "bCode" device (a custom matrix 
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barcode) to the thorax of every individual bee in the hive, they succeeded in tracking each individual bee’s posi-
tions, speeds, and orientations using the recorded digital images. Gernat et al. used the tracking system to study 
bees’trophallaxis (mouth to mouth interaction to transfer food or chemicals) networks and calculate how often 
they communicated. They found that bees communication occurred in a temporally intermittent manner, which 
they refer to as bursts, much like human communication  networks17.

In the present study, using the same large dataset as their research, we report on the global synchronous 
activity of locomotion, here we called ‘burst’, found in a population of European honeybees (Apis mellifera) and 
its relationship with individual activity. This collective burst is an extremely robust phenomenon observed under 
five different conditions in an artificial hive of approximately 1000 bees (Fig. S1). The burst occurs on a timescale 
smaller than the diurnal rhythm, such as circadian rhythm, and appears to be different from the oscillatory activ-
ity observed in the collective behavior of  ants11, 12 in that the frequency of their bursts is Poissonian rather than 
periodic. Furthermore, this burst does not simply occur in response to external stimuli. The paper investigates 
the mechanism behind these bursts and analyzes whether the bees that initiate each burst called “pioneer bee 
(P)” (bees with increased activity prior to the burst) are randomly selected or if there are biological features that 
determine their selection. Moreover, based on the tracking data, we identified well-known honeybee biological 
behaviors, such as foraging, waggle dance, and dance following, and then examined to what extent these behaviors 
were performed by P. If the behavior of a small group of pioneer bees (micro), the bursting behavior, influences 
the behavior of the hive itself (macro), then a detailed study of pioneer bees of global bursts may provide an 
indicator for understanding the state of the hive.

Results
Entire tracking of bee behaviors. In this study, we used the entire tracking data, which were acquired 
by tracking all honeybees individually by placing an artificial hive in one planar layer (a normal honeybee hive 
has its planes in layers) with a population consisting of approximately 1000 adult worker bees and a single queen 
bee (a single cohort population). All data were provided by G. Robinson and his group from the University of 
Illinois Urbana-Champaign; their detailed data collection methods are reported in their  paper17. To summa-
rize briefly, they used one cohort hive consisting of approximately 1000 adult worker bees aged 1 day and one 
unrelated, naturally mated queen bee. As in other studies that have tracked individual social  insects18–20, they 
successfully tracked the location and orientation of individual bees every second by placing a 2DQR barcode 
(bCode) on the thorax of each bee (Fig. S2). In July 2012 and July 2013, five trials were conducted, with each 
trial lasting approximately 1 week. The hive was located in a dark, quiet place, and its glass window was cleaned 
daily in the morning and at night to ensure a high detection rate of individual bees night and day throughout the 
experiment. The hive was connected to the outside by a door, which was closed for the first two days and then 
opened. Then, the worker bees could exit the hive and start exploring the outside and foraging. All individual 
bees were identified by the bCode and tracked over 7 days. As there were no larvae or pupae in this artificial hive, 
no caretaking role was observed.

Characteristics of bursts. The activity of an individual bee (i) can be measured as its kinetic energy (K), 
i.e., a square of velocity. The hive activity level KG(t) at time t is defined by averaging the individual kinetic ener-
gies. By tracking the individual bee behavior, we defined and measured the activity of the individual bee (i) using 
the kinetic energy as follows:

where � x and � y denote the respective displacements of the x and y coordinates of each bee (i) per second. The 
overall hive activity level KG(t) was defined by averaging over the individual kinetic energy as follows:

which quantifies the global activities of the hive (n is the total number of the bee). When the bursts are syn-
chronized in phase, KG(t) should increase. In fact, KG(t) was found to increase rapidly in time and then relax, 
which we identified as a bursting phenomenon (Fig. 1A,B). For the mechanical detection of bursts, we applied 
a commonly used algorithm known as Kleinberg’s burst detection  method21. An advantage of this method is 
that bursts are systematically identified based on a variable baseline of activity. For each beehive, the experiment 
lasts for seven days. The number of bursts detected in each trial was as follows: 71 in Trial 1201; 48 in Trial 1202; 
58 in Trial 1203; 69 in Trial 1301; and 66 in Trial 1302. 

During the bursting phase, we observed that the excited honeybees moved around in the hive and frequently 
collided with other bees (see supplement). Initially, the door of the hive was closed, and after two days, the door 
was opened to allow the bees to go outside. The bursts occurred spontaneously irrespective of the opening and 
closing of the door. There are also other bursts caused by artificial disturbances (i.e., caused by the act of clean-
ing the glass of the hive case). The features of the artificial bursts caused by glass cleaning are sudden increases 
in KG(t) . The spontaneous bursts and artificial bursts were distinguishable because their timing was recorded 
during the experiment.

Throughout the trial, the percentage of bees active with above-average kinetic energy at the peak of each burst 
was 50.5% (± 15.5%). Actually, when KG(t) increases, the number of bees committing to KG(t) also increases. 
Also, the distributions of inter-burst intervals among every trial obeyed power law like distribution which was 
fitted with maximum likelihood methods as introduced by  Clauset22 (p-value > 0.647). This result suggests that 
these bursts are different from the periodic activity cycles observed in e.g.  ants11, 12.

Ki(t) = � x2 +� y2 ,

KG(t) =
1

n

∑n

i=1
Ki(t),
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KDO measures. Initially, we examined globally how the global burst correlates with other behavior features 
of the bees. In addition to the aforementioned time series of activity level (K), we identified the time series of the 
number of out-of-hive bees within each time step (O) and the time series of the number of the individuals that 
performed waggle dance, which is communication method to convey information about the location of food 
sources to other bees, within each time step (D) (Fig. 1C).

To examine the relationship of influence between these K, D, and O time series, we calculated effective 
transfer entropy (ETE)23 between them. ETE is a metric used to quantify the directional flow of information 
between two interacting systems or variables, which is an improvement of the original transfer entropy (TE) 
developed originally by  Schreiber24. It helps in understanding causal relationships and dependencies between 
systems by measuring the degree to which the past state of a system can be used to predict the future state of 
another system In other words, the difference assesses the strength and direction of information flow between 
systems which one is in the upper stream and which one is in the downstream of the information flow: a posi-
tive ETEX→Y − ETEY→X implies information flow from X to Y and a negative ETEX→Y − ETEY→X implies 
information flow from Y to X. (see “Methods” for details).

ETE is sensitive to the time bin of data sampling. In this study, we calculated the ETE between the time series 
of K, D, and O while varying the time bin size, ranging from a few minutes to an hour (2, 5, 10, 30, and 60 min). 
K represents the overall time series of KG(t) , D represents the time series of the number of bees which performed 
waggle dance within each time step, and O is time series of the number of out-of-hive bees within each time step.

As shown in Fig. 1D,E, there was the maximum value of the difference between ETED→K and ETEK→D (i.e., 
ETED→K − ETEK→D at around a 10 min time bin. On the other hand, the maximum value of the difference 
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Figure 1.  The individual and collective activity of a bee. (A) An example of the time series of KG(t) (Trial 
1201). The vertical dotted blue lines indicate the midnight of each day. The time the entrance was opened is 
indicated by the green dotted line. (B) An example of Ki(t) and KG(t) in an endogenous bursting region. The 
black curve describes KG(t) , and the colored curves describe Ki(t) (for individuals with the bCodes B457, B202, 
and B851). The amplitude of KG(t) was rescaled to compare with Ki(t). (C) Three observation quantities of 
the hive state in Trial 1201. One time step is 10 min. K represents the overall time series of KG(t) , D represents 
the time series of the number of bees which performed waggle dance within each time step, and O is time 
series of the number of out-of-hive bees within each time step. (D) Effective transfer entropy (ETE) from the 
time series of D to K ( ETED→K− ETEK→D) . (E) Effective transfer entropy (ETE) from the time series of K 
to O (ETEK→O − ETEO→K ) . In D and E, ***, **, and * indicate significant difference between TEX→Y and 
TEXshuffle→Y on the 0.1%, 1%, and 5% significance levels, respectively.
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between ETEK→O and ETEO→K was at 30 min time bin. Namely, there were maximum information flows from 
D to K on a timescale of 10 min, and there were maximum information flows from K to O on a timescale of 
around 30 min. These results suggest that there is a temporal order in which the burst occurs after the dance 
takes place and then the bees fly out from the hive.

Classifying pioneer bees. As we approximately determined the temporal ordering of K, D, and O, we 
investigated each burst with respect to the activities of the individual bees. Here, under the hypothesis that 
bursts are triggered by bees whose activity increases first, we extracted these trigger bees and investigated their 
characteristics.

We tested the above hypothesis using experimental data and an agent based model. As a results, we found 
that physical contact could be a contributing factor to spontaneous bursts, both from experimental analysis and 
agent-based model simulations (see Supplementary Information for details). These results suggest that the bees 
becoming active prior to a spontaneous burst may trigger the burst.

To extract the subset of bees which activate first before the global burst, we used a technique known as non-
negative matrix factorization (NMF) to dissect  bursts25, 26 (Fig. 2). This technique does not decompose bursts 
into periodic modes like the Fourier transform, but it does to a multiplication of two matrices. As this expres-
sion is not uniquely determined, we selected a best rank order of matrix to minimize the Kullback–Leibler (KL) 
divergence of the original and re-expressed the matrix.

To explain NMF in more detail, the matrix from each burst expresses the activity of all the bees sorted by its 
bCode (n) at time (t), and the matrix elements are the kinetic energy K(n, t) of the bees. The matrix K(n, t) is 
expressed by the product of two new matrices, W and M , and the group (m) of bees with high activity at each 
time is obtained from K(n, t) = W(n,m)M(m, t) . When M(m, t) is plotted along the time axis, we can identify 
the individual groups with higher activity in the burst period. The contribution of an individual to each group 
is represented by W(n,m) . The optimal size m is determined by the KL divergence (see Methods section for 
details). Here, we named “pioneer bees” ( Pb ), which is a particularly active subset at the very beginning of each 
burst (the suffix "b" expresses Burst ID).

Various individuals are involved in each burst, but it is necessary to investigate whether Pb is randomly 
determined for each burst or is determined as a social role.

In this analysis, we identified well-known honeybee biological behaviors, such as forager (F), waggle dancer 
(W), and dance follower (DF), using the tracking data. We then examined to what extent these behaviors were 
performed by Pb . It is crucial to note that the tracking data analyzed in this study were not obtained from a 
mature hive in the field, but from a single cohort colony composed of newly hatched bees. Consequently, roles 
within a single cohort colony may not be as firmly established as they would be in a fully matured hive (e. g., it 
is generally believed that bees become foragers about three weeks after hatching). There is no guarantee that a 
bee performing foraging in the first half of the experiment, yet will continue to do so in the latter half. In other 
words, the tracking data examined here derived from a hive in the midst of its maturation process, rather than 
a matured hive. Therefore, instead of employing an approach such as labeling a bee as a forager after it has 
performed foraging behavior at least once, we deemed it appropriate to redefine foraging, dancing, and dance 
following for each burst event, just as Pb is defined for each burst. Namely, we determined Fb , Wb , and DFb for 
each burst in addition to Pb.

Since dance and dance following have well-known characteristic behavior patterns and are events that take 
place in the hive, it is possible to examine to what extent Pb performed dance and dance following using our 
tracking data. On the other hand, foraging behavior is a behavior that takes place outside the hive, and our data 
did not allow us to determine whether the bees returned to the hive with food (e. g., pollen on their legs), so 
it was necessary to determine some evaluation criteria. We used two criteria for Fb : first, we defined bees that 
returned to the hive 10 min before the onset of the burst. As we mentioned before, we found that bursts are 
triggered approximately 10 min after dance events by using ETE between K and D (Fig. 1D). Since dancing is 
generally performed by bees returning from outside, this places the peak of bursts around more than 10 min after 

Figure 2.  An example of using NMF to decompose the burst pattern into groups. An example of using NMF 
to decompose the burst pattern into groups. Each number on the graph indicates the number of individuals 
belonging to that particular group. The black dotted lines indicate global kinetic energy KG(t) , and the colored 
lines represent the decomposed bases. The numbers describe the number of bees categorized in each base. In 
this case, the first group in time (the one marked as 44 in the figure) represents the pioneer bee.
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their return. Therefore, we have designated the bee returning from outside around 10 min before the peak of the 
burst as a Fb . The second criterion was to exclude "orientation flights," which are exploratory  activities27, 28. We 
identified the first day of foraging as orientation flights by disregarding the initial six flights outside the  door29.

First, we examined the relationship between Fb and Pb . Hereafter we will focus on Trial 1201 as representative 
of the experimental results. On the first day after opening the door, roughly 40% of the Pb was Fb (i.e., Fb ∧ Pb/Pb) . 
Three days after opening the door, Fb ∧ Pb/Pb was computed as 40.1% ± 3.89% on average (Fig. 3A). If consider-
ing a bee that has performed foraging at least once throughout the experiment to be Ftrial , the percentage of Ftrial 
that also became a pioneer bee at least once (i.e., Ftrial ∧ Ptrial/Ftrial) became 87.8%.

Next, the relationship between Wb and Pb was examined. On the first day of opening the door, Wb was not 
included in Pb because very little dance events occurred in this phase, but three days after opening the door, the 
percentage of Pb that showed Wb (i.e., Wb ∧ Pb/Pb) was nearly 10% (Fig. 3A). Considering the bees that exhibited 
waggle dance at least once throughout the experiment as Wtrial , the percentage of Wtrial that exhibited P at least 
once ( Wtrial ∧ Ptrial/Wtrial) became 89.6%.

Finally, we examined the relationship between DFb and Pb . DF are literally bees that observe dancing bees. 
DF have been known as agents collecting information about food locations by watching the  dance30–32. Here, we 
defined a DF as an individual that is close enough to the dancer to turn its face toward the dancer. The percentage 
of Pb that were also DFb after the third day of the door opening was 35.0% ± 4.31% on average (Fig. 3C), however, 
DFtrial ∧ Ptrial/DFtrial became 84.2% throughout a week.

In summary, when the door was opened, the bees went out to forage, and on average across all trials, approxi-
mately 30% of the returning bees became pioneer bees. A few days after the door was opened, dancers and dance 
followers emerged, and most bursts were accompanied by dancers and dance followers. These trends were also 
observed in all five trials (Fig. 3D). In addition, by calculating the mean frequency of dancing and dance follow-
ing for bees that became a pioneer bee at least once ( Ptrial) and for bees that did not become a pioneer bee at all 

Figure 3.  Time development of a honeybee hive. (A) The proportion of foragers ( Fb) among the pioneer ( Pb) 
and nonpioneer bees ( NPb) in each burst. The time the entrance was opened is indicated by the green dotted 
line in Trial 1201. (B) The proportion of dancers ( Wb) among the pioneer and nonpioneer bees in each burst 
in Trial 1201. (C) The proportion of dance followers ( DFb) among the pioneer and nonpioneer bees in each 
burst in Trial 1201. (D) The time development of the average proportion of all the trials: (left) the development 
of the average proportion of dancers among the pioneer and nonpioneer bees; (middle) the development of 
the average proportion of foragers among the pioneer and nonpioneer bees; and (right) the development of the 
average proportion of dance followers among the pioneer and nonpioneer bees. “Pre” refers to before the hive 
entrance was opened, “post 1” refers to days 1–3 after the hive entrance was opened, and “post 2” refers to day 
4 to the last day after the hive entrance was opened. The p value was determined using the Brunner-Munzel 
test. ** p < 0.01, * p < 0.1.
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during the experimental period ( NPtrial) , we found that bees that experienced “pioneering” tended to perform 
more frequently both waggle dances and dance follows (Fig. 4A,B). 

Where the rest of the pioneer bee come from? We distinguished “foraged pioneer bees” ( FPb bees, i.e. Fb ∧ Pb ) 
that foraged and returned to become a pioneer bee and “non-foraged pioneer bees” ( NFPb bees, i.e., NFb ∧ Pb ) 
that were a pioneer bee but did not leave a hive. FP and NFP bees spatially spread differently in the hive (Fig. S10). 
Both FP and NFP bees came near the door, but at the end of the post-phase (at around day 7), FP bees were still 
near the entrance, whereas NFP bees moved to the middle of the nest. Moreover, by calculating the kinetic energy 
KE for each of FP, NFP, and non-pioneer bees (NP), and the transfer entropy (ETE) among their time series (FP 
to NFP, FP to NP, NFP to NP and opposite directions), we found that there is a tendency for information flow 
from FP to both NFP and NP, and from NFP to NP. There is little or no information flow in the opposite direc-
tion (e.g., from NP to FP) (Fig.S11). In terms of information spread, these results suggested that FP bees brought 
information from the outside into the nest, and NFP bees were the nonforaging bees that cause the global burst 
spreading information throughout the hive.

Temporal changes in bursting. Finally, to characterize the burst in terms of pioneer bees, we investigated 
the similarities between the combinations of pioneer bees in each burst.

First, each burst was indexed by the individual members in Pb . Then, using this index (i. e. a pioneer bee 
matrix), the distance between bursts was determined, and each burst was projected onto a two-dimensional 
plane (this method is known as multidimensional scaling [MDS])33. In this two-dimensional space, the distance 
between the points shows the similarity of the bursts with reference to the constituent members of the pioneer 
bees in each burst. Therefore, if the same bees are pioneer bees during different bursts, then these bursts are 
plotted near each other; otherwise, they are plotted further apart.

 As shown in Fig. 5A, comparison of the bursts before and after the door was opened. Before the door was 
opened, it is represented in blue text, and that after the door was opened is represented in green to yellow text; 
We see that after the door was opened, the burst were gradually converging in the MDS space. These results sug-
gest that the member of pioneer bees are not always the same and that they do not seem to be randomly selected, 
but rather seem to change overtime. Furthermore, when focusing on bursts containing the dancers in pioneer 
bees (i.e., Wb in Pb ), these bursts seemed to aggregate within the MDS space (Fig. 5B), and a similar tendency 
was observed in other trials as well.

By examining the variances between bursts in the last two days of the experiment, and earlier bursts (in the 
first five days) across all trials in the MDS space, we statistically examined the convergence of the members of Pb . 
(Fig. 6). As a control, we calculated the variance within the MDS space after randomly selecting Pb while keeping 
the number of Pb the same as in the real data. From this analysis, we found that the member of Pb in the early 
bursts after the hive opening shows no significant difference from random selection. However, the member of 
Pb in the later bursts (6  days after the experiment started) is not randomly organized. These results suggest that 
Pb in the later bursts of the experiment gradually converges as time passes. Since our experimental data is only 
available for seven days, it is not possible to examine how Pb changes beyond seven days. Furthermore, the bee 
colony from which we collected our data was a single-cohort colony, a unique condition that wouldn’t occur 
in the wild. Notably, in a wild hive, new adult bees continuously emerge, and foragers frequently perish due to 
various accidents, causing regular turnover among hive members. 

Under the single cohort colony condition, we expect that Pb will further converge to a particular member 
over time, however, in actual wild hives, we speculate that they likely align with certain roles such as foragers, 
dancers, and dance followers rather than pioneer bees converging on specific individuals.

Figure 4.  Waggle dancer, dance follower vs. pioneer bees. Bees that became pioneer bees at least once 
throughout the experiment tend to spend more frequently doing both the waggle dance (A) and the dance 
following (B) than non-pioneer bees (bees that never became pioneers throughout the experiment). The p value 
was determined using the Brunner–Munzel test. *  * p < 0.05.
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Discussion
In this study, we investigated the bursting behavior of honeybees, a form of social synchronization in locomotion 
activities, by analyzing the tracking data of approximately 1,000 honeybees across five trials. These bursts were 
predominantly spontaneous, and that these bursts in honeybees occurred irrespective of the hive entrance being 
open or closed. We aimed to understand the underlying mechanisms that drive these bursts, their relationship 
with the roles of bees within the hive, and the potential implications for the overall functioning of the hive.

Initially, to examine global bursts, we calculated information flows between the time series of bursts (i.e., 
global kinetic energy, KG(t) ), dance events and the number of bees outside the hive (O). Our findings indicate 

Figure 5.  Classifying bursts according to individual pioneer bees using MDS and how bursts evolve over time 
(Trial 1201). (A) Time transition of the bursts in terms of the member of pioneer bees. The colors describe the 
transition of the date when the burst occurred (from blue [July 4] to beige [July 11]). The numbers associated 
with each burst form an ordered index, from 1 to 71. (B) Classifying bursts according to those preceded by 
waggle dancing (red) or no dancing. The position of each burst is the same as in Fig. 6A.

Figure 6.  Statistical analysis of the MDS space. The variance within the MDS space between the bursts in the 
last two days (light gray) and the bursts in the first five days (dark gray). On the right hand side, the bar graph 
shows the variances in MDS space randomly (500 times) selecting the pioneer bees in each burst while keeping 
the number of bees the same as in the real data. Error bars indicate the standard error in values between trials. 
The p value was determined using the Brunner–Munzel test.
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that events transpire in the following sequence after a dance event is confirmed: dance, burst, and departure 
from the hive.

Furthermore, we demonstrated that physical contact could be a contributing factor to spontaneous bursts, 
both from experimental analysis and agent-based model simulations (see Supplementary Information for details). 
These results suggest that bees becoming active prior to a spontaneous burst may trigger the burst. We designated 
these bees as "pioneer bees"(P) and employed non-negative factorization to identify them and investigated the 
characteristics of P. We examined each burst from the perspective of the members of P and the condition (for 
example, the entrance was opened or not) of the hive.

During the phase before the hive entrance opened, bees had no direct interaction with the external envi-
ronment, yet spontaneous burst events still occurred. At this stage, forager (F), waggle dancer (W), and dance 
follower (DF) did not exist. We speculate that these bursts may resemble the spontaneous periodic activity cycle 
observed by Cole in isolated ant populations in  199112.

The 1–2 days after the entrance opened, approximately 30% of the Pb performed foraging before the burst. 
However, based on the multidimensional scaling (MDS) analysis results, it seemed that the selection of the 
members of P at this stage was slightly organized compared to random selection, but no significant difference 
was observed. When we examined the spatial distribution of foraged P (FP bees, i.e., Fb ∧ Pb ) and non-foraged 
P (NFP) inside the hive, both were aggregated near the entrance. From these findings, we hypothesize that the 
burst at this stage was not so much ordered as it was a “spontaneous commotion” resulting from the hive being 
opened to the outside.

The 3–4 days after the entrance opened, we observe dancing and following behaviors, thus P members 
included not only F but also W and DF. Multidimensional scaling (MDS) analysis results revealed that P members 
were somewhat organized, unlike the bursts in a closed case. Moreover, when examining the spatial distribution 
inside the hive, FP was located near the entrance, as before, while NFP was situated toward the back of the hive. 
When assessing the information flow between FP, NFP, and non-pioneer (NP) using a method called transfer 
entropy, we discovered a significant flow of information from FP to NFP (Note that there was no significant 
information flow between FP and NFP during the 1–2 days after the entrance opened) (Fig. S11).

The tracking data used for this analysis only covers the inside of the hive, so it cannot demonstrate whether 
bees which performed foraging or dance actually found the feeding site and brought this information back to the 
hive. However, considering that the waggle dance is known to convey information about external feeding sites to 
bees inside the hive, and taking into account the results thus far including the temporal correlation between the 
dance event and the burst, it is plausible that bursts are utilized to efficiently convey such information.

Furthermore, considering the information flow between FP and NFP, it is suggested that the commotion 
caused by returning bees near the entrance of the hive spreads the burst to the interior of the hive. In other 
words, we may argue that these bursts were induced by “external information” rather than purely self-excited. 
Note that not all bursts following the appearance of W are necessarily information-induced. Figure 3B showed 
that there were bursts which P did not contain W even after their appearance inside the hive. Even after bursts 
with W occur, there may still be spontaneous bursts that are not apparently “information induced”.

From the perspective of regulating the division of labor, addressing the question of how workers acquire 
information on colony requirements, Robinson (1992) proposed a hypothesis that sampling behavior (i.e., explo-
ration behavior of states in the hive) with social interaction may be facilitated by worker activity synchrony 
observed in ant  colonies34. Furthermore, “mature hive” may indicate that the activities of individual bees are 
constrained by the entire hive (downward causation)35, and as proposed by E.O. Wilson et al. it would imply role 
 differentiation36. Burst phenomena in bee colonies may also promote or regulate division of labor; however, to 
prove this, it is necessary to prepare a hive in which bursts are intentionally suppressed and compare it with a 
normal hive. Additionally, since this study only has data for the first seven days after bees were born, analyzing 
longer tracking data can provide more precise insights into the hive’s differentiation.

Lastly, the question of which indicators can be used as measures of the state of populations (hives) is an 
attractive challenge in the research of collective behavior. The pioneer bees’ behavior and composition may 
serve as indicators of the state of the hive, providing valuable insights into the dynamics of collective behavior 
in honeybee colonies.

Methods
Data. All data were provided by G. Robinson and his group from the University of Illinois at Urbana-Cham-
paign; their detailed data collection methods are reported in their paper (17). To summarize briefly, they used a 
single-cohort hive consisting of approximately 1000 adult worker bees aged 1 day and one unrelated, naturally 
mated queen. This type of colony is commonly used in experiments analyzing the division of labor to control 
the effect of age and, instead, focus on the behavioral development of worker bees as a function of their genetics 
and social  interactions37.

Similar to other approaches for tracking  insects18–20, their method used custom 2D QR-barcode devices, 
known as bCode. These devices were attached to the thoraxes of individual bees and provided sequences of 
digital images that enabled reliable identification and tracking of every individual in the hive. The digital images 
were converted into data with coordinates (x, y) and the orientation of each bee every second, with x ranging 
from 0 to 6576 and y ranging from 0 to 4384. The hive was installed vertically in a dark room with a consistent 
temperature (approximately 35 °C) and humidity, and it was connected to the outside through a tunnel, whose 
entrance was closed until 2 or 3 days after the start of the observation and then opened to allow the workers 
to exit the hive and begin foraging (Fig. S1). The bees produced sufficient honey to feed the entire hive for the 
duration of the experiment, with sufficient bee nutrition for 2 days. Some bees could not be tracked because they 
died and because of sublations of bCode. The researchers removed the bees that could not be tracked from the 
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tracking data before opening the entrance. The software could identify the bees in 94% of all cases (determined 
by a manual analysis of 60 images), with an error rate of 1.4% (determined by a manual analysis of 5000 detected 
barcodes). There were five separate trials (five different hives) of the experiments over July 2012–2013 (Table S1).

Detection of a “forager”. After opening the entrance, bees often went outside. It is well known that bees 
go outside for “foraging.” Although the point at which a bee becomes a forager varies, under normal colony con-
ditions, forager bees are workers with an age of more than 3 weeks, and they shift to perform outside tasks, such 
as collection of water, nectar, pollen, and  resin38, 39.

Because the time duration of our experiment was shorter than 3 weeks, the experimental duration and bees’ 
age were almost similar, so that there were no “real foragers” in our experiment. We considered bees that went 
outside as “forager candidates”; however, they could become real foragers after 3 weeks. In this study, we identi-
fied a bee that returned from outside within 10 min before each burst as a “forager candidate”(Fb).

As we mentioned before, we found that bursts are triggered approximately 10 min after dance events by using 
ETE between K and D (Fig. 1D). Since dancing is generally performed by bees returning from outside, this means 
that at least the bees returned from the foraging to the hive that will dance will be in the hive 10 min before the 
peak of the burst. Therefore, we have designated the bees that returned between 600 and 1000 s (for detecting 
Pb , we used ± 1000 s from the peak of each burst for our analysis. Details in the NMF description section) from 
the peak of the burst as the foragers of this burst, denoted as Fb.

The threshold of 10 min is based on the results in Fig. 1D that the information flow from dance to burst occurs 
in roughly 10 min, and that the dance is performed by bees returning to the hive from the outside. Moreover, 
to focus on foraging activities, we had to omit “orientation flights”16, 17 that occurred several days before the 
foraging behavior. To omit orientation flights, the forager candidate’s first day of foraging was defined as the 
first day on which it has at least six reads of going outside and > 25% of which occurred before 12:00 (based on 
personal observations, Gene Robinson’s group was aware that in their locality, most orientation flights occur in 
the afternoon). This criterion for the detection of the orientation flight is similar to that in the previous study by 
Gene Robinson’s  group18. Any flight activity on or after this day was defined as foraging activity.

Detection of waggle dance event. By performing a “waggle dance,” foragers can share directions and 
the distance to patches of flowers and water sources with other hive  mates30,40,41. The dancing bees waggle back 
and forth as they move forward in a straight line and then circle around to repeat the dance. We developed an 
algorithm for detecting a waggle dance in which the rotation of the bee was used as an indicator of the waggle 
dance.

The orientation of a bee at time t, where nxt and nyt denote the respective x and y components of the head 
direction of each bee, is as follows:

If nt · nt+1 < 0 , then the orientation of the bee changed to > 90°. As the first condition was to determine 
whether a bee was dancing, they used the following parameter: in 5 consecutive seconds, there should be at least 
four negative scalar products, which implies that, in 5 consecutive seconds, the potential dancer had to change 
its orientation at least four times to > 90°.

As the second criterion, if nt × nt+1 > 0 , then the bee made a right turn. When the orientation of the bee 
alternated between left turn and right turn over 5 consecutive seconds, it was identified as a “potential dance.” We 
identified a bee that met both conditions as a “dance.” To confirm the success rate of the detection, we attempted 
to validate the results by watching the videos of the detected dances and by considering the features of the dance 
(e.g., circling, have followers, and trophallaxis) that were related to dance. We found that, in our tested list of 
500 dances, the success rate of the detected dances was 75–82%.

Detection of dance follow event. Dance followers receive information about the feeding area from 
 dancers30, 31. Their existence was observed by von Frisch in  196730. The dance follower tracks the motion of a 
dancer by keeping its head facing. In this study, we defined a dance follower as a bee that is within 600 pixels 
(approximately the size of a bee) of the detected dancer when the dancer is dancing and where the direction vec-
tor from the follower to the dancer and the vector of the follower’s head direction are always within 90°.

Detection of a “burst”. We also required a criterion to detect the “bursting” phase. Kleinberg’s burst detec-
tion algorithm was used to detect bursting  events21. This algorithm assumes that the intervals of the events occur 
independently according to the following exponential distribution:

Here,� is the mean frequency, defined as N/T , where N is the total number of events over the time series and T 
is the total length of the time series. In addition, x is the interval between consecutive events. Bursts were detected 
by comparing the expected frequency with the actual event frequency observed within the specific time window.

This algorithm originally required timestamps of the sequence of events in question. However, our data are 
provided as a time series KG . Here, we consider KG to be a frequency-based sequence, and we must convert our 
frequency-based data into interval-based data. We simply calculated the inverse of the frequency as the interval 
between events. For example, a KE value of 1 implies that an event occurs every second. On the other hand, with 
a KE value of 10, the frequency of an event is considered to be every 0.1 s. Based on this calculation, the total 
number of events can be calculated. We applied the algorithm after removing the diurnal cycle of KG(t) . The 

nt = (nxt , nyt )

f (x) = �e−�x
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removal of the daily cycle was performed by subtracting the time series of KE obtained by applying a moving 
average with a time window of 12 h from the original KE time series.

We defined the burst level at every time point t  of individual events. The burst level was expressed as bl(t) . 
When bl(t) was ≥ 1, we considered it as a burst. When the local event frequency at time t  , shown as � , exceeded 
a certain threshold, the burst level was updated. When �t exceeded �s1 , the burst level bl(t) became 1 from 0. In 
the same manner, if �t exceeded �s2 , bl(t) became 2 from 1, and so on. We used s = 2 , so the burst level would 
increase by 1 when the frequency doubled the previous one.

The algorithm would have detected a large number of bursts whenever the actual frequency of events fluctu-
ated around the boundary between two burst levels, 0 and 1. To alleviate this, we introduced another parameter 
γ into the algorithm. We used γ = 1 (see  reference21 for details). We defined the “burst period” as a period when 
the burst level was ≥ 1. We selected these parameter values by observing the time series to ensure that the algo-
rithm detects most of the certain detects we see.

In this study, we explored the bursting behavior detected by Kleinberg’s burst detection algorithm. However, 
there were also small burst-like activities that were not detected by Kleinberg’s algorithm (depending on the 
parameters of the algorithm). We speculate that there are some reasons why these small bursts do not grow into 
larger, global bursts. By examining these small bursting behaviors, we may elucidate a more detailed mechanism 
for the bursting behavior.

Thinking about the biological significance of these parameters is an interesting idea. While we don’t have an 
immediate answer to this, our proposed computational agent model has an algorithm that is similar to Klein-
berg’s. This algorithm includes a threshold for agents to become activated (which corresponds to s) and the kinetic 
energy of the active state compared to those in a quiet state (which corresponds to λ). Since these parameters 
in the computational model are applied to individual agents, they are not equivalent to the ones in Kleinberg’s 
algorithm. However, we believe that these are biological meanings of those parameters.

Effective transfer entropy between K, O and D. To examine the relationship of influence (information 
flow) between the time series of KG (K), the number of out-hive bees (O) and the number of waggle dancers (D), 
we calculated effective transfer entropy (ETE)23. ETE is a metric used to quantify the directional flow of informa-
tion between two interacting systems or variables, which is an improvement of the original transfer entropy (TE) 
developed by  Schreiber24. TE from a time series Y(t)

(

= y1, y2, . . .
)

 to X(t)(= x1, x2, . . . ) is given by

where x(k)t =
(

xt , . . . , xt−k+1

)

 , y(l)t =
(

yt , . . . , yt−l+1

)

 , and p
(

x|y
)

 denotes the conditional probability. It is well 
known that the estimates of transfer entropy are generally biased owing to small sample effects. To avoid this 
bias, we calculated the effective transfer entropy (ETE) as follows:

where XShuffle describes the randomized time series of X. By shuffling the time series, the time series dependence 
of X and Y is broken, and we can calculate TE due to the small sample effect. To derive consistent estimates, we 
repeated the shuffle 300 times and subtracted this average from TEX→Y to obtain the effective transfer entropy.

TE is sensitive to the time window of the data sampling. For instance, estimating TEs using a time series 
acquired at a sampling rate of 1 s for a time series where information flow exists on a 10-min timescale may not 
yield correct results. Here, we calculated the ETE between the time series of the number of K, D, O while varying 
the time window size, ranging from a few minutes to an hour (2, 5, 10, 30, and 60 min). We set the parameter 
of the estimation of ETE k and l = 1 . We used the time series of the phase after the entrance was opened for the 
calculation, because the dance events occurred only at the phase. We used the R package RTransferEntropy42.

Classifying bee behaviour by activity and activity timing
To examine when and which bees were initializing and committing to organizing a global burst, we used NMF, 
which has become a popular decomposition  algorithm25, 26.

Given a nonnegative matrix X , this algorithm finds the nonnegative matrix factors W  and H , where 
W ∈ Rm×n , H ∈ Rr×n , and r is the number of components (known as rank), as follows:

In practice, r is often chosen such that r ≪ (m, n).
A critical parameter of NMF is the factorization rank r that defines the number of representative bee activi-

ties used to approximate the target matrix. The method of setting the value of r is to attempt different values and 
compute some quality measures and then select the best value. Several approaches are available to decide the 
optimal value of r—for example, Brunet et al. proposed choosing the first value of r for which the cophenetic 
coefficient starts  decreasing26. Hutchins et al. suggested choosing the first value where the residual sum of the 
squares curve presents an inflection  point43. We decided to use the approach of Brunet et al. in this study. The 
advantage of this algorithm is that it can factorize the input matrix without destroying the cluster structure of 
the original matrix. To estimate r , we calculated the cophenetic coefficient, changing the value of r from 2 to 10.

In general, H is known as the base (feature) matrix, and W is known as the weight matrix. In the case of our 
analysis, X ∈ Rm×n implies the Ki matrix at the bursting phase, as determined by Kleinberg’s algorithm. In addi-
tion, n is the number of individual bees, m is the time length of the bursting phase, and the matrix elements are 
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�
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Ki . To extract X from the original Ki matrix, we explored the timestamps of the peak points for each burst tsb , 
where b is the index of the detected bursts. We then defined Xb as follows:

Note that we confirmed that the minimum interval of the peaks of the detected bursts was 2538 s. The thresh-
old of 1000 steps were set to be about half of the smallest value (2538 s) of each burst sense, because a threshold 
longer than 1000 steps may be covered by the falling edge of the previous burst. Also, if the threshold is shorter 
than 1000 steps, the rising edge of the burst may not be included (i.e., the pioneer bee may not be extracted prop-
erly). H describes the representative examples of the time series Ki (the number of examples [base] depends on 
r ). The method starts by randomly initializing the matrices W and H , which are iteratively updated to minimize 
a functional divergence. To estimate the matrices W and H , as a local minimum, the NMF algorithm solves the 
following minimization problem, where D is a loss function based on the Kullback–Leibler divergence:

There are some types of update functions for solving the prior minimization problem iteratively. In this study, 
we used the “multiplicative update rules.” The initial entries for W and H were drawn from a uniform distribution. 
The number of iterations of the update function was 500. The error rate converges sufficiently well at around 500 
iterations. We executed it 50 times, changing the initial matrices, and we then selected the solution in which the 
cost function was minimized.

Classifying “pioneer bees” using NMF. NMF decomposes the original matrix into a matrix composed 
of feature vectors and its weight matrix; hence, it is often used as a soft-clustering algorithm. The cluster member 
was computed as the index of the dominant basis component for each bee. For instance, if the maximum value 
of the weight vector w ( = W(,beeZ) ) of bee Z was w{i(1≤i≤r)} , bee Z was classified as the ith base.

We identified the individual corresponding to the basis vector where the maximum amplitude was observed 
before the range identified as a burst by the Kleinberg algorithm as a pioneer bee. If the largest value of the 
recomposed Ki of bee Z at burst i was smaller than the mean Xi , we did not identify bee Z as a “pioneer bee.”

Such bees were identified for each observed burst. We created the “pioneer-bee binary matrix” PM{i,j} , where 
the columns represent each burst index and the rows represent each individual bee index. The matrix element 
was either 0 or 1—if a bee i was categorized as a “pioneer bee” of the burst j , then the matrix element 

(

i, j
)

 was 
assigned 1; otherwise, it was 0.

Dimension reduction of the “pioneer‑bee binary matrix”. To examine the similarity between the 
combination of pioneer bees in different bursts, we conducted a dimensional reduction of PM{i,j} using nonmet-
ric multidimensional scaling (nMDS)33.

The input data of nMDS is a distance matrix. In this study, we first created the distance matrix from the “pio-
neer-bee matrix.” We used the Jaccard index for computing the distance of a binary matrix. Next, we reduced the 
dimension of the distance matrix using nMDS. In the reduced space, the distance between the points exhibited 
the behavioral similarity of the pioneer bees in each burst. As such, if the same bees were pioneer bees during 
different bursts, then these bursts are represented close to each other; otherwise, they are presented further apart. 
We iterated until the stress (the loss function of nMDS) was smaller than 0.2.

Statistical analysis. We used the Brunner-Munzel test for statistical  analysis44. This method is an unpaired 
two-sample test that does not assume normality or equal variances. Since many of our data analyzed in this 
study could not be assumed to have equal variances or normality, we used this method. The calculations were 
performed using the lawstat library in R.

 Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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