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Finite‑time complete periodic 
synchronization of memristive 
neural networks with mixed delays
Hajer Brahmi 1, Boudour Ammar 1*, Amel Ksibi 2, Farouk Cherif 3, Ghadah Aldehim 2 & 
Adel M. Alimi 1,4

In this paper we study the oscillatory behavior of a new class of memristor based neural networks with 
mixed delays and we prove the existence and uniqueness of the periodic solution of the system based 
on the concept of Filippov solutions of the differential equation with discontinuous right‑hand side. In 
addition, some assumptions are determined to guarantee the globally exponentially stability of the 
solution. Then, we study the adaptive finite‑time complete periodic synchronization problem and by 
applying Lyapunov–Krasovskii functional approach, a new adaptive controller and adaptive update 
rule have been developed. A useful finite‑time complete synchronization condition is established in 
terms of linear matrix inequalities. Finally, an illustrative simulation is given to substantiate the main 
results.

Recurrent neural network (RNN) is a deep learning model characterized by a topology that allows all connections 
between neurons, and by the fact each neuron usually has a complicated structure because of a large number 
of parallel connections with a diversity of axon  lengths1,2. In addition, RNNs are well known for their capac-
ity of classification, detecting regularities and their ability to learn. They can play the role of memory through 
feedback and are perfectly able to receive sensory data from our future  agent3,4. In particular, continuous time 
RNNs (CTRNNs) are RNNs modeled by dynamical systems in the form of differential equation; they combine 
machine learning and physical  modeling5–7. In fact, CTRNNs are mathematically easier to analyze, and continu-
ous formulation offers more flexibility in adapting the system to the problem and adding constraints. Actually, 
researchers are attracted to the mathematical properties of RNNs, namely, the nature of solutions, stability and 
the oscillation  properties8,9.

Indeed, the dynamic properties of RNNs have been deeply discussed and several important works have been 
 provided10–13. In particular, RNNs which exhibit periodic oscillation have been used to encode information in 
the vibration phase and to model many systems in many domains such as celestial mechanics, nonlinear vibra-
tion, electromagnetic theory, engineering,  robotics14–19. In addition, the synchronization problem consists of 
analyzing the behavior between two systems: driver (or master) and responder (or slave) and could be seen in 
different real systems such as secure communication, information science, chaos generators and signal genera-
tors design, image processing, biological  systems20,21. In fact, neuronal synchronization becomes one of the most 
attractive subjects in neuroscience, it indicates that the specific states of all the neurons in the neural networks 
converge to a common  value22–25.

To make these oscillating neurons, researchers are interested in the memristor component that is a combina-
tion of memory and  resistor26,27. Chua pointed out that the behaviour of memristor is somewhat similar to the 
synapses in the human  brain28, and it can potentially offer both high connectivity and high density needed for 
efficient computing compared to other storage. A memristive neural networks (MNN) is described in Fig. 1. In 
addition, memristor studies show that MNN exhibits the feature of pinched hysteresis which means that a lag 
occurs between the application and the removal of a field and its subsequent effect, just as the neurons in the 
human brain  have29–31. Some studies have been discussed to analyze the dynamic behaviour of MNN and a lot 
of researches were  released32–35.
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Hence, one can ask what is the impact of the delays (time-varying and distributed delay) for the stability and 
the synchronization of the periodic solution of MNNs. In Ref.10, authors investigate whether periodic solutions 
exist, are unique and stable for a large class of memristor-based neural networks with time-varying delays. 
Moreover, a novel and useful finite-time complete synchronization condition is obtained in terms of linear matrix 
inequalities to ensure the synchronization goal in Ref.36.

In this work, we extend these studies and the mathematical model of MNN with mixed delays. In fact, we 
analyse the stability of equilibrium points with executing significant results of the period behavior of the system. 
After that, we study the phenomena of synchronization from the point of view of the theory and control. In the 
considered system, the weights are discontinuous; the classical definition of the solution for differential equations 
cannot apply here. Therefore we shall propose the Filippov solution to handle this problem. Filippov developed 
a solution to the differential equation with a discontinuous right-hand  side37. Based on this definition, a dif-
ferential equation with a discontinuous right-hand side has the same solution set as a differential inclusion. Our 
contribution consists to investigate the existence and exponential stability of the periodic solutions for memristor-
based neural networks with time-varying delays in the leakage term. The stability properties of this model are 
then analyzed and we show that the solutions of this new linear system converge to a periodic and stable limit 
cycle. The main novelty of our contribution lies in solving the problems of stability and synchronization and we 
demonstrate the impact of the mixed delays. Also results enhance and extend earlier studies on neural network 
dynamical systems with a continuous or discontinuous right-hand side that are memristor-based or conventional.

The rest of this paper is organized as follows. A delayed memristor-based neural networks is presented and 
some necessary definitions are given in “Model description and preliminaries” section. In “Uniqueness and global 
exponential stability” section, we introduce the Filippov’s solution for our system and the existence of periodic 
solutions of the system. Our approaches are based on the differential inclusions and topological degree theories 
in set-valued analysis. In “Finite-time periodic synchronization” section, we shall study the uniqueness and 
global exponential stability of the w-periodic solution for the system. Especially, when the system is autonomous, 
we will give the sufficient conditions, uniqueness and global exponential stability of equilibrium point of the 
proposed system. Moreover, we designed novel control algorithms for the finite-time periodic synchronization 
to select neurons to pin the designed controller. In “Conclusions” section, a numerical example is obtained to 
show the effectiveness of the theoretical results given in the previous sections. It should be mentioned that the 
main results of this paper are Theorems 1–5.

Model description and preliminaries
In this paper, we shall investigate the following memristive neural networks with time-varying delay:

where n ≥ 1 represents the number of neurons in the network, xi(t) correponds to the potential membrane of 
the neuron i at time t, the ai is a positive constant rate with which the i th neuron will reset its potential to the 
resting state in isolation when it is disconnected. In addition, fj , gj , hj and φj denote the activation functions of 

(1)

ẋi(t) = −ai(t)xi(t)+
n

∑

j=1

bij(xj(t))fj(xj(t))+
n

∑

j=1

cij(xj(t − τij(t)))gj(xj(t − τij(t)))

×
n

∑

j=1

pij(xj(t))

t
∫

−∞

kij(t − s)hj(xj(s))ds + Ji(t),

Figure 1.  Memristive neural network with 5 neurons.
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jth neuron at time t, bij(t), cij(t), pij(t) are the synaptic connection weight of the unit j on the unit i at time t, Ji 
is the input unit i and τij(t) corresponds to the transmission delay of the ith unit along the axon of the jth unit 
at time t and is continuously differentiable function satisfying

where τ = max1≤i,j≤n

{

maxt∈[0,ω], τij(t)
}

, τ is a nonnegative constant, bij(t) , cij(t − τij(t)) and pij(t) are memris-
tive synaptic weights. Basing on memristor feature and the current-voltage characteristic, we write:

for i, j = 1, 2, . . . , n ; t ∈ R , where Tj > 0 is a switching jumps and let āi > 0 , ai > 0 , bij , bij , cij , cij , pij , pij for 
i, j = 1, 2, . . . , n are all constants.

Definition 1 (Periodic solution). A solution x(t) of system (1) on [0,+∞[ is a ω-periodic solution with period ω if
x(t + ω) = x(t) , for all t ≥ 0.
Throughout this paper, we always assume the following hypothesis:
(H1) ai(.), bij(.), bij(.), cij(.), cij(.), pij(.), pij(.), τij(.) and Ji(.) are continuous and w-periodic functions.
(H2) The neuron activation functions fj(.) , gj(.) and hj(.) are Lipschitz-continuous on R with Lipschitz con-

stants Fj > 0 , Gj > 0 and Hj > 0 respectively, i.e.,
|fj(x)− fj(y)| < Fj|x − y|, |gj(x)− gj(y)| < Gj|x − y|, |hj(x)− hj(y)| < Hj|x − y|, for all x, y ∈ R and for 

all j = 1, 2, .., n.

(H3) ∃M,α ∈ R+ such that |kij(t − s)| =
{

= 0, s ≤ 0

≤ Me−α(t−s), 0 ≤ s ≤ t
.

Definition 2 We say that a square matrix is an M-matrix if it has all nonpositive elements outside the diagonal 
and all positive successive principal  minors38.

Lemma 1 39 Given matrix M = (mij)n×n with nonpositive off-diagonal elements is a nonsingular M-matrix if and 
only if one of the following conditions holds: 

(1) There exist n positive constants α1,α2, . . . αn such that αimii +
n
∑

j=1,j �=i

αjmji > 0, i = 1, . . . , n.

(2) There exist n positive constants β1,β2, . . . βn such that βimii +
n
∑

j=1,j �=i

βjmij > 0, i = 1, . . . , n.

Definition 3 (Clarke Regular40) V(x) : Rn → R is said to be regular, if for each x ∈ R
n and v ∈ R

n

(1) there exists the usual right directional derivative D+V(x, v) = lim
h−→0+

V(x+hv)−V(x)
h ,

(2) the generalized directional derivative of V  at x in the direction v ∈ R
n is defined as 

D++V(x, v) = lim
y→x,h−→0+

V(y+hv)−V(y)
h  , then D+V(x, v) = D++V(x, v).

Definition 4 Consider the column vector x = (x1, x2, . . . , xn)
T , where T denotes the transpose of a vector, ‖x‖ 

denotes any vector norm in Rn . �x�1 =
n
∑

j=1

|xi|, �x�2 =
[

n
∑

j=1

x2i

]
1
2

.

Let the set A ∈ R
n, co[A] denotes the closure of the convex hull of A, µ(A) is the Lebesgue measure of A, and 

∂A is the boundary of A.

Definition 5 For a locally Lipschitz function V(x) : Rn → R , we can define Clarke’s generalized gradient of V 
at point x, as follows 

where � ⊂ R
n is the set of points where V is not differentiable and N ⊂ R

n is an arbitrary set with measure  zero41. 
In the following, for a continuous ω-periodic function f(t) defined on R , we define 

(2)0 ≤ τij(t) ≤ τ ,

(3)bij(xi(t)) =
{

b̄ij , |xj(t)| > Tj

bij , |xj(t)| < Tj
,

(4)cij(xi(t)) =
{

cij , |xj(t)| > Tj

cij , |xj(t)| < Tj
,

(5)pij(xi(t)) =
{

pij , |xj(t)| > Tj

p
ij
, |xj(t)| < Tj

,

∂V(x) = co[ lim
k←∞

∇V(xk) : xk → x, xk /∈ N , xk /∈ �],
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Given Cτ := C([−τ , 0]) defines a Banach space of all continuous functions e : [−τ , 0] → R.
For x ∈ R

n , we can write x ∈ Cτ means x(s) ≡ x in [−τ , 0] . Given e ∈ Cτ , let �e�c = sup|e(s)|.
The initial states proposed for system (1) are as follow

Consider xt ∈ C([−τ , 0],Rn) described by xt(s) = x(t + s), −τ ≤ s ≤ 0 , and the initial states (10) can be 
rewritten as

Suppose that A ⊂ R
n , then x → φ(x) is said a set-valued map from A to Rn , if for every point x ∈ A , there 

exists a nonempty set φ(x) ⊂ R
n . We call a set-valued map φ with nonempty values, an upper semicontinuous at 

x0 ∈ A , if for every open set N containing φ(x0) , there exists a neighborhood M of x0 such that φ(M) ⊂ N . The 
map φ(x) is said to have a closed (convex, compact) image if for each x ∈ A , φ(x) is closed (convex, compact).

Existence of periodic solution
In the rest of this section we will investigate the existence of periodic solutions of the generalized memristor 
system.

By the differential equation system (1), we consider the set-valued maps as follow: for t ∈ R and 
i, j = 1, 2, . . . , n,

It is clear that K[bij(xi(t))] , K[cij(xi(t))] and K[pij(xi(t))] are all closed, convex and compact for every t ∈ R and 
i, j = 1, . . . , n.

A function x(t) is said to be a solution of system (1) on [0, T) with initial condition (7) or (8), if x(t) is abso-
lutely continuous on any compact interval of [0, T] and satisfies differential inclusions:

or there exist γij(t) ∈ K[bij(xi(t))] , ηij(t) ∈ K[cij(xi(t))] and νij(t) ∈ K[pij(xi(t))] satisfy

for a. a. t ∈ [0,T), i = 1, 2, . . . , n.
In the following, we discuss dynamical behavior of system (1) using the following set-valued version of the 

Mawhin coincidence theorem.

Lemma 2 (Mawhin coincidence  theorem42) Suppose that φ : R× R
n → Kν(R

n) is upper semicontinuous and ω
-periodic in t. If the following conditions hold: 

f̄ = 1

ω

ω
∫

0

f (t)dt, f u = sup
t∈[o,ω]

|f (t)|, f l = inf
t∈[o,ω]

|f (t)|.

(6)xi(s) = ei(s), s ∈ [−τ , 0], i = 1, 2, . . . , n.

(7)x0 = e ∈ Cτ := C([−τ , 0],Rn).

(8)K[bij(xj(t))] =











b̄ij , |xj(t)| > Tj

co
�

b̄ij , bij

�

, |xi(t)| = Ti

bij , |xj(t)| < Tj

,

(9)K[cij(xj(t))] =











cij , |xj(t)| > Tj

co
�

c̄ij , cij

�

, |xj(t)| = Tj

cij , |xj(t)| < Tj

,

(10)K[pij(xj(t))] =











pij , |xj(t)| > Tj

co
�

p̄ij , pij

�

, |xj(t)| = Tj

p
ij
, |xi(t)| < Ti

.

(11)

dxi(t)

dt
∈ −ai(t)xi(t)+

n
∑

j=1

K[bij(xj(t))]fj
(

xj(t)
)

+
n

∑

j=1

K[cij(xj(t))]gj
(

xj
(

t − τij(t)
))

+
n

∑

j=1

K[pij(xj(t))]
t
∫

−∞

kij(t − s)hj
(

xj(s)
)

ds + Ji(t),

(12)

dxi(t)

dt
∈ −ai(t)xi(t)+

n
∑

j=1

γij(t)fj
(

xj(t)
)

+
n

∑

j=1

ηij(t)gj
(

xj(t − τ)
)

+
n

∑

j=1

νij(t)

t
∫

−∞

kij(t − s)hj
(

xj
)

ds + Ji ,
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(1) There exists a bounded open set � ⊂ Cω , the set of all continuous, ω-periodic functions: R → R
n , such that 

for any � ∈ (0, 1) , each ω-periodic function x(t) of the inclusion 

 satisfies x /∈ ∂� if it exists.
(2) Each solution z ∈ R

n of the inclusion 0 ∈ 1
ω

∫ ω

0
φ(t, z)dt = g0(z) satisfies z /∈ ∂� ∩ R

n;
(3) deg(g0,� ∩ R

n, 0) �= 0 , then differential inclusion (13) has at least one ω-periodic solution x(t) with x ∈ �̄ . 
If a matrix O ≥ 0 then all elements of O are greater than or equal to 0, and similarly we can describe O > 0 . 
It follows that for given vectors or matrices O and P, O ≥ P (or O > P ) and similarly that O − P ≥ 0 (or 
O − P > 0 ). After that, we give sufficient conditions to guarantee the existence of periodic solutions for the 
memristive neural network.

Theorem 1 We consider I → S an M-matrix, where I is the identity matrix of dimension n, S = (sij)n×n and

(H4) sij = 1

ali

(

buijFj +
cuijGj

√

1−τDij

+ M
α
puijFj

)

, i, j = 1, 2, .., n,

where buij = max
{

b
u
ij , b

u
ij

}

, cuij = max
{

cuij , c
u
ij

}

 and puij = max
{

puij , p
u
ij

}

.

Then there exists at least one ω-periodic solution of system (1).

Proof Define Eω = {x(t) ∈ C(R,Rn) : x(t + ω) = x(t)}, and for x(t) ∈ Eω

�x(t)�Cω
=

n
∑

i=1

max
t∈[0,ω]

|xi(t)|.
Then Eω is a Banach space equipped with the norm ‖.‖Eω.
Let for x(t) ∈ Eω,

where

i = 1, 2, .., n.
Let assumption (H4) holds, φ(t, x) is an upper semicontinuous set-valued map with nonempty compact 

convex values under H4. Here we need to find an appropriate open, bounded subset � , in order to apply Mawhin-
Like Coincidence Theorem (Lemma 2),

From the differential inclusion (13), we obtain

Given x(t) = (x1(t), x2(t), . . . , xn(t))
T an arbitrary ω-periodic solution of the differential inclusion (14) for a 

certain � ∈ (0, 1) . There exist γij(t) ∈ K[bij(xj(t))] and ηij(t) ∈ K[cij(xj(t))] νij(t) ∈ K[pij(xj(t))] satisfy

for a [0, T),  i = 1, 2, .., n.
Multiplying both sides of (15) by xi(t) and integrating over the interval [0,ω] , we get

(13)
dx

dt
∈ �φ(t, x),

φ(t, x) = (φ1(t, x),φ2(t, x), . . . ,φn(t, x))
T ,

φi(t, x) = −ai(t)xi(t)+
n

∑

j=1

K[bij(xj(t))]fj
(

xj(t)
)

+
n

∑

j=1

K[cij(xj(t))]fj
(

xj(t − τ)
)

+
n

∑

j=1

K[pij(xj(t))]
t
∫

−∞

fj
(

xj(s)
)

ds + Ji(t),

(14)

dxi(t)

dt
∈ �[−aixi(t)+

n
∑

j=1

K[bij(xj(t))]fj
(

xj(t)
)

+
n

∑

j=1

K[cij(xj(t))]fj
(

xj(t − τ)
)

+
n
∑

j=1

K[pij(xj(t))]
t
∫

−∞
fj
(

xj(s)
)

ds + Ji].

(15)
dxi(t)

dt
= �[−ai(t)xi(t)+

n
∑

j=1

γij(t)fj
(

xj(t)
)

+
n

∑

j=1

ηij(t)fj
(

xj(t − τ)
)

+
n

∑

j=1

νij(t)

t
∫

−∞

fj
(

xj(s)
)

ds + Ji],

(16)

ω
∫

0

ai(t)x
2
i (t)dt =

ω
∫

0

xi(t)[
n

∑

j=1

γij(t)fj
(

xj(t)
)

+
n

∑

j=1

ηij(t)gj
(

xj
(

t − τij
))

+
n
∑

j=1

νij(t)
t
∫

−∞
kij(t − s)hj

(

xj(s)
)

ds + Ji(t)]dt.
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From (H2), (8), (9), (10) and (11), it is clear to see that

From (16) and Cauchy–Schwarz inequality, we obtain:

Noticing that

where ϕ−1
ij  is the inverse function of ϕij = t − τij(t), i, j = 1, 2, .., n.

Then, for i=1,2,..,n, we obtain

which implies

where 

Let �xi�ω2 =
(∫ ω

0
x2i (t)dt

)2
, xi ∈ C(R,R), i = 1, 2, .., n.

Thus

Since (I − S) is an M-matrix, assumption (H4) holds and Lemma 1, there exists a vector

(17)







































|γij(t)| ≤ max
�

|bij|, |bij|
�

≤ buij

|ηij(t)| ≤ max
�

|cij|, |cij|
�

≤ cuij

|νij(t)| ≤ max
�

|pij|, |pij|
�

≤ puij
|fj(xj(t))| ≤ Fj|xj(t)| + |fj(0)|,
|gj(xj(t − τij))| ≤ Gj|xj(t − τij)| + |gj(0)|
|hj(xj(t))| ≤ Hj|xj(t)| + |hj(0)|

.

(18)

ali

ω
�

0

x2i (t)dt ≤
n

�

j=1

buijFj

ω
�

0

|xi(t)||xj(t)|dt +
n

�

j=1

cuijGj

ω
�

0

|xi(t)||xj(t − τij)|dt

+
n
�

j=1

puijHj

� ω

0

�

t
�

−∞
kij(t − s)|xi(s)||xj(s)|ds

�

dt

+





n
�

j=1

buij|fj(0)| + cuij|gj(0)| +
M

α
puij|hj(0)| + JIi





ω
�

0

|xi(t)|dt.

(19)

ω
∫

0

|x2j (t − τij(t))|dt =
ω−τij(ω)
∫

−τij(0)

|x2j (t)|
1− τ̇ij(ϕ

−1
ij (t))

dt =
ω−τij(0)
∫

−τij(0)

|x2j (t)|
1− τ̇ij(ϕ

−1
ij (t))

dt =
ω
∫

0

|x2j (t)|
1− τ̇ij(ϕ

−1
ij (t))

dt

= 1

1− τDij

ω
∫

0

|x2j (t)|dt, j = 1, 2, .., n,

(20)

ali

ω
�

0

x2i (t)dt ≤
n

�

j=1



buijFj +
cuijGj

�

1− τDij

+ M

α
puijHj









ω
�

0

|x2j (t)|dt





1
2 +

√
ω





n
�

j=1

buij|fj(0)| + cuij|gj(0)|

+M

α
puij|hj(0)| + JIi

�

,

(21)

ω
�

0

x2i (t)dt ≤
n

�

j=1

1

ali



buijFj +
cuijGj

�

1− τDij

+ M

α
puijHj









ω
�

0

|x2j (t)|dt





1
2

+
√
ω

ali





n
�

j=1

buij|fj(0)| + cuij|gj(0)| +
M

α
puij|hj(0)| + JIi





ω
�

0

x2i (t)dt � qij

n
�

j=1





ω
�

0

x2j (t)dt





1
2

+
√
ωθi i = 1, 2, .., n,

θi =
1

ali





n
�

j=1

buij|fj(0)| + cuij|gj(0)| +
M

α
puij|hj(0)| + JIi



, i = 1, 2, .., n.

(22)(I − S)
(

�x1�ω2 , �x2�ω2 , . . . , �xn�ω2
)T ≤

√
ωα.
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and from (22), we have

Thus, we obtain

Obviously, we can see that there exists ti ∈ [0,ω] such that

Since for ti ∈ [0,ω],

thus we obtain

we can derive from (17) and (19) that

(23)ν =
(

ν∗1 , ν
∗
2 , . . . , ν

∗
n

)

= ν(I − S) > (0, 0, . . . , 0),

(24)

min
{

ν∗1 , ν
∗
2 , . . . , ν

∗
n

}(

�x1�ω2 , �x2�ω2 , . . . , �xn�ω2
)

≤ ν∗1�x1�ω2 + ν∗2�x2�ω2 + . . .+ ν∗n�xn�ω2
= ν(I − S)

(

�x1�ω2 , �x2�ω2 , . . . , �xn�ω2
)T ≤ ν

√
ω(θ1, θ2, . . . , θn)

T

=
√
ω

n
∑

j=1

νiθi .

(25)





ω
�

0

|x2i (t)|dt





1
2 = �xi�ω2 ≤

√
ω

n
�

i=1

νiθi

min
�

ν∗1 , ν
∗
2 , . . . , ν

∗
n

� �
√
ωN .

(26)|xi(t)| ≤
√
ωN , i = 1, 2, . . . , n.

xi(t) = xi(ti)+
t

∫

ti

ẋi(s)ds,

|xi(t)| ≤ N +
ω
∫

0

ẋi(s)ds, i = 1, 2, .., n,

ω
�

0

|ẋi(t)|dt < ali

ω
�

0

|xi(t)|dt +
n

�

j=1

buijFj





ω
�

0

|xj(t)|dt





+
n

�

j=1

cuijGj

ω
�

0

|xj(t − τij(t))|dt +
n

�

j=1

puijHj





ω
�

0

t
�

−∞

kij(t − s)|xj(s)|dsdt





+ ω





n
�

j=1

�

buij|fj(0)| + cuij|gj(0)| +
M

α
puij|hj(0)|

�

+ JIi





=
ω
�

0

|ẋi(t)|dt < ali

ω
�

0

|xi(t)|dt +
n

�

j=1

buijFj





ω
�

0

|xj(t)|dt



+
n

�

j=1

cuijGj

ω
�

0

|xj(t − τij(t))|dt

+
n

�

j=1

puijHj





ω
�

−∞

|xj(s)|
ω
�

s

kij(t − s)dtds



+ ω





n
�

j=1

�

buij|fj(0)| + cuij|gj(0)|
�

+ M

α
puij|hj(0)| + JIi





=
ω
�

0

|ẋi(t)|dt < ali

ω
�

0

|xi(t)|dt +
n

�

j=1

buijFj





ω
�

0

|xj(t)|dt



+
n

�

j=1

cuijGj

ω
�

0

|xj(t − τij(t))|dt

+
n

�

j=1

puijHj





ω
�

0

|xi(s)|





ω
�

s

kij(t − s)dt



ds



+ ω





n
�

j=1

�

buij|fj(0)| + cuij|gj(0)|
�

+ M

α
puij|hj(0)| + JIi





≤
ω
�

0

|ẋi(t)|dt < ali

ω
�

0

|xi(t)|dt +
n

�

j=1

buijFj





ω
�

0

|xi(t)|dt



+
n

�

j=1

cuijGj

ω
�

0

|xj(t − τij(t))|dt

+
n

�

j=1

M

α
puijHj





ω
�

0

|xi(s)|ds



+ ω





n
�

j=1

�

buij|fj(0)| + cuij|gj(0)|
�

+ M

α
puij|hj(0)| + JIi





≤ ali
√
ω�xi�ω2 +

n
�

j=1



buijFj +
cuijGj

�

1− τDij

+ M

α
puijHj





√
ω�xi�ω2 + ω





n
�

j=1

�

buij|fj(0)| + cuij|gj(0)|
�

+ M

α
puij|hj(0)| + JIi





≤
√
ωN +



ali +
n

�

j=1



buijFj +
cuijGj

�

1− τDij

+ M

α
puijHj







+ ω





n
�

j=1

�

buij|fj(0)| + cuij|gj(0)|
�

+ M

α
puij|hj(0)| + JIi



 � Ri ,
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for each i = 1, 2, .., n. Then, it follows

One may readily verify that Hi , i = 1, 2, .., n is independent of � . Again taking (H4) into account, we can get 
from Lemma 1, that there exists a vector ζ = (ζ1, ζ2, . . . , ζn)

T > (0, 0, . . . , 0)T , such that (I − S)ζ > (0, 0, . . . , 0)T . 
Hence, we can choose a sufficiently large constant σ such that

ζ ∗ =
(

ζ ∗1 , ζ
∗
2 , . . . , ζ

∗
n

)

= (σζ1, σζ2, . . . , σζn)
T > σζ , and that

In order to finish our proof we will proceed in three steps:
Step1  let us take

Hence � is an open bounded set of Cω and for any � ∈ (0, 1) , x /∈ ∂� . Thus, the condition (1) in Mawhin 
coincidence theorem is satisfied.

Step 2 we shall use contradiction to demonstrate the condition (2) in Lemma 2. Let us consider that there 
exists a solution u = (u1, u, . . . , un)

T ∈ ∂� ∩ R
n of the inclusion

Then u is a constant vector on Rn such that |ui| = ζi for i ∈ (1, 2, .., n).
Therefore, we have for 1 < i ≤ n

or

where γij(t) ∈ K[bij(ui)] , ηij(t) ∈ K[cij(ui)] and νij(t) ∈ K[pij(ui)] . Then, there exists some t∗ ∈ [0,ω) such that

It follows

Therefore (I − S)ζ ∗ ≤ θ , which contradicts the fact (I − S)ζ ∗ > θ and the condition 2 of Lemma 2 holds.
Step 3 In order to prove condition 3 let us define homotopic set-valued map
φ : � ∩ R

n × [0, 1] → Aω

(u, h)  −→ hdiag(−ā1,−ā2, . . . ,−ān)u+ (1− h)g0(u),

(27)|xi(t)| ≤ N + Ri � Hi , i = 1, 2, .., n.

(28)ζ ∗i = σζi > Hi(i = 1, 2, . . . , n), and(I − S)ζ ∗ > θ .

(29)� =
{

x(t) ∈ Cω : −ζ ∗ < x(t) < ζ ∗,∀t ∈ R
}

.

0 ∈ 1

ω

ω
∫

0

F(t, u)dt = g0(u).

(30)

0 ∈ g0(u) = −ui
1

ω

ω
∫

0

ai(t)ui(t)]dt +
n

∑

j=1

fj(u)
1

ω

ω
∫

0

K[bij(uj(t))]dt

+
n

∑

j=1

gj(u)
1

ω

ω
∫

0

K[cij(uj(t))]dt +
n

∑

j=1

1

ω
hj(u)

ω
∫

0

K[bij(uj(t))]dt
t
∫

−∞

kij(t − s)ds + 1

ω

ω
∫

0

Ii(t)dt,

(31)

0 = −ui
1

ω

ω
∫

0

ai(t)dt +
n

∑

j=1

fj(u)
1

ω

ω
∫

0

γij(t)dt +
n

∑

j=1

gj(u)
1

ω

ω
∫

0

ηij(t))dt

+
n

∑

j=1

M

α
hj(u)

1

ω

ω
∫

0

νij(t)dt +
1

ω

ω
∫

0

Ii(t)dt, i = 1, 2, .., n,

(32)−uiai(t
∗)+

n
∑

j=1

(γij(t
∗)fj(u)+ ηij(t

∗)gj(u)+ νij(t
∗)
M

α
hj(u))+ Ii(t

∗) = 0, i = 1, 2, .., n.

(33)

ζ ∗i = |ui| =
1

ai(t∗)
[

n
∑

j=1

(

γij(t
∗)fj(u)+ ηij(t

∗)gj(u)+ νij(t
∗)
M

α
hj(u)

)

+ Ii(t
∗)]

≤ 1

ali
[

n
∑

j=1

(buij(Fj(|uj|)+ |fj(0)|)+ cuij
(

Gj(|uj|)+ |gj(0)|
)

+ M

α
puij
(

Hj(|uj|)+ |hj(0)|
)

)+ Iui ,

≤ 1

ali
[

n
∑

j=1

(buij
(

Fj(|uj|)+ |fj(0)|
)

+
cuij
(

Gj(|uj|)+ |gj(0)|
)

√

1− τDij

+ M

α
puij
(

Hj(|uj|)+ |hj(0)|
)

)+ Iui ]

=
n

∑

j=1

sij|uj| + θi =
n

∑

j=1

sijζ
∗
j + θi .
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where
āi = 1

ω

∫ ω

0
ai(t)dt, i = 1, 2, . . . , n.

if u = (u1, u2, . . . , un)
T ∈ ∂� ∩ R

n then u is a constant vector on Rn such that |ui| = ζ ∗i  for some 
i ∈ {1, 2, . . . , n}.

It follows that

Which implies that

If this is not true, then 0 ∈ (φ(u, h))i , i = 1, 2, . . . , n, , i.e.,

Similarly, there exist γij(t) ∈ K[bij(ui)] , ηij(t) ∈ K[cij(ui)] and νij(t) ∈ K[pij(ui)] , i = 1, 2, . . . , n such that

consequently, there exists some t∗∗ ∈ [0,ω] such that

We derive from (38) that

which yields that (I − S)ζ ∗ ≤ θ  ,  which contradicts (I − S)ζ ∗ > θ  .  Thus, (30) holds. Which 
i m p l i e s  t h a t  (0, 0, . . . , 0)T /∈ φ(u, h) f o r  a ny  u = (u1, u2, . . . , un)

T∂� ∩ R
n, h ∈ [0, 1] .  T h u s , 

using the solution properties of the topological degree and the homotopy invariance, we have 
deg

{

g0,� ∩ R
n, 0

}

= deg
{

φ(u, 0),△ ∩ R
n, 0

}

= deg
{

φ(u, 1),△ ∩ R
n, 0

}

= deg
{

(−ā1u1,−ā2u2, . . . ,−ānun)
T ,� ∩ R

n, 0

}

(34)

(φ(u, h))i = −ui
1

ω

ω
∫

0

ai(t)ui(t)dt + (1− h)[
n

∑

j=1

fj(u)
1

ω

ω
∫

0

K[bij(uj(t))]dt +
n

∑

j=1

gj(u)
1

ω

ω
∫

0

K[cij(uj(t))]dt

+
n

∑

j=1

M

α
hj(u)

1

ω

ω
∫

0

K[pij(uj(t))]dt +
1

ω

ω
∫

0

Ii(t)dt].

(35)0 /∈ (φ(u, h))i , i = 1, 2, . . . , n.

(36)

0 ∈ − ui
1

ω

ω
∫

0

ai(t)ui(t)dt + (1− h)[
n

∑

j=1

fj(u)
1

ω

ω
∫

0

K[bij(ui(t))]dt +
n

∑

j=1

gj(u)
1

ω

ω
∫

0

K[cij(ui(t))]dt

+
n

∑

j=1

M

α
hj(u)

1

ω

ω
∫

0

K[pij(ui(t))]dt +
1

ω

ω
∫

0

Ii(t)dt].

(37)

0 =(−ui)
1

ω

ω
∫

0

ai(t)dt + (1− h)[
n

∑

j=1

fj(u)
1

ω

ω
∫

0

γij(t)dt +
n

∑

j=1

gj(u)
1

ω

ω
∫

0

ηij(t))dt +
n

∑

j=1

M

α
hj(u)

1

ω

ω
∫

0

νij(t))dt

+ 1

ω

ω
∫

0

Ii(t)dt], i = 1, 2, .., n,

(38)
0 = −uiai(t

∗∗)+ (1− h)[
n

∑

j=1

γij(t
∗∗)fj(u)+ ηij(t

∗∗)gj(u)

+ M

α
νij(t

∗∗)hj(u)+ Ii(t
∗∗)] i = 1, 2, . . . , n.

ζ ∗i = |ui| =
1− h

ai(t∗∗)
[

n
∑

j=1

γij(t
∗∗)fj(u)+ ηij(t

∗∗)gj(u)+
M

α
νij(t

∗∗)hj(u)+ Ii(t
∗∗)]

≤ 1

ali
[

n
∑

j=1

(buij
(

Fj(|uj|)+ |fj(0)|
)

+ cuij
(

Gj(|uj|)+ |gj(0)|
)

+ M

α
puij
(

Hj(|uj|)+ |hj(0)|
)

)+ Iui ]

≤ 1

ali
[

n
∑

j=1

(buij
(

Fj(|uj|)+ |fj(0)|
)

+
cuij
(

Gj(|uj|)+ |gj(0)|
)

√

1− τDij

+ M

α
puij
(

Hj(|uj|)+ |hj(0)|
)

)+ Iui ]

=
n

∑

j=1

qij|uj| + θi =
n

∑

j=1

qijζ
∗
j + θi ,

(39)= sign|
−ā1 . . . 0

.

.

.
. . .

.

.

.

0 · · · − ā1

| = (−1)n �= 0.
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This means that △ satisfies all the conditions in Lemma 2, then the system (1) possesses at least one ω−
periodic solution.

The proof is finished.   �

Uniqueness and global exponential stability
Now, we will prove the uniqueness and global exponential stability of the ω-periodic solution for the system (1). 
Mainly, when the system (1) is considered autonomous, we will find the sufficient conditions on the existence, 
uniqueness and global exponential stability of fixed point of the system.

Definition 6 (Stability) We denote x∗(t,ϕ) a periodic solution of the system (1). The periodic solution x∗(t,ψ) 
is said to be globally exponentially stable if for any solution x(t,ϕ) of the system (1), there are constants M ≥ 1 
and µ > 0 such that for any ϕ ∈ Cτ

�x(t,ϕ)− x∗(t,ψ)� ≤ M�ϕ − ψ�Ceµt , t ≥ 0.

Let us firstly introduce the following lemma.

Lemma 3 10 If fj(±Tj) = 0 , gj(±Tj) = 0 and hj(±Tj) = 0 
(

j = 1, . . . , n
)

 then for every xj , yj ∈ R we have

and

and

for i, j = 1, 2, . . . , n.

Lemma 4 43 Let x(t) : [0,+∞[→ R
n an absolutely continuous on any compact interval of [0,+∞[ and 

V(x) : Rn → R is Clarke’s regular, then x(t) and V(x) : Rn → R are differential for all t ∈ [0,+∞[ . We get 

where ∂V(x(t)) is Clarke’s generalized gradient.

Next, we consider the assumption below.

(H5) I − S is an M−matrix, I is the identity matrix of size n, S =
(

sij
)

n×n
 and

sij = 1

ali

(

buijFj + cuijGj + M
α
puijHj

)

, i, j = i, j = 1, 2, . . . , n.

Theorem 2 Suppose that fj(±Tj) = 0, gj(±Tj) = 0and hj(±Tj) = 0 for j = 1, . . . , n , and the assumption (H5) 
holds. If there exists periodic solution x∗(t,ψ) for system (1), then x∗(t,ψ) is a unique periodic solution of sys-
tem (1) and is globally exponentially stable, and for any other solution x(t,ϕ) of system (1), there exist constants 
M, µ > 0 such that

for any t > 0.

Proof Consider x(t) = (x1(t), x2(t), . . . , xn(t))
T any solution of system (1) and x∗(t) = (x∗1 (t), x

∗
2 (t), . . . , x

∗
n(t))

T 
is an ω−periodic solution of system (1). We get:

dx∗i (t)
dt ∈ −aix

∗
i (t)+

n
∑

j=1

K[bij(x∗j (t))]fj
(

x∗j (t)
)

+
n
∑

j=1

K[cij(x∗j (t − τj(t)))]gj
(

xj
(

t − τj(t)
))

+
n
∑

j=1

K[pij(x∗j (t))]
t
∫

−∞
kij(t − s)hj

(

xj(s)
)

ds + Ji].

Assume that yi(t) = xi(t)− x∗i (t) , then

(40)K[bij(xj(t))]fj(xj)− K[bij(yj(t))]fj(yj) ≤ buijFj|xj − yj|,

(41)K[cij(xj(t))]Gj(xj)− K[cij(yj(t))]gj(yj) ≤ cuijGj|xj − yj|,

(42)K[pij(xj(t))]Hj(xj)− K[pij(yj(t))]hj(yj) ≤ puijHj|xj − yj|,

d

dt
ν(t) = γ (t)T ẋ(t),∀γ (t) ∈ ∂V(x(t)),

∥

∥xi(t,ϕ)− x∗i (t,ψ)
∥

∥ ≤ R�ϕ − ψ)�ce−µt ,

dxi(t)
dt ∈ −aixi(t)+

n
∑

j=1

K[bij(xj(t))]fj
(

xj(t)
)

+
n
∑

j=1

K[cij(xj(t − τj(t)))]gj
(

xj
(

t − τj(t)
))

+
n
∑

j=1

K[pij(xj(t))]
t
∫

−∞
hj
(

xj(s)
)

ds + Ji],
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where Bij(u, v) , Cij(u, v) and Pij(u, v) are given as following

Similarly, there exist γij(yj(t)) ∈ Bij(yj(t), x
∗
j (t)) , ηij(yj(t − τij(t))) ∈ Cij(yj(t − τij(t)), x

∗
j (t − τij(t))) and 

νij(yj(t)) ∈ Pij(yj(t), x
∗
j (t)) verify,

for every t ∈ [0,T), i = 1, 2, . . . , n
Taking (44) and Lemma 3 into account, we obtain 

Obviously, basing on (H5), the matrix diag(al1, a
l
1, . . . , a

l
n)− (buijFj + cuijGj + M

α
puijHj)n×n is also a nonsingular 

Mmatrix. In addition, there exists a positive βi(i = 1, 2, . . . , n) such that

As a result, there exists a sufficiently small positive number µ such that

We consider the Lyapunov function:

V(t) is differential for all t ≥ 0 because any solution x(t) of system (1) including the ω-periodic solution x∗(t) 
are absolutely continuous.

The function |yi(t)| is locally Lipschitz continuous in yi on R . Hence, the Clarke’s generalized gradient of 
function |yi(t)| at yi(t) is

∂(|yi(t)|) = c̄o
[

sign(yi(t))
]

=
{−1 if yi(t) < 0,

[−1, 1] if yi(t) = 0,

−1 if yi(t) > 0.

For a given t ≥ 0 , there exists a k ∈ {1, . . . , n} such that V(t) = eµt |yk(t)|
βk

, and let vk(t) = sign(yk(t) , if yk(t)  = 0 , 
while vk(t) can be arbitrarily chosen in [−1, 1] , if yk(t) = 0 . From Lemma 4 and system (44), it follows for all 
t ≥ 0 :

when V(t + s) ≤ V(t) for any s ∈ [−τ , 0] . Let V̄(t) = sup
−τ≤s≤0

V(t + s), then we get

(43)

dyi(t)

dt
∈ −aiyi(t)+

n
∑

j=1

Bij(yj(t), x
∗
j (t))+

n
∑

j=1

Cij(yj(t − τij(t), x
∗
j (t − τij(t)))+

n
∑

j=1

M

α
Pij(yj(t), x

∗
j (t)),







Bij(u, v) = K[bij(u+ v)]fj(u, v)− K[bij(v)]fj
�

xj(t)
�

Cij(u, v) = K[cij(u+ v)]gj(u, v)− K[cij(v)]gj
�

xj(t)
�

Pij(u, v) = K[pij(u+ v)]hj(u, v)− K[pij(v)]hj
�

xj(t)
�

.

(44)
dyi(t)
dt ∈ −aiyi(t)+

n
∑

j=1

γij(yj(t), yj(t))+
n
∑

j=1

ηij(yj(t − τij(t), yj(t − τij(t)))+
n
∑

j=1

M
α
νij(yj(t), yj(t)) ,







γij(yj(t)) ≤ buijFj|yj(t)|
ηij(yj(t − τij(t))) ≤ cuijGj|yj(t − τij(t))|
νij(yj(t)) ≤ puijHj|yj(t)|

βia
l
i − (buijFj + cuijGj +

M

α
puijHj) > 0, i = 1, 2, . . . , n,

(45)βi

(

ali − µ

)

−
n

∑

j=1

βj(b
u
ijFj + cuijGje

µτ + M

α
puijHj) > 0, i = 1, 2, . . . , n.

V(t) = max

{

eµt |yi(t)|
βj

, i = 1, 2, . . . , n.

}

.

(46)

V̇(t) = µV(t)+ Vk(t)
eµt ẏk(t)|

βk
≤ −(ak(t)− µ)V(t)+ eµt

βk

n
�

j=1

|γij(yj(t))|

+ eµt

βk

n
�

j=1

|ηij(yj(t − τij(t)))| +
eµt

βk

n
�

j=1

M

α
|νij(yj(t))|

≤ −
�

alk − µ

�

V(t)+ 1

βk





n
�

j=1

buijFjβjV(t)+
n

�

j=1

cuijGjβje
µτij(t)V(t − τij(t))+

n
�

j=1

M

α
puijHjβjV(t)





≤ − 1

βk



−
�

alk − µ

�

βk −
n

�

j=1

�

buijFj + cuijGje
µτ + M

α
puijHj

�

βj



V(t) ≤ 0,

(47)V̄(t)

dt
≤ 0,∀t ≥ −τ
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Therefore

for all i = 1, . . . , n . Thus, for any t > 0,

Moreover,

where R =
n
∑

i=1

βi/βmin, x(t) = x(t,ϕ) and x∗(t) = x∗(t,ψ).

Hence, the ω-periodic solution x∗(t) of system (1) is globally exponentially stable. Then, the periodic solution 
x∗(t) of system (1) is unique. The proof is complete.   �

Theorem 3 Consider that fj(±Tj) = 0 , gj(±Tj) = 0 and hj(±Tj) = 0 (j = 1, . . . , n) , and the assumption (H4) is 
satisfied. Then system (1) has a unique periodic solution x∗(t,ψ) , and it is globally exponentially stable.

Next, we demonstrate the existence and global exponential stability of the equilibrium point for autonomous neural 
network model (1).

Let ali = ai , b
u
ij = max

{

|b̂ij|, |b̌ij|
}

, cuij = max
{

|ĉij|, |čij|
}

 puij = max
{

|p̂ij|, |p̌ij|
}

 in the assumption (H4) and (H5) 
for system (1).

Firstly, for autonomous system (1), using Theorems 1 and 3 we can get the following result.

Corollary 1 Consider that fj(±Tj) = 0 and gj(±Tj) = 0 , hj(±Tj) = 0 and τij(t) ≡ τij , where τij
(

i, j = 1, 2, . . . , n
)

 
are all nonnegative constants. if (H5) is satisfied, then there exists a unique equilibrium point x∗ for system (1), 
which is globally exponentially stable.

Proof Clearly, system (1) is an ω-periodic system, then, basing on Theorems 1 and 2, for any constant ω > 0 
system (1) possesses a unique ω-periodic solution x∗(t) and it is globally exponentially stable.

Let x∗(t) be unique for all ω > 0 , then we have x∗(t + ω) = x∗(t) for any constants ω > 0 and t ≥ 0 . Hence 
x∗(t) ≡ x∗ for all t ≥ 0.

Thus x∗ = x∗(0) is an equilibrium point of system (1) and x∗ is unique and globally exponentially stable.

Theorem 4 Consider that fj(±Tj) = 0 and gj(±Tj) = 0
(

j = 1, 2, . . . , n
)

 . Since (H5) holds, there exists an unique-
ness equilibrium point x∗ for system (1), which is globally exponentially stable.

From the assumption (H5), there exist positive constants βi(i = 1, 2, . . . , n) such that

βia
l
i −

n
∑

j=1

βj

(

buijFj + cuijGj + M
α
puijHj

)

> 0, i = 1, . . . , n.

After that, let a set-valued map Ŵ(u) = (Ŵ1(u),Ŵ1(u), . . . ,Ŵn(u))
T , and

for i = 1, 2, . . . , n, where u = (u1, . . . , un)
T .

Using Lemma 3, for any two vectors u = (u1, . . . , un)
T ∈ R

n and v = (v1, . . . , vn)
T ∈ R

n , we have

(48)|yj(t)| ≤ βiV(t)e−µt ≤ βiV(0)e−µt ,

∥

∥y(t)
∥

∥ ≤ yk(t)(t)e
−µt

n
∑

i=1

βi/βk .

∥

∥x(t)− x∗(t)
∥

∥ ≤ R�ϕ − ψ�ce−µt
,

(49)

Ŵi(u) = βi[
n

∑

j=1

K[bij(
uj

βjai
)]fj

(

uj

βjai

)

+
n

∑

j=1

K[cij(
uj

βjai
)]gj

(

xj

(

uj

βjai

))

+
n
∑

j=1

K[pij( uj
βjai

)]
t
∫

−∞
kij(t − s)hj

(

xj

(

uj
βjai

))

ds + Ji]
,
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for i = 1, 2, . . . , n, then,

where

and 0 < σ < 1 . Thus, the map Ŵ : Rn → R
n is a contraction mapping on Rn . It follows that, there is a unique fixed 

point u∗ ∈ R
n such that u∗ ∈ Ŵ(u∗) , i.e.,

for i = 1, . . . , n . Let x∗j = u∗j
βjai

 for i = 1, . . . , n , then

where i = 1, . . . , n , and u is unique, we obtain that system (1) has a unique equilibrium x∗.

Thus, following the proof of Theorem 1, we prove easily that equilibrium x∗ of system (1) is globally exponentially 
stable.

Finite‑time periodic synchronization
In this section, we will examine the finite-time synchronization problem of delayed memristive neural networks.

For this purpose, we consider the delayed memristive neural network model (1) as the drive system, and a 
controlled response system is modeled by the following functional differential equation:

where yi(t) is the controller to be designed.

Definition 7 The memristive neural network (1) is said to be completely synchronized onto (53) in finite time 
if by designing a suitable controller vi(t) to system (53), there exists a constant t1>0 ( t1 depends on the initial 
value), satisfying

We take ei(t) = xi(t)− yi(t) the error term. Then, one can obtain the following result.

Theorem 5 We consider that then system (1) exists at least one w-periodic solution. If there exists a positive definite 
matrix S satisfying

(50)

|Ŵi(u)− Ŵi(v)| = βi[
n
∑

j=1

K[bij(
uj

βjai
)]fj

(

uj

βjai

)

− K[bij(
uj

βjai
)]fj

(

vj

βjai

)

+
n
∑

j=1

K[cij(
uj

βjai
)]gj

(

xj

(

uj

βjai

))

−
n
∑

j=1

K[cij(
uj

βjai
)]gj

(

xj

(

vj

βjai

))

+
n
∑

j=1

M

α
K[pij(

uj

βjai
]hj

(

uj

βjai

)

ds −
n
∑

j=1

M

α
K[pij(

uj

βjai
)]hj

(

vj

βjai

)

],

(51)�Ŵi(u)− Ŵi(v)� ≤ σ�u− v�,

(52)σ = max
1≤i≤n







1

βia
l
i

n
�

j=1

βj

�

buijFj + cuijGj +
M

α
puijHj

�







,

u∗i ∈ βi[
n

∑

j=1

K[bij(
u∗j
βjai

)]fj

(

u∗j
βjai

)

+
n

∑

j=1

K[cij(
u∗j
βjai

)]gj

(

u∗j
βjai

)

+
n

∑

j=1

M

α
K[pij(

u∗j
βjai

)]hj

(

u∗j
βjai

)

+Ji]

u∗i ∈ −aix
∗
i +

n
∑

j=1

K[bij(x∗j )]fj
(

x∗j
)

+
n

∑

j=1

K[cij(x∗j )]gj
(

x∗j
)

+
n

∑

j=1

M

α
K[pij(x∗j )]hj

(

x∗j
)

+ Ji .

(53)

ẏi(t) =− ai(t)yi(t)+
n

∑

j=1

[bij(t)fj(yj(t))+ cij(t)gj(yj(t − τij(t)))

+ pij(t)

t
∫

−∞

kij(t − s)hj(yj(s))ds + Ji(t)] + vi(t)

lim
t→t1

∥

∥yi(t)− xi(t)
∥

∥ = 0;
∥

∥yi(t)− xi(t)
∥

∥ ≡ 0, for i = 1, 2, ..n, t > t1

Z1 =
(

−A+ 1
2
S + BF + M

α
PH 1

2
CG

∗ − 1
2
S

)

< 0.

Z2 =
(

−A+ 1
2
S + BF + M

α
PH 1

2
CG

∗ − 1
2
S

)

< 0,
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where F = diag(F1, F2, . . . Fn) , G = diag(G1,G2, . . .Gn) , H = diag(H1,H2, . . .Hn) , B = diag(b1, b2, . . . bn) , 
B = diag(b1, b2, . . . bn) , C = diag(c1, c2, . . . cn) , C = diag(c1, c2, . . . cn) , then system (53) can synchronize onto 
system (1) in a finite time t1 =

√
2
k V

1
2 (0) and to adapt to changes in the process that occur with time, we define the 

adaptive controller

and adaptive updated law, where

and

εi > 0 is a constant, k > 0 is a tunable constant,

ιi > 0, i = 1, 2, . . . , n , are the control parameters to be determined and satisfies:

Proof Set � = diag{o1(t), o2(t), . . . on(t)} . Consider the following Lyapunov functional:

The master model (1) and the slave model (53) are state-dependent switching systems, hence, we can divide 
the error system into the following four cases at time t.

Case 1 If |xi(t)| > Ti , |yi(t)| ≥ Ti, at time t, then the master system (1) and the slave system (53) decrease 
respectively, to the following models:

and

Correspondingly, the error system can be written as

L e t  u s  d e n ot e  fj(ej(t)) = fj(xj(t))− fj(yj(t)) ;  gj(ej(t − τ)) = gj(xj(t − τ))− gj(yj(t − τ)) an d 
hj(ej(t)) = hj(xj(t))− hj(yj(t)) . Under assumption (H2), evaluating the derivation of V(t) along the trajectory 
of error system gives

(54)vi(t) = −oi(t)ei(t),

ȯi(t) = εi

(

e2i (t)− li
ei(t)
oi(t)

sign(ei(t))− k ei(t)
oi(t)

sign(ei(t))− k√
εi
sign(oi(t))

)

− k
√
�max(P)

(

∫ 0

t−τ
e2i (s)ds

)
1
2
),

V(0) = 1
2
eT (0)e(0)+ 1

2

∫ 0

−τ
eT (s)Se(s)ds + 1

2

n
∑

i=1

1
εi
o2i (0).

ιi ≥ |A|Ti +
n
∑

j=1

Fj|bij − bij|Ti +
n
∑

j=1

∑

|bij − bij|Gj

n
∑

j=1

M
α
|pij − p

ij
|Hj .

(55)V(t) = 1
2
eT (t)e(t)+ 1

2

∫ 0

t−τ
eT (s)Se(s)ds + 1

2

n
∑

i=1

1
εi
o2i (t).

(56)

ẋi(t) = −ai(t)xi(t)+
n

∑

j=1

bij(t)fj(xj(t))+cij(t)gj(xj(t − τij(t)))+ p
ij
(t)

t
∫

−∞

kij(t − s)hj(xj(s))ds + Ji(t),

(57)

ẏi(t) = −ai(t)yi(t)+
n

∑

j=1

bij(t)fj(yj(t))+ cij(t)gj(yj(t − τij(t)))+p
ij
(t)

t
∫

−∞

kij(t − s)hj(yj(s))ds + ui(t)+ Ji(t).

(58)

ėi(t) = −ai(t)ei(t)+
n

∑

j=1

bij(t)fj(ej(t))+ cij(t)gj(ej(t − τij(t)))+ p
ij
(t)

t
∫

−∞

kij(t − s)hj(ej(s))ds + ui(t).
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Using previous results, we obtain

By Lemma 1, one has

V̇(t) ≤ −
√
2k

[

1
2
eT (t)e(t)+ 1

2

∫ t
t−τ

eT (s)Se(s)ds + 1
2

n
∑

i=1

1
εi
o2i (t)

]
1
2 = −

√
2kV

1
2 (t).

Case 2 Let |xi(t)| > Ti , |yi(t)| > Ti at time t, then the master system (1) and the slave system (53) decrease 
to the following systems:

and

Hence, we obtain the following error system

Similarly, we write

According to Lemmas 1, it follows

(59)

V̇(t) = eT (t)

�

−Ae(t)+ Bf (e(t))+ Cge(t − τ)+ M

α
Ph(e(t))+ u(t)

�

+ 1

2
eT (t)Se(t)

− 1

2
eT (t − τ)Se(t − τ)

+ 1

2

n
�

i=1

oi(t)(e
2
i (t)− li

ei(t)

oi(t)
sign(ei(t))− k

ei(t)

oi(t)
sign(ei(t))

− k
√
εi
sign(oi(t))− k

�

�max(S)





t
�

t−τ

e2i (s)ds





1
2
�

≤ −eT (t)Ae(t)+ eTBFe(t)+ eTCGe(t − τ)+ eT
M

α
PHe(t)− eT (t)�e(t)

+ 1

2
eT (t)Se(t)− 1

2
eT (t − τ)Se(t − τ)

+ eT (t)�e(t)−
n

�

i=1

ιi|ei(t)| − k

n
�

i=1

|ei(t)| − k

n
�

i=1

1
√
εi
|oi(t)| − k





t
�

t−τ

eT (s)Se(s)ds





1
2

≤
�

eT (t), eT (t − τ)

�

Z1

�

eT (t), eT(t − τ)

�T
−

n
�

i=1

ιi|ei(t)− k

n
�

i=1

|ei(t)||

− k

n
�

i=1

1
√
εi
|oi(t)| − k





t
�

t−τ

eT (s)Se(s)ds





1
2

.

V̇(t) ≤ −k

(

n
∑

i=1

|ei(t)|2
)

1
2

− k
(

∫ t
t−τ

eT (s)Se(s)ds
)

1
2 − k

n
∑

i=1

1√
εi
|oi(t)|.

(60)

ẋi(t) = −ai(t)xi(t)+
n

∑

j=1

bij(t)fj(xj(t))+
n

∑

j=1

cij(t)gj(xj(t − τij(t)))+
n

∑

j=1

pij(t)

t
∫

−∞

kij(t − s)hj(xj(s))ds + Ji(t) ,

(61)

ẏi(t) = −ai(t)yi(t)+
n

∑

j=1

bij(t)fj(yj(t))+ cij(t)gj(yj(t − τij(t)))+ pij(t)

t
∫

−∞

kij(t − s)hj(yj(s))ds + Ji(t)+ ui(t).

(62)

ėi(t) = −ai(t)ei(t)+
n

∑

j=1

bij(t)fj(ej(t))+ cij(t)gj(ej(t − τij(t)))+ pij(t)

t
∫

−∞

kij(t − s)hj(ej(s))ds + wi(t).

(63)

V̇(t) ≤
�

eT (t), eT (t − τ)

�

Z2

�

eT (t), e(t − τ)

�T
−

n
�

i=1

li|ei(t)− k

n
�

i=1

|ei(t)||

− k

n
�

i=1

1
√
εi
|oi(t)| − k





t
�

t−τ

eT (s)Se(s)ds





1
2

.
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V̇(t) ≤ −
√
2k

[

1
2
eT (t)e(t)+ 1

2

∫ t
t−τ

eT (s)Se(s)ds + 1
2

n
∑

i=1

1
εi
o2i (t)

]
1
2

= −
√
2kV

1
2 (t).

Case 3 If |xi(t)| > Ti , |yi(t)| ≤ Ti at time t, then the master system (1) and the slave system (53) reduce to 
(60) and (61). Correspondingly, the error system can be written as

evaluating the derivation of V(t) along the trajectory of (68), we have

In consideration of the definition li and Z2 , one has V̇i(t) ≤ −
√
2kV

1
2 (t).

Case 4. Let |xi(t)| ≤ Ti , |yi(t)| > Ti at time t, then the master system (1) and the slave system (53) reduce to 
(60) and (62). Then, we obtain the following error system:

(64)

ėi(t) = −ai(t)ei(t)+
n

∑

j=1

bij(t)fj(ej(t))+
n

∑

j=1

cij(t)gj(ej(t − τij(t)))

+
n

∑

j=1

pij(t)

t
∫

−∞

kij(t − s)hj(ej(s))ds +
(

ai(t)− ai(t)
)

yi(t)

+
n

∑

j=1

(

bij(t)− bij(t)
)

fj(yj(t))+
n

∑

j=1

(

cij(t)− cij(t)
)

gj(yj(t − τij(t)))

+
n

∑

j=1

(

p
ij
(t)− pij(t)

)

t
∫

−∞

kij(t − s)hj(yj(s))ds + ui(t).

V̇i(t) =
n

�

i=1

ei(t)

�

− ai(t)ei(t)+
n

�

j=1

bij(t)fj(ej(t))+
n

�

j=1

cij(t)gj(ej(t − τij(t)))

+
n

�

j=1

pij(t)

t
�

−∞

kij(t − s)hj(ej(s))ds + |ai − ai||yi(t)|

+
n

�

j=1

|bij − bij||fj(yj(t))| +
n

�

j=1

|cij − cij||gj(yj(t − τij(t)))| +
n

�

j=1

|p
ij
− pij|

t
�

−∞

kij(t − s)|hj(yj(s))|ds

+ ui(t)] +
1

2
eT (t)Se(t)− 1

2
eT (t − τ)Se(t − τ)+

n
�

i=1

o2i (t)− li
ei(t)

oi(t)
sign(ei(t))− k

ei(t)

oi(t)
sign(ei(t))

− k
√
εi
sign(oi(t))− k

�

�max(S)

�� 0

t−τ

e2i (s)ds

�

1
2
�

≤ −eT (t)Ae(t)+ eTBFe(t)+ eTCGe(t − τ)+ M

α
PHe(t)− eT (t)�e(t)+ 1

2
eT (t)Se(t)

− 1

2
eT (t − τ)Se(t − τ)+ eT (t)�e(t)

−
n

�

i=1

|ei(t)| − k

n
�

i=1

|ei(t)| − k

n
�

i=1

1
√
εi
|oi(t)| − k





t
�

t−τ

eT (s)Se(s)ds





1
2

+
n

�

j=1

[|ai|Ti

+
n

�

j=1

Fj|bij − bij|Ti +
n

�

j=1

|cij − cij|Gj − li]|ei(t)|

+
n

�

j=1

M

α
Hj|pij − pij|

≤
�

eT (t), eT (t − τ)

�

Z2

�

eT (t), e(t − τ)

�T
− k

n
�

i=1

|ei(t)| − k

n
�

i=1

1
√
εi
|oi(t)|

− k





t
�

t−τ

eT (s)Se(s)ds





1
2

+
n

�

j=1

[|ai|Ti +
n

�

j=1

Fj|bi − bij|Ti

+
n

�

j=1

|cij − cij|Gj +
n

�

j=1

M

α
Hj|pij − pij|Ti − li]|ei(t)|.
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Consider |xi(t)| ≤ Ti , we obtain

Or V(t) = 0 for t ≥ t1 with t1 =
√
2
k V

1
2 (0) , hence ei(t) = 0 for t ≥ t1 , i = 1, 2, . . . , n . According to definition 

5, the salve system (53) is finite-timely synchronized onto the master system (1) under the designed controller 
(54). This completes the proof.   �

Numerical example
In this section, numerical example is given to show the effectiveness of our results. We consider the two-dimen-
sional mermristor-based recurrent neural networks described by the following system:

where i = 1, 22 , a1 = [3 4] , τij(t) = 1
5
cos(t) and for all x ∈ R

We easily calculate

I − S =
(

0.49 0.84

0.65 0.07

)

 . Thus, the conditions required in Theorem 1 are satisfied. When I (t) is a periodic 

function, in the view of Theorem 1, this neural network has at least one periodic solution. It is clear that I − S is 

(65)

ėi(t) =− ai(t)ei(t)+
n

∑

j=1

bij(t)fj(ej(t))+
n

∑

j=1

cij(t)gj(ej(t − τij(t)))

+
n

∑

j=1

pij(t)

t
∫

−∞

kij(t − s)hj(ej(s))ds + ai(t)xi(t)

+
n

∑

j=1

(

bi(t)− bij(t)
)

fj(xj(t))+
n

∑

j=1

(

cij(t)− cij(t)
)

gj(xj(t − τij(t)))

+
n

∑

j=1

(

pij(t)− p
ij
(t)

)

t
∫

−∞

kij(t − s)hj
(

xj(s)
)

ds + ui(t).

V̇i(t) ≤
�

eT (t), eT (t − τ)

�

Z2

�

eT (t), e(t − τ)

�T
− k

n
�

i=1

|ei(t)| − k

n
�

i=1

1
√
εi
|oi(t)|

− k





t
�

t−τ

eT (s)Se(s)ds





1
2

+
n

�

j=1

[|ai|Ti

+
n

�

j=1

Fj|bi − bij|Ti +
n

�

j=1

|cij − cij|Gj +
n

�

j=1

|cij − cij|
M

α
Hj − li|]ei(t) ≤ −

√
2kV

1
2 (t)|

ẋi(t) = −aixi(t)+
2

∑

j=1

(bijfj(xj(t))+ cijgj(xj(t − τij(t)))+ pij

t
∫

−∞

kij(t − s)hj(xj(s))ds + Ji(t),

fj(x) =gj(x) = hj(x) = φj(x) =
|x + 1| − |x − 1|

2

b11(x1(t)) =
{

−0.1, |x1(t)| < 1

1, |x1(t)| > 1
, b12(x1(t)) =

{

cos(t), |x1(t)| < 1

−0.5, |x1(t)| > 1

b21(x2(t)) =
{

−0.5 ∗ sin(t), |x2(t)| < 1

1, |x2(t)| > 1
, b22(x2(t)) =

{

0.1 ∗ cos(t), |x2(t)| < 1

−1, |x2(t)| > 1

c11(x1(t)) =
{

0.5, |x1(t)| < 1

1, |x1(t)| > 1
, c12(x1(t)) =

{

2sin(t), |x1(t)| < 1

−0.3 ∗ cos(−t), |x1(t)| > 1

c21(x2(t)) =
{

0.2 ∗ sin(t), |x2(t)| < 1

sin(t), |x2(t)| > 1
, c22(x2(t) =

{

0.1 ∗ cos(t), |x2(t)| < 1

−1, |x2(t)| > 1

p11(x1(t)) =
{

0.5, |x1(t)| < 1

−0.5, |x1(t)| > 1
, p12(x1(t))] =

{

2sin(t), |x1(t)| < 1

1.5, |x1(t)| > 1

p21(x2(t)) =
{

−0.2 ∗ sin(t), |x2(t)| < 1

1, |x2(t)| > 1
, p22(x2(t))] =

{

0.5 ∗ cos(t), |x2(t)| < 1

1, |x2(t)| > 1

M =0.4,α = 5.

J =[0.1 ∗ sin(t); 0.2 ∗ cos(t)];
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an M-matrix. Then theorem 4 holds and the system has a unique equilibrium point x∗ , which is globally expo-
nentially stable.

After simulation of these two systems using matlab Toobox,we obtain the graphical illustration Figs. 2 and  3 
shows the periodic dynamic behaviors of the output of the two neurons which are in accordance with theoreti-
cal results.

To prove the effectiveness of our result on finite-time synchronization we consider the master system the 
above simulated example and the following system is the slave.

Let consider the following response RNN:

ẏi(t) = −aixi(t)+
2
∑

j=1

bijfj(yj(t))+
2
∑

j=1

cijgj(yj(t − τj))+
2
∑

j=1

pij(t)
t
∫

−∞
kij(t − s)hj(yj(s))ds + ui(t).

We choose n=2 neurons and ui(t) = exp(−0.5× t) and the initial states x = [0.5; 0.2]; y = [0.7; 0.3];
ei(t) = xi(t)− yi(t), i = 1, 2.

Figure 2.  The state trajectories of x1(t).

Figure 3.  The state trajectories of x2(t).
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We obtain in the following the simulation results: the two neurons tend to have the same trajectories in Figs. 4 
and 5. Figs. 6 and 7 describes the time responses of finite-time synchronization errors and the trajectory turns 
to zero quickly as time goes and t1 = 4.4 and t2 = 2.9.

Conclusions
In this paper, we study a memristive recurrent neural networs by giving assumptions for the existence and 
uniqueness of periodic solution. In addition, we detemine sufficient conditions that ensure the global exponential 
stability of this solution. Further more, we garantee the finite-synchronization problem of delayed memristive 
by determining several assymptions.

Meanwhile, the theoretical proposed model can be tested in practical issues like brain computing interface, 
image processing, pattern recognition and intelligent control. In our ongoing future works, the proposed neural 

Figure 4.  Time-domain behavior of the state variables x1(t) and y1(t).

Figure 5.  Time-domain behavior of the state variables x2(t) and y2(t).
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network model will be adjusted to analyze the electroencephalography (EEG) data for implementing continuous 
vigilance estimation using EEG signals acquired by wearable dry electrodes in both simulated and real driving 
environments. Also, MNN synchronization and EEG signals can be combined to study the brain dynamics at 
rest following a perturbation.

Figure 6.  Phase plane behavior of the master system and the slave system.

Figure 7.  Finite-Time synchronization error.
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Data availability
The data that support the findings of this study are available from author Hajer Brahmi but restrictions apply to 
the availability of these data, which were used under license for the current study, and so are not publicly avail-
able. Data are however available from the authors upon reasonable request and with permission of the author 
Hajer Brahmi.
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