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The genomic and transcriptomic 
landscape of advanced renal cell 
cancer for individualized treatment 
strategies
K. de Joode 1,17, W. S. van de Geer 1,2,17, G. J. L. H. van Leenders 3, P. Hamberg 4, 
H. M. Westgeest 5, A. Beeker 6, S. F. Oosting 7, J. M. van Rooijen 8, L. V. Beerepoot 9, 
M. Labots 10, R. H. J. Mathijssen 1, M. P. Lolkema 1,11, E. Cuppen 12,13, S. Sleijfer 1,11, 
H. J. G. van de Werken 2,14,15,18* & A. A. M. van der Veldt 1,16,18*

Differences in the clinical course and treatment responses in individual patients with advanced renal 
cell carcinoma (RCC) can largely be explained by the different genomics of this disease. To improve the 
personalized treatment strategy and survival outcomes for patients with advanced RCC, the genomic 
make-up in patients with advanced RCC was investigated to identify putative actionable variants 
and signatures. In this prospective multicenter study (NCT01855477), whole-genome sequencing 
(WGS) data of locally advanced and metastatic tissue biopsies and matched whole-blood samples 
were collected from 91 patients with histopathologically confirmed RCC. WGS data were analyzed for 
small somatic variants, copy-number alterations and structural variants. For a subgroup of patients, 
RNA sequencing (RNA-Seq) data could be analyzed. RNA-Seq data were clustered on immunogenic 
and angiogenic gene expression patterns according to a previously developed angio-immunogenic 
gene signature. In all patients with papillary and clear cell RCC, putative actionable drug targets were 
detected by WGS, of which 94% were on-label available. RNA-Seq data of clear cell and papillary RCC 
were clustered using a previously developed angio-immunogenic gene signature. Analyses of driver 
mutations and RNA-Seq data revealed clear differences among different RCC subtypes, showing 
the added value of WGS and RNA-Seq over clinicopathological data. By improving both histological 
subtyping and the selection of treatment according to actionable targets and immune signatures, 
WGS and RNA-Seq may improve therapeutic decision making for most patients with advanced RCC, 
including patients with non-clear cell RCC for whom no standard treatment is available to data. 
Prospective clinical trials are needed to evaluate the impact of genomic and transcriptomic diagnostics 
on survival outcome for advanced RCC patients.
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Renal cell carcinoma (RCC) consists of different histological  subtypes1,2. The most common histological subtype 
is clear cell RCC (ccRCC), accounting for approximately 75% of the RCC  cases3. The vast majority of ccRCC 
is characterized by the loss of the short arm of chromosome 3 (3p)4, which harbors several tumor suppressor 
genes. The function of these genes—VHL, BAP1, PBRM1, and SETD2—is frequently inactivated due to additional 
somatic variants or epigenetic changes of these genes on the other  allele4,5. Although these genetic aberrations 
can be observed in most patients with ccRCC, the clinical behavior in individual patients differs significantly, 
from a slowly progressive disease over the years to a rapidly progressive disease with fast clinical deterioration. 
Therefore, the management of advanced ccRCC varies from active surveillance to systemic therapy.

The therapeutic landscape for patients with advanced ccRCC has changed significantly, in recent years. 
The introduction of tyrosine kinase inhibitors (TKIs)6,7, immune checkpoint inhibitors (ICIs)8,9, mammalian 
target of rapamycin (mTOR)  inhibitors10, and combinations of these anti-cancer  therapies11–13, has significantly 
improved the outcome for patients with advanced ccRCC. However, there are considerable interindividual dif-
ferences in outcome, and only a minority of patients experience durable  responses14. For patients with advanced 
ccRCC, treatment decision making is guided by the International Metastatic RCC Database Consortium (IMDC) 
 criteria15–17. These criteria include only clinical patient characteristics (i.e. hemoglobin level, time from diagnosis 
to start of systemic therapy, Karnofsky performance state, calcium level and neutrophil and platelets count).

Moreover, non-clear cell RCC (nccRCC) is a heterogeneous group of different histological subtypes, including 
papillary and chromophobe RCC 18. As holds for advanced ccRCC, the course of nccRCC differs significantly 
between  patients19,20. Since the nccRCC subtypes are considered rare diseases, randomized phase three clinical 
trials are still lacking for nccRCC 21. As a result, no clear standard of care for patients with advanced nccRCC 
has been  defined20,22.

The development of RCC, including its metastatic potential and response to treatment, could largely be 
explained by the different  genomics2,4 and evolutionary  pathways5,23 of this disease. Previous studies have focused 
on the molecular characterization of primary RCC 2,4,24 and the genomic evolution of ccRCC 4,5,23. For exam-
ple, RNA expression analysis in ccRCC has identified different immunogenic and angiogenic gene expression 
 signatures24,25. To improve the individualized treatment strategy and survival outcomes for patients with ccRCC 
and nccRCC, more insight into the genomic make-up of advanced RCC is required.

The objective of this study was to describe the genomic landscape of advanced RCC, by combining whole-
genome sequencing (WGS) with matched RNA sequencing (RNA-Seq) data. First, WGS was applied to character-
ize the genomic make-up of RCC and to identify potential actionable targets for systemic treatment in individual 
patients with ccRCC and nccRCC. Next, both WGS and matched RNA-Seq data were combined for patients 
with ccRCC and papillary RCC (pRCC). The RNA-Seq data were applied to cluster RCC based on immunogenic 
and angiogenic gene expression patterns, aiming to identify those patients who could benefit from either treat-
ment with anti-angiogenic drugs, ICIs or a combination of these therapies and contribute to the next steps in 
personalized medicine in patients with RCC.

Methods
Patient inclusion and clinical data collection. All patients provided written informed consent for 
participation in the prospective multicenter Center for Personalized Cancer Treatment (CPCT-02) study 
(NCT01855477), first trial registration 16/05/2013, by the Declaration of Helsinki. The CPCT-02 trial was 
approved by the medical ethical committee of the University Medical Center Utrecht and the Netherlands Can-
cer Institute, and local approval was provided for each participating site. Details regarding inclusion criteria, the 
study protocol, sampling, and sequencing which has been applied to all subjects included in the CPCT-02 study, 
have been previously  described26. In summary, for this analysis, core needle biopsies from the tumor lesion, 
peripheral whole blood samples and clinical data from all patients with advanced RCC were collected across 
24 hospitals in the Netherlands. Response to treatment was determined according to RECIST v1.127. WGS data 
from 103 biopsies of 101 patients with advanced RCC were made available. In this study different types of RCC, 
including rare nccRCC subtypes were included, and no sample size calculation was performed prior to patient 
inclusion. Only one sample per patient was selected for the genomic analyses. After checking the informed 
consents and the pathological reports, we selected 91 WGS samples (51 previously described by Priestley et al.26, 
supplementary data file) and 28 completely new matching RNA-Seq samples. Furthermore, these 91 WGS sam-
ples were also recently analyzed in another pan-cancer  cohort28 to compare WGS data of unmatched primary 
and metastatic tumors.

Pathological diagnosis. To confirm the histopathological diagnosis of RCC, pathology reports were 
requested via PALGA, the nationwide network and registry of histo- and cytopathology in the  Netherlands29. 
Slides and tissue blocks were not available for pathological revision. Alternatively, the pathology reports were 
reviewed by a genito-urinary pathologist (GvL) to determine whether the microscopic description and immu-
nohistochemistry were compatible with the original diagnosis. The following subtypes were annotated: clear 
cell, papillary, chromophobe, tubulocystic, and collecting duct carcinoma. Histopathologically confirmed RCC 
of which the subtype remained unclear was categorized as undefined subtype.

Whole genome sequencing and preprocessing. Between the 8th of August 2016 and the 3rd of Octo-
ber 2019, tumor and whole-blood pairs were whole-genome sequenced at the Hartwig Medical Foundation 
(HMF) central sequencing center. When multiple biopsies of one patient were available, the sample covering 
the most clinical information and/or the sample with the highest estimated tumor cell percentage was selected. 
A HiSeqX system was applied and 2 × 150 base read pairs were generated using standard settings (Illumina, San 
Diego, CA, USA). Preprocessing was performed as described by Priestley et al.26. Briefly, read pair mapping was 
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performed using BWA-mem30 to the reference genome GRCh37 (human) with subsequent systematic variant 
calling and several quality control and/or correction steps. The Genome Rearrangement IDentification Software 
Suite (GRIDSS)31 was used for structural variant (SV) calling and LINX (v1.11)31 for gene fusion event call-
ing. Computational ploidy estimation and copy-number (CN) assessment was performed using the PURPLE 
(PURity & PLoidy Estimator)  pipeline31, estimating tumor purity and CN profile by combining B-allele fre-
quency (BAF), read depth, and SVs.

Somatic variant annotation and filtering. As part of the data request, somatic variants were deter-
mined using Strelka and provided by the HMF. Variant Call Format (VCF) files with somatic variants were anno-
tated based on GRCh37 with HUGO (Human Genome Organisation) gene symbols, HGVS (Human Genome 
Variation Society) notations, gnomAD (Genome Aggregation Database)32 frequencies using VEP (Variant Effect 
Predictor)33 (database release 95, merged cache), with setting “–per_gene”. Exclusively somatic single-nucleotide 
variants (SNVs), small InDels, multi-nucleotide variants (MNVs) with ≥ 3 alternative read observations and 
passing variant caller quality control (PASS) were included in the analyses. Furthermore, population variants 
were removed to prevent germline leakage, based on the gnomAD database (v2.0.2)32: gnomAD exome (ALL) 
allele frequency ≥ 0.001; and gnomAD genome (ALL) ≥ 0.005. Variants specific to the Dutch CPCT cohort were 
removed based on a panel-of-normals from 1,762 representative normal blood HMF samples. The most deleteri-
ous variant was used to annotate the overlapping gene for each sample.

Tumor mutational burden calculation. The number of mutations per megabase pair was calculated as 
the amount of somatic genome-wide SNVs, MNVs, and InDels divided by the number of callable nucleotides in 
the human reference genome (GRCh37) FASTA file:

Ploidy and copy-number analysis. Broad and focal somatic CN alterations in ccRCC were identified by 
GISTIC2.034 (v2.0.23), using the following parameters: genegistic 1, gcm extreme, maxseg 4000, broad 1, brlen 
0.98, conf 0.95, rx 0, cap 3, saveseg 0, armpeel 1, smallmem 0, res 0.01, ta 0.1, td 0.1, savedata 0, savegene 1, qvt 
0.1. The distinction between shallow and deep CN events per region was based on thresholding performed by 
GISTIC2.0. The alterations were assigned a score taking both the amplitude and the frequency of its occur-
rence across samples into account (G-score). Thresholding was divided into five CN categories, two for deletions 
(-2 = deep, possibly homozygous loss, -1 = shallow, possibly heterozygous loss), one for diploid (0 = diploid) and 
two for amplifications (1 = few additional copies, often broad gain, 2 = more copies, often focal gain). This region-
based thresholding is also the basis for gene-level annotation. Annotation of GISTIC2.0 peaks was performed as 
follows: A) Wide peaks were annotated with all overlapping canonical UCSC genes within the genomic limits of 
the said peak. B) Focal peaks were annotated based on overlapping genomic coordinates, using custom R scripts 
and UCSC gene annotations. As a separate analysis, GISTIC2.0 was executed with `brlen` set to 0.5, calling arm-
level events if at least 50% of the chromosomal arm was affected by broad CN events.

Structural variant analysis. SVs affecting genes were imported using custom R scripts, overlapping genes 
on at least one breakpoint, using GRCh37 genomic coordinates. SVs with an upstream or downstream Tumor 
Allele frequency (TAF) below 0.1 as determined by PURPLE and  GRIDSS31 were discarded along with SVs that 
affected all gene exons. In the case of both (multiple) mutations and/or SVs in the same gene, these were anno-
tated as ‘multiple mutations’.

Fusion gene analysis. WGS-based LINX TSV files were imported using R and overlapped with the three 
pillars of ChimerDB (database of fusion genes, v4)35; deep sequencing data (ChimerSeq), text mining of PubMed 
publications (ChimerPub), with extensive manual annotations (ChimerKB). Events not present in any pillar of 
ChimerDB and intra-gene fusions were filtered out. RNA-Seq based fusion genes detected with Isofox (v1.1, 
https:// github. com/ hartw igmed ical/ hmfto ols/ tree/ master/ isofox) were imported using R and overlapped with 
the fusion events detected in the DNA sequencing.

Recurrent non-coding (and coding) somatic variants. All filtered non-coding somatic variants, 
occurring in at least four samples were selected as recurrent. Since none of these non-coding recurrent variants 
were located in regulatory elements (except for the TERT promoter) of genes known to be relevant in RCC, we 
chose to only communicate the TERT hotspot. Using the same methodology for coding variants, selecting those 
arising in at least four samples, did not result in pertinent findings.

Somatic driver genes analysis. On the ccRCC samples we utilized the dN/dS model (192 Poisson rate 
parameters; under the full trinucleotide model) to identify genes undergoing mutational selection in ccRCC 
using the R package  dndscv36 (v0.0.1.0). Since RCC is a heterogeneous disease, we excluded the other RCC 
subtypes from the ccRCC dN/dS analysis, and due to limited sample size, did not apply a distinct dN/dS analy-
sis to these samples. The substitution and InDel models were used and corrected for sequence composition, 
gene length and mutational signatures (COSMIC database, see supplementary files). These models test the ratio 

TMB =

(

SNVsg +MNVsg + InDelsg
)

(

2858674662

106

)

https://github.com/hartwigmedical/hmftools/tree/master/isofox
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between nonsynonymous (missense, nonsense and essential splice site) and background (synonymous) variants. 
A q-value < 0.05 (including and excluding the InDel model) was used to identify genes that drive selection.

Mutational signatures analysis. Mutational signatures analysis was performed using the MutationalPat-
terns R package (v3.2.0)37. The mutational signatures based on single base substitutions (N = 90 v3 signatures) 
were downloaded from  COSMIC38. SNVs were categorized according to their respective trinucleotide context 
(GRCh37) into a mutational spectrum matrix  Mij (where i represents 1:96 trinucleotide contexts and j represents 
the number of 1:91 samples). Subsequently, a constrained linear combination of the ninety mutational signatures 
was constructed per sample using non-negative least squares regression implemented in the R package pracma 
(v2.2.9). Mutational signatures were bootstrapped (N = 100) with MutationalPatterns and argument ‘method’ set 
to “strict” to assess calling stability. Signature contribution for each sample was determined per 100 samplings, 
per signature.

Chromothripsis. Chromothripsis (CT), also known as chromosomal shattering, followed by seemingly ran-
dom re-ligation, was detected using  Shatterseek39 (v0.4) with default settings. The following definition of CT was 
employed: (1) ≥ 25 intrachromosomal SVs involved in the event; (2) ≥ 7 oscillating CN segments (2 CN states) 
or ≥ 14 oscillating CN segments (3 CN states); (3) CT event involving ≥ 20 Mb; (4) satisfying the test of equal 
distribution of SV types (p-value > 0.05); and (5) satisfying the test of nonrandom SV distribution within the 
cluster region or chromosome (p-value ≤ 0.05).

Actionable targets. iClusion (https:// iclus ion. com) data, which connects specific or gene-level aberrations 
to clinical cancer studies, were provided by HMF. This integrates clinical interpretations from Precision Oncol-
ogy Knowledge Base (OncoKB)40, Clinical Interpretation of Variants in Cancer (CIViC)41 and Cancer Genome 
Interpreter (CGI)42. All targets and biomarkers were overlapped with filtered molecular data to verify presence. 
No RCC-specific effectiveness is taken into consideration with this approach, purely resting the link on the 
molecular basis of the target to broaden the horizon of actionable targets. Studies included in the databases 
mentioned can conceivably show associations between drugs and targets in other cancer types than RCC or the 
subtypes. Targets marked as “gene-level” were generalized for other variation in those genes, not listed in the 
iClusion data. The identified targets were assessed and manually categorized into the following three categories: 
on-label drugs for RCC, off-label available, and investigational drugs. Drugs were considered on-label when 
approval was given for any subtype of RCC in the Netherlands. Whether drugs were on- or off-label available in 
the Netherlands is defined by the Dutch Medicines Evaluation Board (“College ter Beoordeling van Geneesmid-
delen”)43. This evaluation board considers previous approvals by the U.S. Food and Drug Administration (FDA) 
and/or European Medicines Agency (EMA).

Germline analysis. Known pathogenic germline variants (GRCh37) related to cancer and/or Von Hippel-
Lindau syndrome were retrieved from ClinVar (April 2022)44 that were less than 51 bp long, with a review status 
of “practice guideline”, “expert panel”, “multiple submitters” or “at least one star”. These ClinVar variants were 
used as filter for the import of germline variants from the VCF files of our cohort. Variants with at least two reads 
and passing variant caller quality control were included. Furthermore, variants annotated with “high” impact, in 
genes with known germline variation in RCC (FH, SDHA, SDHB, SDHC, SDHD, TCEB1, FLCN, CHEK2) were 
included.

RNA sequencing. RNA was isolated from biopsy using the QIAsymphony RNA Kit (Qiagen, Hilden, Ger-
many) for tissue and quantified on the Qubit. Between 50 and 100 ng of RNA was used as input for the library 
preparation with the Roche KAPA RNA HyperPrep and RiboErase (Human/Mouse/Rat) kits on an automated 
liquid handling platform (Beckman Coulter). RNA was fragmented (high temperature in the presence of magne-
sium) to a target length of 300 bp. Barcoded libraries were sequenced as pools on either a NextSeq 500 (V2.5 rea-
gents) generating 2 × 75 base read pairs or on a NovaSeq 6000 generating 2 × 150 base read pairs using standard 
settings (Illumina, San Diego, CA, USA). BCL output from the sequencing platform was converted to FASTQ 
using Illumina’s bcl2fastq tool (versions 2.17 to 2.20) using default parameters. RNA-Seq data were aligned using 
STAR 45 to GRCh37 resulting in unsorted BAMs (Binary Alignment Maps) including chimeric reads as out-
put. Gene and transcript counts were generated and used for subsequent fusion detection using Isofox (https:// 
github. com/ hartw igmed ical/ hmfto ols/ tree/ master/ isofox).

RNA sequencing analyses. Raw read counts were imported in R and filtered on protein coding genes 
based on Ensembl GTF  file46 (Homo sapiens GRCh37, version 87). t-distributed stochastic neighbor embed-
ding (t-SNE) was performed on variance stabilized read counts (generated by DESeq2 varianceStabilizing-
Transformation) of all protein coding genes. Differential expression analysis between ccRCC and pRCC was 
performed on raw read counts using DESeq2 (v1.32.0)47 with the Wald-test. Statistical significant results with 
Benjamini–Hochberg adjusted p-value < 0.05 were further filtered to base mean > 100 counts and absolute  log2 
fold change ≥ 1. The heatmap with the top most significantly differentially expressed genes (based on the low-
est adjusted p-value) was made using variance stabilized read counts and Euclidean distances on scaled data. 
Gene signature heatmap was produced with centered Z-Scores with Euclidean distances. Gene set enrichment 
analyses were performed using  fgsea48 (v1.22.0, Monte Carlo approach with Adaptive Multilevel Splitting) with 
MSigDB (Molecular Signatures Database)49 Hallmarks and Reactome pathways (April 2022)50 as gene sets. 
Reproduction of the D’Costa et al. gene  signature25 was done using 65 of 66 original genes, since PECAM1 was 

https://iclusion.com
https://github.com/hartwigmedical/hmftools/tree/master/isofox
https://github.com/hartwigmedical/hmftools/tree/master/isofox
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on a genome patch not included in the RNA-Seq mapping supplied by HMF. Heatmaps were produced using 
pheatmap (v1.0.12) with Ward.D clustering.

Data and material availability. The WGS and corresponding clinical data used in this study were made 
available by the Hartwig Medical Foundation (a Dutch nonprofit biobank organization) after signing a license 
agreement stating data cannot be made publicly available via third-party organizations. Therefore, the data are 
available under restricted access and can be requested by contacting the Hartwig Medical Foundation (https:// 
www. hartw igmed icalf ounda tion. nl/ apply ing- for- data/) under the accession code DR-08827. Within this manu-
script, we furthermore made use of the actionable gene-variant and associated drug databases of CiViC (01-Nov-
2018; https:// civic db. org/ downl oads/ 01- Nov- 2018/ 01- Nov- 2018- Clini calEv idenc eSumm aries. tsv), OncoKB 
(Nov. 2018; https:// www. oncokb. org/ actio nable Genes), CGI (Nov. 2018; https:// www. cance rgeno meint erpre ter. 
org/ bioma rkers) and the iClusion (Dutch) clinical trial database (Dec. 2020) from iClusion (Rotterdam, the 
Netherlands; Suppl. Data 1). The remaining data are available within the Article, Supplementary Information, 
or available from the authors upon request.All scripts used for the downstream analysis in this manuscript are 
accessible via: https:// bitbu cket. org/ ccbc/ advan cedrcc_ dr88/

Ethics approval and consent to participate. All patients provided written informed consent for 
participation in the prospective multicenter Center for Personalized Cancer Treatment (CPCT-02) study 
(NCT01855477). The CPCT-02 trial was approved by the medical ethical committee of the University Medical 
Center Utrecht and the Netherlands Cancer Institute. Local approval was provided for each participating site.

Results
Patient selection. In total, WGS data of 91 patients with histopathologically confirmed RCC from 24 hos-
pitals in the Netherlands were included in the analyses (Fig. 1A). Matched RNA-Seq data were available for 28 
patients (Fig. 1A). Overall, 72 patients were diagnosed with ccRCC, nine patients with pRCC, one with chro-
mophobe RCC, one with tubulocystic RCC, and one with collecting duct carcinoma. The RCC subtypes of the 
remaining seven patients could not be further defined pathologically. The main biopsy sites were the kidney 
(N = 24), bone (N = 15), and lymph nodes (N = 14) (Fig. 1B). The median age of patients at time of the biopsy 
was 65 years (range 40–83), 79% of the patients were male, and 78% of the patients did not receive any systemic 
treatment before biopsy (Table 1). Most patients (84/91, 92%) were treated with systemic therapy after the biopsy 
was collected. This treatment consisted mostly of TKIs (61/84, 73%) or ICIs (19/84, 23%), whereas the remaining 
patients received combination treatment (4/84, 5%).

Whole-genome sequencing analyses. Tumor and blood biopsies of all RCC patients were whole 
genome sequenced (WGS) with a median coverage of 102X and 38X (Supplementary Fig. 1A). The number and 
type of somatic changes in the WGS data were analyzed on both small variants and structural variations (Supple-
mentary Fig. 2), showing similar numbers as previous RCC cohorts (7,224 substitutions, Q1–Q3: [5648–8581] 
vs. 7,050, Q1–Q3: [6434–9504], p-value = 0.45, Mann–Whitney U  test5).

Somatic small variants, copy-number alterations (CNAs) and structural variants (SVs) were identified as 
described  previously26. The median tumor mutational burden (TMB) of patients with ccRCC was 2.8 [interquar-
tile range (IQR) 1.1] (Fig. 2A). Only two patients (one with ccRCC and one with an undefined subtype of RCC) 
had a TMB > 10 bases. In the two samples with high TMB, mutational signatures were related to defective DNA 
mismatch repair, covering more than 25% of their single-nucleotide variants (SNVs) (Fig. 2A/E). Interestingly, 
the lowest TMB (i.e. 0.16) was detected in a sample from a patient with tubulocystic RCC (N = 1) which had 
minimal genomic aberrations in general, and only two detectable SVs (Fig. 2C/D; tandem duplication and break-
end). SBS40 (unknown etiology) was the dominant mutational signature, with a mean relative contribution of 
74% in this cohort (Fig. 2E). To assess the reliability of the SBS40 calling, the mutational signature calling was 
bootstrapped, which revealed a very high variance (median difference in the assignment of 37%) in the relative 
contribution of SBS40 (Supplementary Fig. 3).

The frequency of genomic SNVs (Fig. 2F), multi-nucleotide variants (MNVs), InDels, and the collective cod-
ing variants showed a similar pattern across the different RCC subtypes (Supplementary Fig. 2, Supplementary 
data file). In total, 713,077 somatically acquired SNVs, 173,579 InDels and 9,964 MNVs were detected in the RCC 
genomes. Transversions were more frequently found than transitions in ccRCC, pRCC and undefined subtypes 
(Supplementary Fig. 2B and 2E). Missense variants were the most dominant protein variant type and accounted 
for > 60% of the small variants in all subtypes (Supplementary Fig. 2G). For 57% of ccRCC, the genome-wide 
ploidy was 2, while 32% had a genome doubling with a ploidy of 3 or higher (Fig. 2B, Supplementary Fig. 2D). 
Differences in DNA ploidy have been associated with tumor differentiation and diploidy has been related to 
well-differentiated RCC 51. Considering SVs, a total of 3,121 deletions, 941 translocations, 2,196 tandem duplica-
tions, four insertions, 2,714 inversions and 641 break-ends were detected (Supplementary Fig. 2F). The number 
of patients with events considered chromothripsis was limited and present in only five patients with ccRCC, 
two patients with pRCC and absent in the other subtypes (Fig. 2G). Furthermore, these chromothripsis events 
primarily did not involve the classic t(3;5) event. Only one of the samples with chromothripsis did have a t(3;5) 
translocation (Supplementary Fig. 4), while these specific translocations were more frequently detected in the 
cohort of patients without chromothripsis events (29.7%, Supplementary Fig. 5). While clinical data concerning 
pre-treatment (Fig. 2H), first treatment after biopsy (Fig. 2I), and accompanying RECIST score (Fig. 2J) was 
available, no correlative conclusions were drawn due to heterogeneity which would undermine any reliability 
attached to the data (Supplementary Fig. 6).

https://www.hartwigmedicalfoundation.nl/applying-for-data/
https://www.hartwigmedicalfoundation.nl/applying-for-data/
https://civicdb.org/downloads/01-Nov-2018/01-Nov-2018-ClinicalEvidenceSummaries.tsv
https://www.oncokb.org/actionableGenes
https://www.cancergenomeinterpreter.org/biomarkers
https://www.cancergenomeinterpreter.org/biomarkers
https://bitbucket.org/ccbc/advancedrcc_dr88/
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In patients with ccRCC, both previously described and novel amplifications and deletions were detected. 
Statistically significant CNA peaks (A) and arm-level copy-number alterations (B) in ccRCC are presented in 
Supplementary Fig. 7. Arm-level CNAs covering more than 50% were detected for amplifications of 1q, 5q, 7q, 

Figure 1.  Overview of sample selection and biopsy sites. (A) illustrates the selection of samples for the WGS 
(N = 91) and matched RNA-Seq (N = 28) analyses. In (B), the main biopsy sites are shown. Next to the illustrated 
biopsy sites, other biopsy sites (N = 20) include biopsies from soft tissue, muscle biopsies and biopsies from 
subcutaneous tissue. (B) was created with biorender.
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8q, 12p and 20q, and deletions in 3p, 9p and 14q. All these CNAs have been described  previously52. Furthermore, 
in the current cohort, amplifications of 5p, 7p, 12q, 16p and 20p, and deletions of 4p, 4q, 6p, 8p, 9q, 14p, 18p and 
18q were also statistically significant.

Next, the WGS data were analyzed on driver genes of the ccRCC samples using the dN/dS algorithm and on 
CNAs by GISTIC 2.0. The driver gene analyses revealed that most driver genes in ccRCC encompassed varia-
tions in the chromosome 3p region: PBRM1 (94.4%), VHL (93.1%), SETD2 (90.3%), and BAP1 (87.5%) together 
with events in tumor suppressor genes on other chromosomes, such as CDKN2A/B (66.7%) and PTEN (30.6%) 
(Fig. 3, Supplementary data file). In addition, many patients with ccRCC had focal deletions in genes described 
as putative tumor suppressor genes, e.g. PTPRD (65.3%) and NEGR1 (44.4%)4,53. Deletions of PTPRD have been 
described as a potential risk factor for the development of ccRCC 53,54. Moreover, amplifications were present in 
genes associated with cell proliferation and angiogenesis, such as CDK6 (55.6%, also prevalent in pRCC at 77.8%) 
and CCNE1 (16.7%)55,56. Pathogenic germline mutations related to cancer or Von Hippel-Lindau syndrome were 
analyzed for all RCC samples and found in nine patients in different RCC subtypes. The found variationsincluded 
ATM, FLCN, CHEK2, FH, SDHA and MITF (Fig. 3).

In addition, genes that were previously described as frequently mutated somatically (q-value < 0.05) in (cc)
RCC by Braun et al.57 and in pRCC by Turajlic et al.58, that were not statistically significant in our driver gene 
analysis, were included to extend our driver gene analysis for all RCC subtypes. The commonly most affected 
and added genes in ccRCC were MITF (3p), TERT (5p), RADIL (7p), and MET (7q), predominantly as bystand-
ers of arm-level events. The TERT promoter hotspot variant (C228T)5 was detected in both ccRCC (N = 10) and 
pRCC (N = 2). MET and RADIL were also frequently affected in pRCC (both in 77.8%), along with MED13 and 
USP32 (both in 66.7%). Genes associated with poor prognosis in ccRCC showed a low mutational frequency in 
our  cohort4, such as the Krebs cycle genes (e.g. SDHA, FH).

Furthermore, previously validated fusion  events35 were detected across the different RCC subtypes, with 
CLTC-VMP1 and SFPQ-TFE3 both occurring once in the ccRCC group, along with a fusion event of ASPSCR1-
TFE3 in one patient with pRCC . The histopathological diagnosis had to be reconsidered for both patients with 
a detected TFE3 fusion. As a result, these patients were reallocated in a different subcategory of RCC, i.e. MiT 
family translocation renal cell  carcinomas1. Overall, characteristic clear cell driver gene events — such as somatic 
VHL variants/deletions — were infrequent in nccRCC, except for CDKN2A deletions in pRCC.

Next, we investigated if the tumors contained targetable variants (Fig. 4), that are known drivers in RCC 
(Fig. 3) but also proteins which are considered targetable in other cancer indications. For example, specific 

Table 1.  Overview of patients’ characteristics.

Frequency Percentage

Sex

 Male 72 79%

 Female 19 21%

Median age 65 years [range 40–83] – –

Histological subtype

 Clear cell RCC (ccRCC) 72 79%

 Non-clear cell RCC (nccRCC) 12 13%

 Papillary RCC (pRCC) 9 75%

 Chromophobe RCC (chRCC) 1 8%

 Collecting duct carcinoma (CDC) 1 8%

 Tubulocystic RCC (tRCC) 1 8%

 Undefined subtype 7 8%

Prior systemic treatment (n = number of lines)

 No 71 78%

 Yes (1) 10 11%

 Yes (≥ 2) 10 11%

Treatment after biopsy (N = 84)

 Tyrosine kinase inhibitors (TKIs) 61 73%

 Pazopanib 36 59%

 Sunitinib 23 38%

 Cabozantinib 1 1.6%

 Lenvatinib 1 1.6%

 Immune checkpoint inhibitors (ICIs) 19 23%

 Nivolumab monotherapy 13 68%

 Nivolumab + ipilimumab 6 32%

 Combination treatment 4 5%

 Avelumab + axitinib 4 100%
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drugs have been developed for target-specific variants encoded by CDK4/6 or EGFR59–61. This may result in 
off-label availability of these drugs for patients with similar aberrations in RCC, e.g. in the context of a clinical 
 trial62. Furthermore, somatic aberrations in cancer genes, e.g. TP53, are also considered biomarkers for targeted 
 treatments63. Lastly, some variants leading to specific mechanisms were also considered targetable for treatment. 
For instance, TKIs targeting VEGF signaling are known to be effective in patients with VHL variants and are 
on-label available for patients with RCC 64. Overall, for the majority (90 out of 91) of patients in this cohort action-
able targets were detected, even for patients with nccRCC for whom no standard treatment is available to date.

Transcriptome analyses of advanced RCC . Differential Expression Analysis (DEA) was performed on 
RNA-Seq data (Supplementary Fig. 1B) to discriminate the two most frequently diagnosed histological subtypes, 
ccRCC (N = 24) and pRCC (N = 4). Next to the t-distributed stochastic neighbor embedding (t-SNE), which 
showed a clear separation between the two subtypes (Supplementary Fig. 8), the DEA resulted in 1,546 sig-
nificantly (adjusted p-value < 0.05) differentially expressed genes. The hundred genes with the smallest adjusted 
p-value are shown in Fig. 5A. In this top hundred list, several genes are known to be associated with the develop-
ment or course of RCC. For instance, LOX65 and MAPKAPK366 correlate with poor survival in RCC. In addi-
tion, various other genes were differentially expressed and have been described in other malignancies, such as 
TUSC267, CAPN168, PCSK669, and CD270. The differential expression of these genes confirmed a clear distinction 
between pRCC and ccRCC at the transcriptomic level.

Second, the pathway analysis (Fig. 5B) of the 1,546 significant differentially expressed genes between pRCC 
and ccRCC revealed cancer hallmarks such as oxidative phosphorylation and epithelial-mesenchymal transition 
(EMT), among  others71. Significant Reactome  pathways50 of differentially expressed genes in ccRCC compared 
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Figure 2.  Overview of genomic characteristics of whole-genome sequenced advanced RCC cohort. This figure 
illustrates different genomic characteristics identified by WGS (N = 91). Track (A) shows the tumor mutational 
burden (mutations per Mb; yellow for low (0–5), orange for medium (5–10) and red for high (> 10)). Track 
(B) shows the mean genome-wide ploidy, with white representing diploidy. Tracks (C and D) illustrate the 
abundance of structural variants and the relative frequency of the types of these variants. Tracks (E and F) show 
the relative mutational signature contribution (COSMIC signatures v3) and the relative frequency of mutational 
changes at the base level. Track (G) shows the presence of chromothripsis. Track (H) shows whether patients 
were treatment naive at the time of biopsy. Tracks (I and J) indicate the first treatment given after biopsy (if 
any) and the first tumor response according to RECIST v1.1, respectively. On the x-axis, the figure is arranged 
in descending order by tumor mutational burden per RCC subtype. ccRCC = clear cell renal cell carcinoma. 
pRCC = papillary renal cell carcinoma. Undefined subtype = renal cell carcinoma, with undefined subtype. 
chRCC = chromophobe renal cell carcinoma. CDC = collecting duct carcinoma. tRCC = tubulocystic renal cell 
carcinoma. NA = not available.
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to pRCC samples mainly showed pathways related to VEGF and collagen formation. Pathways related to poor 
 prognosis4, such as the AMPK complex, the Krebs cycle genes, the pentose phosphate pathway and fatty acid 
synthesis, were not differentially expressed between ccRCC and pRCC. A heatmap of the top differentially 
expressed genes between ccRCC and pRCC and a t-SNE plot show that RCC samples of undefined subtype 
cluster with either ccRCC or pRCC samples based on the differential gene expression of these subtypes (Sup-
plementary Fig. 9).

The 66 gene-signature has been based on previous data from the IMmotion150  trial25. High expression of 
‘angiogenic’ genes and specific ‘invasion’ genes is applied to sub-classify RCC as ‘angiogenic’, which would be 
predictive for response to TKIs targeting VEGF signaling. In case of high expression in ‘Ca2+-Flux’, ‘T-Effector’, 
and other ‘invasion’ genes, RCC is sub-classified as ‘immunogenic’, indicating a likely response to ICIs. According 
to this gene signature, ccRCC cases in the current cohort could be classified as either immunogenic or angiogenic 
(Fig. 5C). Moreover, all patients with pRCC had low expression of these genes, except for one individual patient 
with expression of EDNRB72.

Discussion
In this study, the genomic and transcriptomic landscape of advanced RCC was characterized for 91 individual 
patients. First, genomic data showed that, next to VHL alterations (93.1%), most common driver gene mutations 
in ccRCC included alterations in tumor suppressor genes of different pathways such as SETD2 (90.3%) and PTEN 
(30.6%). While TMB was comparable amongst the different subtypes of RCC, the driver gene analyses showed a 
distinctive pattern between patients with ccRCC and nccRCC. Furthermore, WGS revealed potential actionable 
targets for 90 out of 91 patients and WGS might therefore contribute to a more individualized treatment strategy 
for patients with advanced RCC.

For a subgroup of patients (N = 28), transcriptomic data were also generated. RNA-Seq could be applied to 
distinguish ccRCC, pRCC and histologically undefined RCC based on the differential gene expression. Using 
the 66-gene  signature25 on the RNA-Seq data, made it possible to sub-categorize ccRCC into immunogenic or 
angiogenic signatures, whereas classification in pRCC (N = 4) using these signatures was not feasible.
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Figure 3.  Overview of coding variants and copy-number alterations in driver genes in whole-genome 
sequenced advanced renal cell carcinoma cohort. Overview of findings resulting from the driver gene analysis 
(N = 91). The oncoplot in track (A) shows variants (filled center) and copy-number alterations (grid cell 
background) of driver genes determined by dN/dS and GISTIC2.0. Track (B) also shows an oncoplot, but on 
selected genes, not passing any statistical threshold. Germline pathogenic mutations are indicated with the 
capital letter ‘G’ (and red border), utilizing the same color coding as the somatic variants. Consequential fusion 
genes are indicated in yellow, with a red border. Track (C) shows the tumor mutational burden (mutations 
per Mb; yellow for low (0–5), orange for medium (5–10) and red for high (> 10)). Tracks (D, E and F) shows 
whether patients were treatment naive at time of biopsy, if systemic treatment was given after time of biopsy, and 
the first tumor response after systemic treatment according to RECIST v1.1, respectively. Bold sample names 
with asterisks indicate MiT family translocation RCC. The figure is arranged in descending order by tumor 
mutational burden per RCC subtype on the x-axis.
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At the genomic level, the findings for ccRCC mainly corresponded with previous  findings4,5,73. Previously 
described statistically significant arm-level events were also found in this cohort, i.e., amplifications of 1q, 5q, 
7q, 8q, 12p and 20q, and deletions in 3p, 9p and 14q. However, a striking difference in the frequency of some 
events is caused by a distinct definition of ‘arm-level’. For instance, both full loss of 3p and focal loss of events 
along 3p21-p25 (VHL, PBRM1, BAP1, SETD2) are counted as ‘arm-level’ in the ccRCC characterization from the 
Cancer Genome Atlas Research  Network4. In contrast, we defined these (and other large) events as covering > 50% 
of the chromosome arm (Supplementary Fig. 7). The massive contribution of SBS40 to the mutational landscape 
of nearly all RCC subtypes in this cohort is remarkable. However, bootstrapping showed that SBS40 was the 
least robust signature, indicating that this signature could act as a sink for variants that are difficult to fit. Since 
CPCT-02 cohorts with other tumor types did not show the high contribution of  SBS4074,75, this is certainly not a 
result of a bias in the sequencing or our workflows. In contrast to other ccRCC studies, the number of chromo-
thriptic events was limited in our study and occurred in only five patients. In previous studies, chromothripsis 
was defined as the combination of a chromothripsis event and a translocation event with concurrent 3p loss and 
5q gain, which were called “t(3;5) chromothripsis events”5. Although both chromothripsis and translocation 
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Figure 4.  Overview of DNA-based biomarkers and potential treatment options in the whole-genome 
sequenced advanced renal cell carcinoma cohort. Actionable target analysis (N = 91). Track (A) Percentage of 
potentially available treatment options based on genomic characteristics. Treatment options are categorized 
according to the highest level of drug availability in clinical practice (on label available – off label available – 
investigational drugs). Track (B) Potentially actionable alterations at gene-level with each column representing a 
sample, ordered descendingly by tumor mutational burden per subtype on the x-axis. A detailed description of 
actionable targets can be found in Supplementary data file.
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(t(3;5)) events occurred in our cohort, for most of the cases, these events were independent of each other (χ2 
test, p-value = 0.6193, events visualized in Supplementary Figs. 4 and 5).

At the transcriptomic level, assigning ccRCC biopsies to either immunogenic or angiogenic signatures may 
indicate which treatment could be most beneficial for individual patients. The introduction of ICIs has signifi-
cantly changed the therapeutic landscape for patients with advanced ccRCC 76,77, resulting in a clinical need to 
select patients who will benefit from angiogenic or immunogenic  treatment17. RNA-Seq data could assist clinical 
decision making when choosing the optimal treatment strategy for the individual patient with advanced ccRCC. 
For patients with high expression of genes annotated as immunogenic, first–line treatment with ICIs should be 
considered, whereas, for patients with high expression in angiogenic genes, treatment with a TKI should be taken 
into consideration. For those patients with low expression throughout all these genes, combination treatment 
with TKI/ICI may be considered. However, treatment based on actionable targets identified by WGS could be 
the most effective option. Treatment selection based on gene expression has already shown promising results for 
patients with RCC 12,78. However, further research in a prospective setting is still  warranted79.

The distinctive mutational gene pattern between ccRCC and nccRCC showed that these tumors are different 
entities, while differences within the nccRCC subtypes were also evident. For example, none of the patients with 
nccRCC had somatic VHL alterations and other ccRCC driver genes hardly showed variants in nccRCC. This 
is of great importance, as the development of targeted drugs is based on driver mutations or their downstream 
consequences. For instance, the frequently mutated VHL gene in ccRCC has been the basis for the developing 
angiogenesis inhibitors. The loss-of-function mutations in this tumor-suppressor gene result in the accumulation 
of HIF1α/2α, eventually leading to overexpression of VEGF/PDGF, AXL, and MET, among  others64,80. Several 
TKIs that have been approved for the treatment of advanced ccRCC 6,7,64,81 and interfere at different levels in this 
 cascade64,80. More recently, Hypoxia Inducible Factor (HIF) inhibition has also shown proven efficacy in patients 
with VHL  alterations82. However, as patients with nccRCC in our cohort showed no variants in VHL or other 
angiogenesis related pathways, it is questionable whether treatment directed against the VHL pathway would 
be the most effective therapy for this group of patients. On the other hand, germline mutations associated with 
specific genetic syndromes were detected in several patients with nccRCC. For instance, the patient with tRCC 
had a germline FH mutation, which makes it likely that this patient suffered from hereditary leiomyomatosis 
renal cell carcinoma syndrome (HLRCC)83. Moreover, patients with a germline FLCN mutation may suffer from 
the Birt-Hogg-Dubé syndrome, often associated with chromophobe renal cell carcinoma or  oncocytoma84. Our 
germline analysis shows that the number of germline mutation is relatively high in the more rare subtypes of 
RCC, demonstrating the importance of germline mutation analysis for (rare forms of) nccRCC. Since germline 
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Figure 5.  RNA sequencing cohort and differential expression analysis between clear cell renal cell carcinoma 
(ccRCC) and papillary RCC (pRCC) with classification according to gene signatures. Track (A) shows a heatmap 
of Z-scores of variance stabilized values with unsupervised clustering of the top 100 transcripts based on the 
smallest adjusted p-value and colored according to Z-scores. Tracks (B) shows gene set enrichments based on 
sets (y-axis) from the molecular signatures database hallmarks and Reactome pathways, with the normalized 
enrichment score (NES) on the x-axis. Bar charts are visualized with ccRCC taken as reference (N = 24) (positive 
NES equals expression up in ccRCC and down in pRCC (N = 4)). Track (C) shows unsupervised clustering on 
the rows (patients) with color coding indicating the RCC subtype (purple for ccRCC and pink for pRCC) and 
colored according to Z-scores. The x-axis has been cut into several gene groups related to angiogenesis, invasion, 
 Ca2+-flux and T-effector cells, as defined by D’Costa et al.25 and their stated order.
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mutations play an important role in the development of RCC and are often associated with particular types of 
RCC, detecting these mutations allows for personalized and targeted treatment of the affected patients.

In clinical practice, RCC is usually defined histopathologically. As a result, there is a large dependency on 
experienced pathologists. However, discrepancies among these experts  remain85,86. In our cohort, nearly 8% of 
RCC cases could not be sub-classified through histopathological assessment. Thereby, for two patients, a fusion 
gene was predicted using WGS which led to the revision of the original histological diagnosis and allocation to 
a different subgroup, i.e. MiT family translocation renal cell  carcinoma1. As the histopathological classification 
defines the treatment strategy, this could have a significant clinical impact. Since different subtypes and growth 
patterns of RCC are driven by gene  expression87, a next generation sequencing-based classifier could be feasible. 
Here, we showed that analyses of driver mutations (VHL, PBRM1, SETD2) and RNA-Seq data reveal clear differ-
ences among the different RCC subtypes. As shown in Supplementary Figs. 8 and 9, clustering of the undefined 
RCC subtypes is feasible and could be useful to clarify the histological subtype in clinical practice.

This study has some important limitations. First, the collected clinical data within the CPCT-02 study were 
limited and therefore it was not possible to reliably correlate genomic and transcriptomic findings to clinical 
data. A correlation with clinical data and outcome could have confirmed whether patients with certain gene 
signatures indeed had benefit from a specific treatment. Therefore, validation in a prospective trial is needed 
before clinical implementation.

Second, the limited number of patients with nccRCC made it challenging to run separate analyses (e.g. dN/
dS) for this group. Since the subgroup of patients with nccRCC consists of less common and heterogeneous 
subtypes, very little is known about the genomics of nccRCC. Therefore, we decided to include all patients with 
nccRCC, even subgroups containing only a single patient. Finally, the collected data were heterogeneous, with 
a broad spectrum of pre-treatment schedule and different treatment strategies after biopsy (Supplementary 
Fig. 6). All patients had metastatic or locally advanced disease but biopsies taken from metastatic and the kidney 
(primary site) were both included in the analyses. This strategy could have significantly impacted the analysis. 
However, previous studies have shown clear consistencies between primary tumor biopsies and their metastasis 
 counterpart5. Moreover, we did not have WGS nor RNA-Seq data from matched primary samples. However, 
recently an unmatched WGS pan-genomic primary-metastatic comparison showed that RCC had a significant 
higher number of mutations and an increase in driver genes including PTPRD in the metastatic RCC  setting28. 
Nevertheless, the heterogeneity in this cohort reflects the daily clinical practice of patients who present with 
advanced RCC, including primary metastatic disease. Despite this clinical heterogeneity, a clear genomic and 
transcriptomic signal could be extracted, indicating that the genomic and transcriptomic analyses are feasible 
for clinical implementation.

Conclusions
In conclusion, there are evident genomic and transcriptomic differences between RCC subtypes. The analysis 
of driver mutations, in combination with the clustering of RNA-Seq data, could assist the histopathological 
subtyping of RCCs in clinical practice. In addition, RNA-Seq data could identify patients with ccRCC who may 
benefit more from treatment with either ICIs, TKIs or a combination of these drugs. Genomic and transcriptomic 
analyses are promising to identify actionable targets and individualize treatment strategies in most patients with 
RCC, even for patients with nccRCC. Although these results are promising, prospective clinical trials are still 
needed to evaluate whether genomic and transcriptomic diagnostics contribute to improved survival outcomes 
in individual patients with advanced RCC.

Data availability
The WGS and corresponding clinical data used in this study were made available by the Hartwig Medical Foun-
dation (a Dutch nonprofit biobank organization) after signing a license agreement stating data cannot be made 
publicly available via third-party organizations. Therefore, the data are available under restricted access and can 
be requested by contacting the Hartwig Medical Foundation (https:// www. hartw igmed icalf ounda tion. nl/ apply 
ing- for- data/) under the accession code DR-08827. Within this manuscript, we furthermore made use of the 
actionable gene-variant and associated drug databases of CiViC (01-Nov-2018; https:// civic db. org/ downl oads/ 
01- Nov- 2018/ 01- Nov- 2018- Clini calEv idenc eSumm aries. tsv), OncoKB (Nov. 2018; https:// www. oncokb. org/ actio 
nable Genes), CGI (Nov. 2018; https:// www. cance rgeno meint erpre ter. org/ bioma rkers) and the iClusion (Dutch) 
clinical trial database (Dec. 2020) from iClusion (Rotterdam, the Netherlands; Suppl. Data 1). The remaining 
data are available within the Article, Supplementary Information, or available from the authors upon request.
All scripts used for the downstream analysis in this manuscript are accessible via: https:// bitbu cket. org/ ccbc/ 
advan cedrcc_ dr88/.
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