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On the structure of mirrored 
operators obtained from optimal 
entanglement witnesses
Anindita Bera 1*, Joonwoo Bae 2, Beatrix C. Hiesmayr 3 & Dariusz Chruściński 1

Entanglement witnesses (EWs) are a versatile tool in the verification of entangled states. The 
framework of mirrored EW doubles the power of a given EW by introducing its twin—a mirrored EW—
whereby two EWs related by mirroring can bound the set of separable states more efficiently. In this 
work, we investigate the relation between the EWs and its mirrored ones, and present a conjecture 
which claims that the mirrored operator obtained from an optimal EW is either a positive operator or 
a decomposable EW, which implies that positive-partial-transpose entangled states, also known as 
the bound entangled states, cannot be detected. This conjecture is reached by studying numerous 
known examples of optimal EWs. However, the mirrored EWs obtained from the non-optimal ones 
can be non-decomposable as well. We also show that mirrored operators obtained from the extremal 
decomposable witnesses are positive semi-definite. Interestingly, the witnesses that violate the 
well known conjecture of Structural Physical Approximation, do satisfy our conjecture. The intricate 
relation between these two conjectures is discussed and it reveals a novel structure of the separability 
problem.

Entanglement witnesses (EWs) are a both theoretical and experimental tool to detect entangled states1–6. When 
an entangled state ρ realized in experiment is identified by quantum state tomography, there exists an EW that 
finds if it is entangled, i.e.,

where SEP denotes the set of separable states. In fact, Eq. (1) can be used as a definition of entangled states: a 
bipartite state ρ is entangled if and only if there exists an EW W such that tr[Wρ] < 0 , and therefore W detects, 
i.e. witnesses the entanglement1.

Since EWs correspond to the Hermitian operators, they can be realized experimentally for the verification 
of entangled states. This also means that entanglement can be directly verified in experiment without the iden-
tification of a given state, i.e. by in general, less measurement setups. In general, an EW can be decomposed into 
local observables,

with some numbers of cij and local observables Ai and Bj . A collection of expectation values of local observables 
�Ai ⊗ Bj�ρ = tr[Ai ⊗ Bjρ] so that one computes tr[Wρ] =

∑

ij cij�Ai ⊗ Bj�ρ detects if a state ρ is entangled.
Due to the well known Choi–Jamiołkowski isomorphism7,8, there is one to one correspondence between 

the block-positive operators in HA ⊗HB and positive maps B(HA) → B(HA) , where B(H) denotes bounded 
linear operators acting on H (in this paper we consider only finite dimensional Hilbert spaces). Entanglement 
witnesses correspond to positive but not completely positive maps9–11.

Optimal EWs are of particular importance12. An EW W is called optimal if W − ǫP for all non-negative opera-
tors P ≥ 0 and for any ǫ > 0 is no longer an EW. That is, one cannot improve W by subtracting a positive operator.

Entanglement witnesses, being Hermitian operators, represent physical observables and hence in principle, 
can be implemented in the laboratory. However, positive maps which are not completely positive are not physi-
cally realizable. The idea of structural physical approximation (SPA) is to mix a positive map with an amount of 

(1)tr[Wρ] < 0, whereas 0 ≤ tr[Wσsep], ∀ σsep ∈ SEP

(2)W =
∑

i,j

cijAi ⊗ Bj ,
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the completely depolarizing map as small as possible in order to obtain a physically realizable completely positive 
map13,14. Equivalently, SPA to an entanglement witness W is defined by

with the smallest p > 0 such that X ≥ 0 (i.e. p = −�min , where �min is a minimal eigenvalue of W). Note that a 
SPA operator X may also be interpreted as a not normalized quantum state.

The SPA conjecture in Ref.15 has asserted that SPA to an optimal EW leads to a separable state X, or, equiva-
lently, SPA to optimal positive trace-preserving map leads to entanglement-breaking quantum channels (cf. also 
Refs.16,17 and Ref.18 for an review). It was firstly supported by many examples of optimal EWs18–21, however, later 
it was disproved22–24.

In this paper, we consider a similar concept based on the notion of a mirrored operator introduced in Ref.25. 
Given an EW W, we define a mirrored operator by

with the smallest µ > 0 such that WM is block-positive, i.e. �ψ ⊗ φ|WM|ψ ⊗ φ� ≥ 0 . Moreover, if the maximal 
eigenvalue of W satisfies �max > µ , then WM is an EW and hence one has a pair (W ,WM) of mirrored EWs25, 
which can double up the capability of detecting entangled states. This framework is also referred to as “entangle-
ment witnesses 2.0” since every witness comes with another one, in analogy to software programs that improve 
with each new version.

An important property of EWs is its (non)-decomposibility. An EW is called decomposable if 
W = A+ BŴ , with A,B ≥ 0 and Ŵ stands for the partial transposition. Note that decomposable wit-
nesses cannot detect PPT entangled states, i.e. if W = A+ BŴ , then Tr(Wσ) ≥ 0 for all PPT states σ . This 
is easily proved by exploiting the fact that the trace is invariant under transposition, i.e. for a PPT state σ , 
Tr(Aσ)+ Tr(BŴσ) = Tr(Aσ)+ Tr(BσŴ) ≥ 0 , since A,B ≥ 0 and σ , σŴ ≥ 0.

In this paper, we investigate the structure of mirrored EWs. In particular, we address the following question: 
given an optimal EW, what are the properties of the corresponding mirrored one? As an answer, we propose a 
conjecture which says that given an optimal EW, its mirror operator WM is either a decomposable EW or just 
a positive operator. In other words, there does not exist a mirrored pair of non-decomposable EWs (W ,WM) 
such that at least one of them is optimal. The assumption about optimality is crucial. Actually, we show one can 
construct a mirrored pair of non-decomposable EWs but none of them is optimal. We believe that our analysis 
paves a new avenue of finding a fine structure of the set of entanglement witnesses and thus the structure of 
separable and PPT-entangled states in the Hilbert space.

The paper is organized as follows. In Section “Mirrored entanglement witnesses”, we discuss the concept of 
mirrored EWs and propose our conjecture. In Section “Optimal entanglement witnesses:basic properties”, we 
review the basic properties of optimal entanglement witnesses. Section “Mirroring optimal decomposableentan-
glement witnesses” provides the analysis of our conjecture for decomposable EWs. Moreover, we show that our 
conjecture holds true for a class of extremal decomposable EWs. In Section “Mirroring non-decomposableen-
tanglement witnesses”, we provide several examples of optimal non-decomposable EWs supporting the above 
conjecture. Additionally, we construct an entanglement witness in C4 ⊗ C

4 which is non-decomposable and 
not optimal and find that the mirrored EW is non-decomposable as well. Interestingly, we include the analysis 
of optimal EWs which were used to disprove SPA conjecture22,24. Numerical analysis shows that both examples 
support our conjecture. We finally conclude in Section “Conclusions”.

Mirrored entanglement witnesses
The concept of mirrored EW is closely related to SPA which we shortly summarize here (see Fig. 1). Given a 
bipartite operator Q ≥ 0 , let us define the followings:

(3)X = p 1A ⊗ 1B +W ,

(4)WM = µ1A ⊗ 1B −W ,

SEP

ENT

DEW

NDEW

I

W

WM

W

Figure 1.   The sets of separable states (SEP), entangled states (ENT), decomposable EWs (DEWs), and non-
decomposable EWs (NDEWs) are compared in the view of our conjecture and the SPA one. Given an NDEW 
W, SPA to W is denoted by ˜W and WM is the corresponding mirrored witness. The SPA conjecture addresses 
that SPA to an optimal EWs are separable states. Counterexamples are, however, obtained in Refs.22–24. Our 
conjecture suggests that a mirrored operator WM obtained from an optimal EW is either a decomposable EW or 
a positive operator.
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where |ψ ⊗ φ� is normalized product vector in HA ⊗HB . Defining a pair of block-positive operators with the 
values obtained above

or equivalently

one can say that a positive operator Q represents two complementary SPA W+ and W− , i.e a positive  SPA W+ 
and negative SPA to W−.

Moreover, the paired EWs in (6) are related as follows:

where µ = a+ − a− . Hence, we can say that two EWs W+ and W− are mirrored to each other, see also Eqs. (3) 
and (4). To clarify the above relations, the separability bounds of W+ are

where the upper bound is equivalent to the condition tr[W−σsep] ≥ 0 , the very definition of an entanglement 
witness. From Eq. (8), a reciprocal relation leads to the separability bounds for W−,

where the upper bound is equivalent to the condition tr[W+σsep] ≥ 0.
Having introduced mirrored EWs, we are now ready to address the conjecture.

Conjecture  A mirrored operator obtained from an optimal EW is either a positive operator or a decomposable EW 
and hence cannot detect PPT-entangled states.

Equivalently, the above conjecture asserts that there does not exist a pair of non-decomposable EWs (W ,WM) 
such that at least one of them is optimal. Similarly to the SPA conjecture, the conjecture mentioned above is 
concerned with the optimality of an EW and its mirrored one. The conjecture is motivated by the observation in 
Eq. (8) that shows a trade-off relation between EWs: if one is closer to the identity, the other one is further away 
from the identity. Our conjecture is that this observation is related to the optimality of EWs.

Optimal entanglement witnesses: basic properties
Given an EW W, let us denote DW , by a subset of states detected by W12, i.e. a set of states ρ such that tr(Wρ) < 0 . 
One calls W1 is finer than W2 if DW2 ⊆ DW1 . W is optimal if there is no finer EW than W. Optimality of W is 
equivalent to the following property12: if W is optimal, then W − P is no longer an EW, where P is an arbitrary 
positive operator. It means that one cannot improve W (i.e. make it finer) by subtracting P ≥ 0 . Note that opti-
mality does not protect to subtract a block-positive operator. Finally, W is extremal if and only if W − B is no 
longer an EW, where B is an arbitrary block- positive operator such that B  = �W.

Clearly, any extremal EW is optimal. However, the converse needs not be true. An EW corresponding to so-
called reduction map Rn : Mn(C) → Mn(C) defined by

is optimal for all n ≥ 2 but extremal only for n = 2.
In general, given W it is very hard to check whether it is optimal. There exists, however, an operational suf-

ficient condition for optimality12. Denote by PW a set of product vectors |ψ ⊗ φ� such that

One has the following12

Proposition 1  If span PW = HA ⊗HB , then W  is optimal.

In this case, i.e. when span PW = HA ⊗HB , one says that W has the spanning property. It should be stressed, 
however, that there exists optimal EWs without spanning property (cf. recent discussion in Ref.26).

Consider a decomposable EW W = A+ BŴ in Cn ⊗ C
m . Recall that W is optimal if W = BŴ and B is sup-

ported on completely entangled subspace (CES)12. A linear subspace � ⊂ C
n ⊗ C

m defines a CES if it does not 
contain a product vector. It is well known that a maximal dimension of any CES in Cn ⊗ C

m is (n− 1)(m− 1)
27,28 The simplest example of CES is a 1-dimensional subspace spanned by an arbitrary entangled vector 

(5)
a− := inf

|ψ⊗φ�
�ψ ⊗ φ|Q|ψ ⊗ φ�,

a+ := sup
|ψ⊗φ�

�ψ ⊗ φ|Q|ψ ⊗ φ�,

(6)
W− :=a+1A ⊗ 1B − Q,

W+ :=Q − a−1A ⊗ 1B,

(7)W+ + a−1A ⊗ 1B = Q = a+1A ⊗ 1B −W−

(8)W+ +W− = µ1A ⊗ 1B,

(9)0 ≤ tr[W+σsep] ≤ µ, ∀σsep ∈ SEP,

(10)0 ≤ tr[W−σsep] ≤ µ, ∀σsep ∈ SEP,

(11)Rn(X) = 1ntrX − X,

(12)�ψ ⊗ φ|W |ψ ⊗ φ� = 0.
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|�� ∈ C
n ⊗ C

m . The corresponding entanglement witness |����|Ŵ is extremal4. It is, therefore, clear that any 
decomposable EW is a convex combination of extremal witnesses.

For non-decomposable EWs, the situation is much more complicated29. Recall that a bipartite state is called 
a PPT state (Positive Partial Transpose) if ρŴ ≥ 0 , i.e. both ρ and ρŴ are legitimate quantum states. Now, W is a 
non-decomposable EW if and only if it detects a PPT-entangled state. Let DPPT

W  be a set of PPT states detected 
by W. Now, W1 is non-decomposable–finer than W2 if DPPT

W2
⊆ DPPT

W1
 . An EW W is non-decomposable–optimal 

if there is no non-decomposable–finer EW than W. Actually, if an EW W is non-decomposable–optimal, then 
W − D for a PPT operator D is no longer an EW. It means that one cannot improve W (i.e. make it finer) by 
subtracting a PPT operator P. Interestingly, it has been proven12

Proposition 2  W is non-decomposable–optimal if and only if both W and WŴ are optimal.

A similar concept but on the level of states is provided by so-called edge state30.

Definition 1  A PPT-entangled state ρ is called an edge state if σ = ρ − ǫ|ψ ⊗ φ��ψ ⊗ φ| is no longer a PPT 
operator for arbitrary product state |ψ ⊗ φ� and arbitrarily small ǫ , i.e. either σ or σŴ is not positive.

It simply means that if ρ is an edge state, then one cannot subtract any PPT state out of it without destroying 
a PPT property, as it is shown in Fig. 2. Authors of30 provided the following representation of non-decomposable 
EWs: let ρedge be an edge state. To construct an EW detecting ρedge , consider two positive operators P and Q 
such that

where Ran and Ker denote the range and the kernel of the corresponding operator, respectively. Define

with ǫ− = inf |ψ⊗φ� �ψ ⊗ φ|(P + QŴ)|ψ ⊗ φ� . By construction, W is block-positive and

which shows that W is a non-decomposable EW detecting ρedge . Note that using Eq. (13), one can easily find 
the mirrored operator

with ǫ+ = sup|ψ⊗φ� �ψ ⊗ φ|(P + QŴ)|ψ ⊗ φ� . However, it is not clear that whether the formula (15) provides a 
decomposable EW, non-decomposable EW or a positive operator. In what follows, we provide several examples 
of optimal non-decomposable EWs for which WM is never non-decomposable, i.e. it is either decomposable EW 
or a positive operator.

Finally, we observe that if WM is a mirrored operator to W i.e.

then

is a mirrored operator to WŴ with the same µ.

Ran P ⊆ Ker ρedge RanQ ⊆ Ker ρŴ
edge,

(13)W = P + QŴ − ǫ− 1A ⊗ 1B,

(14)tr(Wρedge) = tr[(P+QŴ)ρedge] − ǫ− = −ǫ− < 0,

(15)WM = ǫ+ 1A ⊗ 1B − (P + QŴ),

(16)WM = µ1A ⊗ 1B −W ,

(17)WŴ
M = µ1A ⊗ 1B −WŴ ,

SEP

PPT

δ

σsep

ρ ∆

W

WM

W
′

non− PPT

Figure 2.   The set of quantum states is depicted. A PPT-entangled state ρ can be expressed as a convex mixture 
of a separable state σsep and an edge state δ . EWs such as W or W ′ , which are also non-decomposable, may detect 
an entangled state ρ . For mirrored EWs W and WM , the separability window is denoted by �.
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Mirroring optimal decomposable entanglement witnesses
Let us consider a decomposable EW in Cn ⊗ C

m . We start our analysis with extremal decomposable EWs, i.e. 
W = |����|Ŵ for some entangled state |�� ∈ C

n ⊗ C
m4,5.

Proposition 3  If W = |����|Ŵ , then the mirrored operator WM is positive semi-definite.

Proof  Let

stand for the Schmidt decomposition of |�� with s0 ≥ s1 ≥ s2 ≥ · · · ≥ 0 . Note that the maximal eigenvalue of 
|����|Ŵ equals s20 and it corresponds to the product vector |e0 ⊗ f ∗0 � . One has therefore

and hence the mirrored operator

is by construction positive definite. 	�  �

In particular, if |�� = |�+
n � is a maximally entangled state, i.e. |�+

n � = 1√
n

∑n−1
k=0 |k ⊗ k� , then s20 = 1/n and 

hence

where F is a flip (swap) operator defined via

Remark 1  Interestingly, if W = |����|Ŵ , then the corresponding SPA is always a separable operator15. Hence, 
for extremal decomposable EWs both conjectures hold true.

Beyond the extremal EWs W = |����|Ŵ , we do not have a proof of our conjecture. However, there are several 
examples supporting it.

Example 1  Consider an EW corresponding to the reduction map (11)

with P+n = |�+
n ���+

n | being the rank-1 projector onto canonical maximally entangled state. One easily finds 
µ = 1 and hence the mirrored operator

is evidently positive definite. Moreover, SPA corresponding to Eq. (23) satisfies the SPA conjecture15.

Example 2  In Ref.24, the authors have provided a family of decomposable witnesses in C3 ⊗ C
3 mentioned below 

which violate SPA conjecture:

with

where Pkl = |�kl���kl | denotes a set of rank-1 projectors with |�kl� = Wkl ⊗ I|�00� , Wkl is a Weyl operator 
defined by Wkl|i� = wk(i−l)|i − l� with w = e2π i/3 . One can express Wγ explicitly in the following matrix form

(18)|�� =
∑

k=0

sk|ek ⊗ fk�,

(19)µ = sup
|ψ⊗φ�

�ψ ⊗ φ|����|Ŵ|ψ ⊗ φ� = s20,

(20)WM = s20 In ⊗ Im − |����|Ŵ ,

(21)WM =
1

n

(

In ⊗ In − F

)

≥ 0,

(22)F = n|�+
n ���+

n |Ŵ =
n−1
∑

i,j=0

|i��j| ⊗ |j��i|.

(23)W = In ⊗ In − nP+n ,

(24)WM = nP+n ,

(25)Wγ = 3BŴγ ,

(26)Bγ =
1− γ

2
P10 +

1− γ

2
P20 + γP11,
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where, to make the formula more transparent, we replaces zeros by dots. It was proved24 that for each γ ∈ (0, 1) , 
Wγ is an optimal entanglement witness. However, being an optimal EW, it does not satisfy SPA conjecture. 
Indeed, it turns out24 that SPA of Wγ defines an entangled state for some range of γ , specifically, for γ ∈ (0.7, 1) . 
Consider now a mirrored operator

Clearly µ depends upon γ . It turns out that for γ ≥ 0.7 , one has µ = γ+1
2 .

Interestingly, both Wγ and Wµ
γ  can detect the Bell states. However, we have not been successful to construct 

a bound entangled state which will be detected by Wµ
γ  . We have tried all magic simplex states31–33, i.e. all pos-

sible convex combinations of a complete set of Bell states. Recently, the authors in Refs.34–36 have shown that 
with a probability of success of 95% , one can solve the separability problem for that huge family of states i.e. for 
Bell diagonal qutrit states with positive partial transposition. However, none of those states can be detected by 
the witness under our investigation. Summing up, our usual methods to find a PPT-entangled state, which is 
detected by Wµ

γ  , have failed.

Mirroring non‑decomposable entanglement witnesses
In this Section, we analyze our conjecture for non-decomposable EWs. Again, we do not provide the proof but 
in what follows, we present several examples supporting the conjecture.

EWs from unextendible product bases.  Consider the well known EW proposed in Refs.37,38: if 
|ak ⊗ bk� ∈ HA ⊗HB defines an unextendible product basis, i.e. an incomplete orthogonal product basis in 
HA ⊗HB whose complementary subspace contains no product vector, then the following operator

with

defines a non-decomposable EW. One finds for the mirrored operator

with

Hence, the mirrored operator is a projection onto a subspace orthogonal to span {|ak ⊗ bk�} . After an appro-
priate normalization, WM defines a PPT state and

that is, WM is a PPT-entangled operator detected by W38.

Choi EW and its generalization in C3

⊗ C
3.  As a second example, let us consider a family of EWs in 

C
3 ⊗ C

3 defined by39

(27)Wγ =





























1− γ . . . . . . γw .

. γ . − 1−γ
2 . . . . .

. . . . γw∗ . − 1−γ
2 . .

. − 1−γ
2 . . . . . . γw∗

. . γw . 1− γ . . . .

. . . . . γ . − 1−γ
2 .

. . − 1−γ
2 . . . γ . .

γw∗ . . . . − 1−γ
2 . . .

. . . γw . . . . 1− γ





























,

(28)Wµ
γ = µ I3 ⊗ I3 −Wγ .

(29)W =
∑

k

|ak ⊗ bk��ak ⊗ bk| − ǫ−1AB,

(30)ǫ− := inf
|a⊗b�

∑

k

|�ak ⊗ bk|a⊗ b�|2,

(31)WM = ǫ+1AB −
∑

k

|ak ⊗ bk��ak ⊗ bk|,

(32)ǫ+ := sup
|a⊗b�

∑

k

|�ak ⊗ bk|a⊗ bk�|2 = 1.

(33)Tr(WWM) = −ǫ−TrWM < 0,

(34)

W[a, b, c] =
2

∑

i=0

[

a |ii��ii| + b |i, i + 1��i, i + 1|

+ c |i, i + 2��i, i + 2|
]

−
2

∑

i �=j=0

|ii��jj|,
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with a, b, c ≥ 0 satisfying a+ b+ c ≥ 2 and if a ≤ 1 , then additionally bc ≥ (1− a)2 . This family provides a 
generalization to the well known Choi witness corresponding to W[1, 1, 0] or W[1, 0, 1]40,41. Choi witness 
was proved to be extremal42,43 and hence also optimal. Interestingly, being optimal it does not have a spanning 
property21,44. A subclass of W[a, b, c] defined by45 (cf. also46)

was proved to be optimal if and only if a ∈ [0, 1] , and extremal if and only if a ∈ (0, 1] . Moreover, W[a, b, c] is 
decomposable only if b = c = 1.

Proposition 4  The mirrored operator to (34) is

•	 positive if a ∈ [0, 1/3],
•	 decomposable EW if a ∈ (1/3, 4/3].

Proof  Let us use the following convenient parameterization45,46

that is, one has a 1-parameter family of EWs W(φ) for φ ∈ [0, 2π) . W(π/3) and W(5π/3) correspond to a 
pair of Choi witnesses and W(π) corresponds to EW defined via the reduction map R3 . W(φ) is optimal iff 
φ ∈ [π/3, 5π/3] . One easily finds for µ(φ) (cf. the Fig. 3)

such that the mirrored operator

is block-positive. Note, that b(π) = c(π) = 1 . Now, for φ ∈ [0, 2π/3] ∪ [4π/3, 2π) one has

with

a+ b+ c = 2 a2 + b2 + c2 = 2,

(35)

a =
2

3
(1+ cosφ),

b =
1

3
(2− cosφ −

√
3 sin φ),

c =
1

3
(2− cosφ +

√
3 sin φ),

(36)µ(φ) =
{

4/3 ; φ ∈ [0, 2π/3] ∪ [4π/3, 2π)
c(φ) ; φ ∈ [2π/3,π ]
b(φ) ; φ ∈ [π , 4π/3]

(37)WM(φ) = µ(φ)13 ⊗ 13 −W(φ),

(38)WM(φ) =
4

3
13 ⊗ 13 −W(φ) = 3

(

4

3
− a

)

P+3 + BŴ(φ),

0 1 2 3 4 5 6
0

0.5

1

1.5

   p
   a

ϕ

ϕ
=
π/
3

ϕ
=
2π

/3

ϕ
=
4π

/3

ϕ
=
5π

/3

a

Figure 3.   The plot of µ = µ(φ) and a = a(φ).
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Indeed, for φ ∈ [0, 2π/3] ∪ [4π/3, 2π) one has a, b, c ≤ 4/3 . Therefore, the first part of Eq. (38) is positive. We 
now will show that B(φ) ≥ 0 . Note that the positivity of B(φ) is equivalent to positivity of the following 2× 2 
submatrix

Simple calculation shows that the determinant of this submatrix equals to 0, which proves that B(φ) ≥ 0 and 
hence WM(a, b, c) is decomposable.

Now, if φ ∈ (2π/3,π ] , we can express WM in the following form

where

This proves that WM(φ) ≥ 0 in φ ∈ (2π/3,π ] . Similar analysis shows that WM(φ) ≥ 0 for φ ∈ [π , 4π/3] . We 
summarize our finding in Table 1. 	�  �

Remark 2  Note that if WM(φ) ≥ 0 , i.e. φ ∈ [2π/3, 4π/3] , then tr[WM(φ)W(φ)] < 0 , i.e. ρ = WM(φ)/TrWM(φ) 
defines a PPT entangled state. Indeed, one has

Note, that trW(φ) = 3(a + b+ c) = 6 and tr[W(φ)W(φ)] = 12 , and hence

is always negative due to µ(φ) ≤ 4/3.

Mirrored pairs in C4

⊗ C
4.  Let us consider now a family of EWs being a generalization of a family 

W[a, b, c] in C4 ⊗ C
447

(39)

B(φ) =
(

4

3
− b

) 2
∑

i=0

|i��i| ⊗ |i + 1��i + 1|

+
(

4

3
− c

) 2
∑

i=0

|i��i| ⊗ |i + 2��i + 2|

+
(

a−
1

3

) 2
∑

i �=j=0

|i��j| ⊗ |j��i|.

(40)
(

4/3− b a− 1/3
a− 1/3 4/3− c

)

.

(41)

WM(φ) =(c − a)

2
∑

i=0

|i��i| ⊗ |i��i|

+ (c − b)

2
∑

i=0

|i��i| ⊗ |i + 1��i + 1|

+
2

∑

i �=j=0

|i��j| ⊗ |i��j|,

c − a =
1

3
(
√
3 sin φ − 3 cosφ) ≥ 0, c − b =

2√
3
sinφ ≥ 0.

(42)tr[WM(φ)W(φ)] = µ(φ)trW(φ)− tr[W(φ)W(φ)].

(43)tr[WM(φ)W(φ)] = 6(µ(φ)− 2)

Table 1.   The regions of decomposability (D) or non-decomposability (ND) or positive operator (PO) for 
different values of φ in the scenario of entanglement witnesses W(φ) and their corresponding mirrored ones 
WM(φ) in C3 ⊗ C

3.

φ Optimality of W ND of W µ WM

[π/3, 2π/3] ✓ ✓ 4/3 D

[2π/3,π) ✓ ✓ c(φ) PO

π ✓ ✗ 4/3 PO

(π , 4π/3] ✓ ✓ b(φ) PO

[4π/3, 5π/3] ✓ ✓ 4/3 D
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with a, b, c, d ≥ 0 satisfying

There are two solutions to the above set of equations47: class I is characterized by (45) together with

whereas class II is characterized by (45) together with

Interestingly, it is shown47 that EWs from class I are not optimal, whereas those from class II are optimal.

Example 3  Consider a Choi-like EWs W[1, 1, 1, 0]. Contrary to W[1, 1, 0] in C3 ⊗ C
3 , it is not optimal. One 

easily finds the corresponding mirrored operator

It turns out that the mirrored operator WM[1, 1, 1, 0] defines a non-decomposable EW. Indeed, by considering 
the following (unnormalized) state

where x > 0 , it is easy to check that ρx is PPT. Hence, we obtain

Clearly, tr(WM[1, 1, 1, 0] ρx) < 0 if and only if x ∈ (1, 4) . This proves that WM[1, 1, 1, 0] detects a PPT-entan-
gled state ρx and therefore, it is a non-decomposable EW. It is evident that in this case we have a pair of mirrored 
non-decomposable EWs (W[1, 1, 1, 0],WM[1, 1, 1, 0]) . This example shows that if one relaxes the requirement 
of optimality, then the mirrored operator might be non-decomposable EW as well.

Similar to the witnesses W[a, b, c] in C3 ⊗ C
3 , W[a, b, c, d] can be parameterized as follows:

and

with θ ∈ [0,π ] . We use the notations WI(θ) and WII(θ) for W[a,  b,  c,  d] in the first and second 
classes, respectively. In particular, WI(0) = W[1, 1, 1, 0] and WI(π) = W[1, 0, 1, 1] are Choi-like EWs, 
WI(π/2) = W[1/2, 1/2, 3/2, 1/2] is the only decomposable EW in the class I. Similarly, WII(π) = W[0, 1, 1, 1] 
corresponds to the reduction map R4 , whereas WII(0) = W[1, 1, 0, 1] is the second decomposable EW in the 
class II (cf.47).

For θ ∈ (0,π) , the class II consists of non-decomposable EWs. One finds for the mirrored operators

with

(44)

W[a, b, c, d] =
3

∑

i=0

[

a |ii��ii| + b |i, i + 1��i, i + 1|

+ c |i, i + 2��i, i + 2| + d |i, i + 3��i, i + 3|
]

−
3

∑

i �=j=0

|ii��jj|,

(45)a+ b+ c + d =a2 + b2 + c2 + d2 = 3,

(46)ac + bd =1, (a+ c)(b+ d) = 2.

(47)a+ c = 2 b+ d = 1,

(48)a+ c = 1 b+ d = 2.

(49)WM[1, 1, 1, 0] =
4

3
14 ⊗ 14 −W[1, 1, 1, 0].

(50)

ρx =
3

∑

i=0

[

3 |ii��ii| + x |i, i + 1��i, i + 1| + |i, i + 2��i, i + 2|

+
1

x
|i, i + 3��i, i + 3|

]

−
3

∑

i �=j=0

|ii��jj|

(51)tr(WM[1, 1, 1, 0] ρx) =
4

3x
(x2 − 5x + 4).

(52)
class I : a =

1

2
(2− sin θ) b =

1

2
(1+ cos θ)

c =2− a d = 1− b

(53)
class II : a =

1

2
(1+ cos θ) b =

1

2
(2− sin θ)

c =1− a d = 2− b

(54)WM
II (θ) = µ(θ)14 ⊗ 14 −WII (θ),
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Proposition 5  The mirrored operator to WII(θ) is

•	 decomposable EW if θ ∈ (0,π/2),
•	 positive if θ ∈ (π/2,π).

The proof is very similar to that of Proposition 4 (see Supplementary Material).

Remark 3  Note that if WM
II (θ) ≥ 0 , i.e. θ ∈ (π/2,π) , then tr[WII(θ)W

M
II (θ)] < 0 , that is, ρ = WM

II (θ)/TrW
M
II (θ) 

defines a PPT enatgled state. Indeed, one has

Note, that trWII(θ) = 4(a + b+ c + d) = 12 and tr[WII(θ)WII(θ)] = 24 , and hence

is always negative due to µ(θ) ≤ 3/2.

Now, the class I contains non-optimal EWs. In Ref.47 by following the paper12, an optimization procedure 
was performed leading to an optimal EW defined via

where P = |����| is a rank-1 projector onto the maximally entangled state in C4 ⊗ C
4 with 

|�� = 1
2

∑3
j=0(−1)j|j ⊗ j�.

Proposition 6  The mirrored operator to W̃I(θ) for θ ∈ [0,π ] − {π/2}

is a decomposable EW.

The proof is very similar to that of Proposition 4 (see Supplementary Material).

A class of non‑decomposable Breuer–Hall maps.  In Refs.48,49, Breuer and Hall have generalized the 
reduction map by the following class of positive maps � : M2n(C) → M2n(C) such that

where U is an arbitrary antisymmetric unitary matrix in M2n(C) . It was shown that this map is non-decompos-
able48,49 and optimal48, even nd-optimal12,48. The mirrored positive map

which is evidently decomposable being a sum of an identity and completely co-positive map UXTU†.

A class of non‑decomposable maps in M
n
(C)⊗M

n
(C).  Let ε : Mn(C) → Mn(C) be the canonical 

projection of Mn(C) to the diagonal part

Let S be a permutation defined by

for i = 0, 1, . . . , n− 1 . The following maps τn,k : Mn(C) → Mn(C)

for k = 0, 1, . . . , n− 1 , were proved to be positive and non-decomposable if k < n− 150–55. Actually, τn,n−1 = Rn 
(reduction map), and τ3,1 is a Choi map in M3(C).

(55)µ(θ) =
{

3/2 ; θ ∈ (0,π/2)
d(θ) ; θ ∈ (π/2,π)

(56)tr[WM
II (θ)WII(θ)] = µ(θ)trWII(θ)− tr[WII(θ)WII(θ)].

(57)tr[WII(θ)W
M
II (θ)] = 12(µ(θ)− 2)

(58)W̃I(θ) = WI (θ)− 2P,

(59)W̃M
I (θ) =

3

2
14 ⊗ 14 − W̃I (θ),

(60)�BH(X) = R2n(X)− UXTU†,

(61)�M
BH(X) = 12ntrX −�BH(X) = X + UXTU†,

(62)ε(X) =
n−1
∑

i=0

�i|X|i�|i��i|.

(63)S|i� = |i + 1�, (mod n),

(64)τn,k(X) = (n− k)ε(X)+
k

∑

i=1

ε
(

SiXS†i
)

− X,
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Now, the mirrored map is defined via

Let us denote the greatest common divisor of n and k by gcd(n, k) . In a recent paper26, the authors have shown 
that if gcd(n, k) = 1 , then τn,k is optimal. In particular, gcd(n, 1) = 1 and we find that

Similarly, for odd n, one has gcd(n, n− 2) = 1 and we obtain

Proposition 7  The mirrored maps τMn,1 and τMn,n−2 are decomposable.

Proof  Due to Choi-Jamiołkowski isomorphism, the EW corresponding to the map τn,k can be expressed as

Therefore, for n ≥ 4 , one can easily rite the corresponding mirrored operator

Note, that WM
n,1 = BŴn,1 , with BŴn,1 ≥ 0 . Actually, positivity of Bn,1 is equivalent to the positivity of the following 

2× 2 submatrix

which is evidently positive for n ≥ 4 . This implies that WM
τn,1

 is decomposable for n ≥ 4.
Now, for the odd n, τn,n−2 produces again the Choi map for n = 3 that we discussed above. For n > 3 , the 

corresponding mirrored EW for µ = 3/2 can be expressed as follows

Moreover, WM
τn,n−2

 can be written as WM
n,n−2 = An,n−2 + BŴn,n−2 , where

and

(65)τMn,k(X) = µn,k 1ntrX − τn,k(X).

(66)µn,1 =
{

4
3 ; n = 3,
n− 2; n ≥ 4.

(67)µn,n−2 =
{

4
3 ; n = 3,
3
2 ; n ≥ 4.

(68)

Wn,k =
n−1
∑

i,j=0

|i��j| ⊗ τn,k(|i��j|)

=
n−1
∑

i=0

[

(n− k − 1)|ii��ii| +
k

∑

ℓ=1

|i, i + ℓ��i, i + ℓ|
]

−
∑

i �=j

|ii��jj|.

(69)

WM
n,1 =

n−1
∑

i=0

[

(n− 3)|i, i + 1��i, i + 1|

+(n− 2)

n−1
∑

ℓ=2

|i, i + ℓ��i, i + ℓ|
]

+
n−1
∑

i �=j=0

|ii��jj|.

(70)
(

n− 3 1
1 n− 2

)

,

(71)

WM
n,n−2 =

1

2

n−1
∑

i=0

[

n−2
∑

ℓ=0

|i, i + ℓ��i, i + ℓ|

+ 3|i, i + n− 1��i, i + n− 1|
]

+
n−1
∑

i �=j=0

|ii��jj|.

(72)An,n−2 =
1

2

n−1
∑

i �=j=0

[

|ii��ii| + |ii��jj|
]

> 0,

(73)

Bn,n−2 =
1

2

[

n−1
∑

i=0

(

n−2
∑

ℓ=1

|i, i + ℓ��i, i + ℓ|

+ 3|i, i + n− 1��i, i + n− 1|
)

+
n−1
∑

i �=j=0

|ij��ji|
]

.
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It is easy to see that Bn,n−2 is positive as the positivity of Bn,n−2 is equivalent to the positivity of the following 
2× 2 submatrix

This shows that WM
n,n−2 is decomposable for n ≥ 4 . 	�  �

A family of optimal non‑decomposable witnesses in C3

⊗ C
3 whose SPA is not separable.  In 

this section, we consider a family of indecomposable entanglement witnesses proposed by Ha and Kye in Ref.22 
whose SPAs are not separable. For non-negative real numbers a, b, c and −π ≤ θ ≤ π , the form of the self-
adjoint block matrix in C3 ⊗ C

3 is given by

Let pθ = max{q(θ− 2
3π)

, qθ , q(θ+ 2
3π)

} , where qθ = eiθ + e−iθ . One has 1 ≤ pθ ≤ 2 . Now, W[a, b, c; θ ] ≥ 0 iff 
a ≥ pθ and W[a, b, c; θ ] is is block-positive iff the following conditions hold

The authors of22 analyzed two classes of EWs:

and

For (77) one has 4/3 ≤ pθ < 1+ 1/
√
2 and for (78) one has 1+ 1/

√
2 ≤ pθ < 2 . Both classes consist of non-

decomposable EWs. Moreover, class (77) has the bi-spanning property, whereas class (78) has the co-spanning 
property22. For the first class let us consider pθ = 4/3 , a = 2− pθ = 2/3 , and b = c = pθ − 1 = 1/3 . Then the 
corresponding mirrored EW is W ′ = µI3 ⊗ I3 −W[a, b, c; θ ] , where µ = 1.097 . Let us observe that one can 
easily construct a PPT state

which is PPT if and only if

that is, x ≥ 1 and x3 + 2 cos(3θ)− 3x ≥ 0 which for pθ = 4/3 implies x ≥ 1.896 . One finds

for x ∈ [1.896, 2) which proves that W[2/3, 1/3, 1/3, θ ] is non-decomposable. Consider now the following state

which is PPT if and only if

(74)
(

1 1
1 3

)

.

(75)W[a, b, c; θ ] =



























a . . . − eiθ . . . − e−iθ

. b . . . . . . .

. . c . . . . . .

. . . c . . . . .
−e−iθ . . . a . . . − eiθ

. . . . . b . . .

. . . . . . b . .

. . . . . . . c .
−eiθ . . . − e−iθ . . . a



























.

(76)1) a+ b+ c ≥ pθ , 2) if a ≤ 1, then bc ≥ (1− a)2.

(77)2− pθ ≤ a < 1, a+ b+ c = pθ , bc = (1− a)2,

(78)1 ≤ a < pθ , a+ b+ c = pθ , bc = 0,

(79)

ρx =
2

∑

i=0

[

x|i, i��i, i| + |i + 1, i + 1��i + 1, i + 1|

+ |i + 2��i + 2| + eiθ |i, i��i + 1, i + 1|

+ e−iθ |i, i��i + 2, i + 2|
]

,

(80)





x eiθ e−iθ

e−iθ x eiθ

eiθ e−iθ x



 ≥ 0,

(81)Tr(W[2/3, 1/3, 1/3, θ ] ρx) = 2(x − 2) < 0,

(82)

ρy =
2

∑

i=0

[

y|i, i��i, i| + |i + 1, i + 1��i + 1, i + 1|

+ |i + 2��i + 2| − eiθ |i, i��i + 1, i + 1|

− e−iθ |i, i��i + 2, i + 2|
]

,
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that is, y ≥ 1 and xy3 − 2 cos(3θ)− 3y ≥ 0 which, for pθ = 4/3 ,  implies y ≥ 3/2 .  One finds 
Tr((µI3 ⊗ I3 −W[2/3, 1/3, 1/3, θ ]) ρy) > 0.5185 for y ≥ 3/2 . Clearly, it does not prove that the witness is 
decomposable. However, both the witness and the state ρy have the same symmetry and it is natural to expect 
that a proper PPT state which detects non-decomposability of the witness belongs to the above family of states. 
Additionally, we performed numerical analysis and used all bound entangled states found in the magic simplex, 
i.e. Bell diagonal states, based on a grid approach (140,000 states)34 and based on a representative random sample 
which fills the volume of the bound entangled states within the magic simplex 35. Note that the classification 
of bound entangled states in the magic simplex is obtained with a very high success rate of 5% . Obviously, the 
given witness must not be sensitive to Bell diagonal states. Therefore, we used the sequentially constrained 
Monte Carlo method introduced in Ref.56 to sample from a random set of 100,000 states in this case 8007 bound 
entangled states detected by the realignment criterion. Each state was also optimized over local unitaries with 
the convenient composite parametrization introduced in Ref.57. None of these bound entangled states detects 
non-decomposability of W ′.

For the second class (78) we consider pθ = 1+ 1/
√
2 and hence a = 1, b = pθ − 1 , c = 0 , or a = 1 , b = 0 , 

c = pθ − 1 . Hence the corresponding mirrored EW is W ′′ = µ I3 ⊗ I3 −W[a, b, c; θ ] , where µ′ = 1.21473 . A 
similar analysis as for the class (77) supports our conjecture. Numerical analysis shows that no bound entangled 
state is detected by this witness.

Conclusions
As entanglement is generally a useful resource in quantum information theory, its verification has both funda-
mental and practical significance58. It is, however, generally challenging as its computational complexity lies in 
the NP-hard class. The problem is also connected to a long–standing open question about the classification of 
positive maps. In this paper, we have approached the problem by exploiting the convexity of separable states 
and EWs since optimal EWs define the set of separable states and non-decomposable EWs classify the set of 
PPT-entangled and free entangled states. PPT-entangled states are of particular interest related to numerous 
open questions in quantum information theory such as Bell inequalities, activation of entanglement, channel 
capacities, invariance under Lorentz boosts59, etc. Only limited knowledge is known about the structure of the 
PPT-entangled states in the Hilbert space and also only for low dimensions. We provide here a different view via 
the structure of connected entanglement witnesses.

Along with the convexity of quantum states and EWs, there has been the so-called SPA conjecture that 
addresses SPAs to optimal EWs are separable states. Counterexamples, however, exist. In our work, we have 
considered the framework of mirrored EW i.e. ‘twin’ of an EW such that both the EWs can detect the entangled 
states by realizing a single observable. A trade-off relation is observed between the EW and its mirrored ones, 
which we have presented as a conjecture in our paper. Our conjecture states that mirrored operators to optimal 
EWs are either quantum states or decomposable EWs, hence cannot detect the PPT-entangled states. In other 
words, there does not exist a mirrored pair of non-decomposable EWs such that at least one of them is opti-
mal. Consequently, if our conjecture holds generally, then there is a relation between optimality of an EW and 
decomposability.

We have proved that mirrored EWs to extremal decomposable witnesses are positive semi-definite i.e., 
quantum states. In fact, for the extremal decomposable EWs, both our conjecture and the SPA one hold true. 
For non-decomposable EWs, several examples that support our conjecture are presented. In particular, those 
examples that disproved the SPA conjecture are considered: for all of the cases, their mirrored operators cannot 
detect PPT-entangled states. Let us reiterate that the assumption of optimality is essential: otherwise, one can 
immediately find examples of non-optimal and non-decomposable EWs such that their mirrored operators are 
also non-decomposable EWs.

We believe that our analysis unfolds a hidden structure of the set of entanglement witnesses, which brings 
us closer to the understanding of the separability problem. It should be stressed that the entire analysis can be 
generalized for the multipartite scenario60. In this case the picture is much more involved due to the fact that 
there is a whole hierarchy of k-separable states. If Wk is an entanglement witness acting on H1 ⊗ . . .⊗HN which 
is positive on k-separable states, then one can define a family of mirrored EWs

such that WM
ℓ  is positive on ℓ-separable states. It would be interesting to analyze the properties of the mirrored 

pairs (Wk ,W
M
ℓ ) . Another interesting point is to replace identity operator 11 ⊗ . . .⊗ 1N by arbitrary N-separable 

operator X acting on H1 ⊗ . . .⊗HN (cf.61). We postpone these issues for the future research.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].

Code availability
The results were computed by pencil or the use of commercial computer software as Mathematica.

(83)





y − eiθ − e−iθ

−e−iθ y − eiθ

−eiθ − e−iθ y



 ≥ 0,

(84)WM
ℓ := µk,ℓ11 ⊗ · · · ⊗ 1N −Wk ,
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