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Finite-time complete periodic
synchronization of memristive
neural networks with mixed delays

Hajer Brahmi®, Boudour Ammar®*‘, Amel Ksibi?, Farouk Cherif3, Ghadah Aldehim? &
Adel M. Alimi®*

In this paper we study the oscillatory behavior of a new class of memristor based neural networks with
mixed delays and we prove the existence and uniqueness of the periodic solution of the system based
on the concept of Filippov solutions of the differential equation with discontinuous right-hand side. In
addition, some assumptions are determined to guarantee the globally exponentially stability of the
solution. Then, we study the adaptive finite-time complete periodic synchronization problem and by
applying Lyapunov—Krasovskii functional approach, a new adaptive controller and adaptive update
rule have been developed. A useful finite-time complete synchronization condition is established in
terms of linear matrix inequalities. Finally, an illustrative simulation is given to substantiate the main
results.

Recurrent neural network (RNN) is a deep learning model characterized by a topology that allows all connections
between neurons, and by the fact each neuron usually has a complicated structure because of a large number
of parallel connections with a diversity of axon lengths'2. In addition, RNNs are well known for their capac-
ity of classification, detecting regularities and their ability to learn. They can play the role of memory through
feedback and are perfectly able to receive sensory data from our future agent>*. In particular, continuous time
RNNs (CTRNNSs) are RNNs modeled by dynamical systems in the form of differential equation; they combine
machine learning and physical modeling®”. In fact, CTRNNSs are mathematically easier to analyze, and continu-
ous formulation offers more flexibility in adapting the system to the problem and adding constraints. Actually,
researchers are attracted to the mathematical properties of RNNs, namely, the nature of solutions, stability and
the oscillation properties®’.

Indeed, the dynamic properties of RNNs have been deeply discussed and several important works have been
provided!'*-'. In particular, RNNs which exhibit periodic oscillation have been used to encode information in
the vibration phase and to model many systems in many domains such as celestial mechanics, nonlinear vibra-
tion, electromagnetic theory, engineering, robotics!*"'°. In addition, the synchronization problem consists of
analyzing the behavior between two systems: driver (or master) and responder (or slave) and could be seen in
different real systems such as secure communication, information science, chaos generators and signal genera-
tors design, image processing, biological systems**. In fact, neuronal synchronization becomes one of the most
attractive subjects in neuroscience, it indicates that the specific states of all the neurons in the neural networks
converge to a common value??~%.

To make these oscillating neurons, researchers are interested in the memristor component that is a combina-
tion of memory and resistor?®*. Chua pointed out that the behaviour of memristor is somewhat similar to the
synapses in the human brain®, and it can potentially offer both high connectivity and high density needed for
efficient computing compared to other storage. A memristive neural networks (MNN) is described in Fig. 1. In
addition, memristor studies show that MNN exhibits the feature of pinched hysteresis which means that a lag
occurs between the application and the removal of a field and its subsequent effect, just as the neurons in the
human brain have?-*1. Some studies have been discussed to analyze the dynamic behaviour of MNN and a lot
of researches were released=.
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Figure 1. Memristive neural network with 5 neurons.

Hence, one can ask what is the impact of the delays (time-varying and distributed delay) for the stability and
the synchronization of the periodic solution of MNNs. In Ref.!, authors investigate whether periodic solutions
exist, are unique and stable for a large class of memristor-based neural networks with time-varying delays.
Moreover, a novel and useful finite-time complete synchronization condition is obtained in terms of linear matrix
inequalities to ensure the synchronization goal in Ref.*.

In this work, we extend these studies and the mathematical model of MNN with mixed delays. In fact, we
analyse the stability of equilibrium points with executing significant results of the period behavior of the system.
After that, we study the phenomena of synchronization from the point of view of the theory and control. In the
considered system, the weights are discontinuous; the classical definition of the solution for differential equations
cannot apply here. Therefore we shall propose the Filippov solution to handle this problem. Filippov developed
a solution to the differential equation with a discontinuous right-hand side®’. Based on this definition, a dif-
ferential equation with a discontinuous right-hand side has the same solution set as a differential inclusion. Our
contribution consists to investigate the existence and exponential stability of the periodic solutions for memristor-
based neural networks with time-varying delays in the leakage term. The stability properties of this model are
then analyzed and we show that the solutions of this new linear system converge to a periodic and stable limit
cycle. The main novelty of our contribution lies in solving the problems of stability and synchronization and we
demonstrate the impact of the mixed delays. Also results enhance and extend earlier studies on neural network
dynamical systems with a continuous or discontinuous right-hand side that are memristor-based or conventional.

The rest of this paper is organized as follows. A delayed memristor-based neural networks is presented and
some necessary definitions are given in “Model description and preliminaries” section. In “Uniqueness and global
exponential stability” section, we introduce the Filippov’s solution for our system and the existence of periodic
solutions of the system. Our approaches are based on the differential inclusions and topological degree theories
in set-valued analysis. In “Finite-time periodic synchronization” section, we shall study the uniqueness and
global exponential stability of the w-periodic solution for the system. Especially, when the system is autonomous,
we will give the sufficient conditions, uniqueness and global exponential stability of equilibrium point of the
proposed system. Moreover, we designed novel control algorithms for the finite-time periodic synchronization
to select neurons to pin the designed controller. In “Conclusions” section, a numerical example is obtained to
show the effectiveness of the theoretical results given in the previous sections. It should be mentioned that the
main results of this paper are Theorems 1-5.

Model description and preliminaries
In this paper, we shall investigate the following memristive neural networks with time-varying delay:

xi(t) = —ai(t)xi(t) + Zbij(xj(t))ﬁ(xj(t)) + Zczj(xj(f — 1;j () g (xj (t — (1))

=1 j=1
n t

XZPij(Xj(t)) / kij(t — s)hj(x;(s))ds + Ji(t),

j=1 Zoo

where n > 1 represents the number of neurons in the network, x;(¢) correponds to the potential membrane of
the neuron i at time ¢, the a; is a positive constant rate with which the i th neuron will reset its potential to the
resting state in isolation when it is disconnected. In addition, f;, g hj and o; denote the activation functions of
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jth neuron at time ¢, bjj(t), c;(t), p;j(t) are the synaptic connection weight of the unit j on the unit i at time ¢, J;
is the input unit i and 7;;(t) corresponds to the transmission delay of the ith unit along the axon of the jth unit
at time t and is continuously differentiable function satisfying

0<5n <, (2)

where T = maxi<;j<n { maxe[o,w]> Tij(t) } ,T is a nonnegative constant, bj;(t), ¢;j (t — 7;;(¢)) and p;;(t) are memris-
tive synaptic weights. Basing on memristor feature and the current-voltage characteristic, we write:

o by (0] > T
bij (xi(t)) _{ bj ol =T G
cl](xl(t)) :{Qij’ |Xj(t)| < Tj > (4)

| Py 101 > T
pij(xi(£)) —{pij, %O < T; > ?

fori,j=1,2,...,n;t € R, where T;>0isa switching jumps and let a; > 0, g; > 0, b,-j, b,-j s Cijs Cijp f)ij, Bij for
i,j =1,2,...,nareall constants.

Definition 1 (Periodic solution). A solution x(t) of system (1) on [0, +-00[ is a w-periodic solution with period w if

x(t + w) = x(t), forall t > 0.

Throughout this paper, we always assume the following hypothesis:

(H1) a;(.), bij(.),bij(.),f,-j (.),gij (.),f)ij (.),Bt_j(.), 7;j(.) and J;(.) are continuous and w-periodic functions.

(H2) The neuron activation functions f;(.), g;(.) and h;(.) are Lipschitz-continuous on R with Lipschitz con-
stants F; > 0,Gj > Oande > 0 respectively, i.e.,

i) — i < Filx — yl, 1gi(x) — &) < Gjlx — yl,1hj(x) — hj(y)| < Hjlx — y|, for all x,y € R and for
all j=1,2,.,n

= 0, S S 0
(H3) 3M, @ € R such that|k;(t — s)| = { < Me0=9 0 <s<t-

Definition 2 We say that a square matrix is an M-matrix if it has all nonpositive elements outside the diagonal
and all positive successive principal minors.

Lemma 1 *° Given matrix M = (m;j) nxn with nonpositive off-diagonal elements is a nonsingular M-matrix if and
only if one of the following conditions holds:

n
(1)  There exist n positive constants a1, @z, . . . oty such that am;; + > ajmj; > 0,i=1,...,n
J'=1r;j#i
(2)  There exist n positive constants 1, B2, . . . Bn such that Bim;; + ' ;#'ﬁjmij >0,i=1,...,n
j=Lj#

Definition 3 (Clarke Regular*®) V(x) : R" — R is said to be regular, if for each x € R" and v € R”

(1) there exists the usual right directional derivative D* V (x,v) = lim+w,
(2) the generalized directional derivative of V at x in the direction v € R" is defined as

DY V(x,v) = llz;m ) w, then DTV (x,v) = DTV (x,v).
y—>x,h—>0

Definition 4 Consider the column vector x = (x1,%2, . . ., X») ., where T denotes the transpose of a vector, ||x||
; 3
denotes any vector norm in R”. [lx|l; = 3" |xil,Ix[l, = | Y x?
j=1 j=1
Let the set A € R”, co[A] denotes the closure of the convex hull of A, j4(A) is the Lebesgue measure of A, and
0A is the boundary of A.

Definition 5 For alocally Lipschitz function V(x) : R" — R, we can define Clarke’s generalized gradient of V'
at point x, as follows

oVi(x) = E[klim VVi(xk) : xx = x, xx ¢ N, xx ¢ 2],
<00

where 2 C R"is the set of points where V is not differentiable and N C R" is an arbitrary set with measure zero*!.
In the following, for a continuous w-periodic function f(t) defined on R, we define
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f=

g~
O\s

f(tydt, f* = sup]lf(t)l,fl = inf ]lf(t)l.

telow telo,w

Given C; := C([—T, 0]) defines a Banach space of all continuous functionse : [—7,0] — R.
For x € R", we can write x € C; means x(s) = x in[—7,0]. Givene € Cy, let|lel|. = suple(s)|.
The initial states proposed for system (1) are as follow

xi(s) = ei(s), s € [-7,0], i =1,2,...,n. (6)

Consider x; € C([—7,0], R") described by x;(s) = x(t + 5), —t < s < 0, and the initial states (10) can be
rewritten as

xg =e € C; :=C([—7,0],R™). (7)

Suppose that A C R”, then x — ¢ (x) is said a set-valued map from A to R”, if for every point x € A, there
exists a nonempty set ¢ (x) C R”. We call a set-valued map ¢ with nonempty values, an upper semicontinuous at
xo € A, if for every open set N containing ¢ (xo), there exists a neighborhood M of x¢ such that ¢ (M) C N. The
map ¢ (x) is said to have a closed (convex, compact) image if for each x € A, ¢ (x) is closed (convex, compact).

Existence of periodic solution
In the rest of this section we will investigate the existence of periodic solutions of the generalized memristor
system.

By the differential equation system (1), we consider the set-valued maps as follow: for t € R and
hi=12....n

bij, I ()] > T;

KlbyG(0)] =4 @by by b, (0] =T » )
by, (O] < T
&, (O] > T

Kles (0] =4 @{ ey fo 501 =T , ©)
i (O] < T
B (O] > T

KlpyC(n] =4 @{ppnp, b (O =T (10)
Py lxi ()| < T;

It is clear that K[b;; (x;(¢))], K[cij(x;(t))] and K[p;j(x;(t))] are all closed, convex and compact for every t € R and
ihj=1,...,n

A function x(¢) is said to be a solution of system (1) on [0, T) with initial condition (7) or (8), if x(¢) is abso-
lutely continuous on any compact interval of [0, T] and satisfies differential inclusions:

dxi(t)

€ axnn + > Kby (x5(0)1f (x(5))

j=1

n ‘ ‘ (11)
+Y Klej (i (ED]1g; (%1 (£ — T35()) + > _Klpij(agi(6))] / ij(t — )y (x5(5)) ds + Ji(t),
j=1 ;oo

j=1

or there exist y;;(t) € K[b;j(x;(t))], ;i (t) € Klcij(xi(t))]and vjj(t) € K[pj(xi(t))] satisfy

dx;(t)
dt

n n n t
€ —ai(Oxi() + > _yiOfi (5(®0) + Y _ni(gi (it — 1)) + Y _vii(#) / kij(t — )y (x;) ds + Ji,
j=1 j=1 =1 o0
(12)
fora.a.t €[0,T),i=1,2,...,n
In the following, we discuss dynamical behavior of system (1) using the following set-valued version of the
Mawhin coincidence theorem.

Lemma2 (Mawhin coincidence theorem®?) Suppose that ¢ : R x R” — K, (R") is upper semicontinuous and @
-periodic in t. If the following conditions hold:
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(1)  There exists a bounded open set A C C,,, the set of all continuous, w-periodic functions: R — R", such that
for any A € (0, 1), each w-periodic function x(t) of the inclusion

dx
dt

satisfies x ¢ 0 A if it exists.
(2)  Each solution z € R" of the inclusion 0 € 1 fow ¢ (t,2)dt = go(z) satisfiesz ¢ dA NR";

[0}
(3) deg(go, A NR",0) # 0, then differential inclusion (13) has at least one w-periodic solution x(t) with x € A.
If a matrix O > 0 then all elements of O are greater than or equal to 0, and similarly we can describe O > 0.
It follows that for given vectors or matrices O and P, O > P (or O > P) and similarly that O — P > 0 (or
O — P > 0). After that, we give sufficient conditions to guarantee the existence of periodic solutions for the

memristive neural network.

€ 2 (t,x), (13)

Theorem 1 We consider I — S an M-matrix, where I is the identity matrix of dimension n, S = (sj) uxn and

1 <G M .
(H4) sij = i <b§jFJ + IJ,TD + upgf“j), i,j=12,.,mn,

i

U

7, u —i N7
where b:-]‘» = max{bij,bij},c; = max{cg,g;fj}andpg = max{pij,gz,}.
Then there exists at least one w-periodic solution of system (1).

Proof Define E,, = {x(t) € C(R,R") : x(t + w) = x(¢)}, and for x(¢) € E,,
n
lx®llc, = > max |x;(b)].
i=1t€[00]

Then E,, is a Banach space equipped with the norm ||.| g, .
Let for x(t) € E,,

ot x) = (1(£,%), p2(£,%), - . ., P (t, )7,

where
it x) = —a;(Oxi(t) + Y Kby (I (%) + > _Kley((E)1f (it — 1))
j=1 j=1
n t
+ ) Klpi(x(1)] / fi(%i(9))ds + Ji(®),
j=1 —00
i=12,.,n

Let assumption (H4) holds, ¢ (¢, x) is an upper semicontinuous set-valued map with nonempty compact
convex values under H4. Here we need to find an appropriate open, bounded subset A, in order to apply Mawhin-
Like Coincidence Theorem (Lemma 2),

From the differential inclusion (13), we obtain

dx; (t)
dt

€ M—aixi(t) + Y _Klby(xi)Ifi (1)) + > _Klej ()] (x5t — 1))

7 j=1 (14)
+2KIpixi )] [ fi(xi(9))ds + Jil.
j=1 —00

Given x(t) = (x1(t), x2(8), . . ., x2(1))T an arbitrary w-periodic solution of the differential inclusion (14) for a
certain 4 € (0, 1). There exist y;(t) € K[bjj(xj(t))]and n;;(t) € K[c;j(xj(t)]vii(£) € K[pij(x;j(t))] satisfy

t

= A—ai®xi(t) + Y _vi®fi(50) + > ng@)fi (x(t — D) + > _vyi(H) / fi(%(®)ds +Jil, (15)

j=1 j=1 j=1

dx;(t)
dt

—00

fora[0,T), i=1,2,.,n.
Multiplying both sides of (15) by x;(¢) and integrating over the interval [0, w], we get

w w n n
/ ai(t)x} (t)dt = / (O _viOf (5(0) + > _nij(0g (x(t — 7))
0 , 0 j=1 J=1 (16)
n
+3vii(1) [ kij(t — )hj(x;(s))ds + Ji(D)1dt.
j=1 —00
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From (H2), (8), (9), (10) and (11), it is clear to see that

1Z16] < max{ By, byl } < b

i1 < max{[eyl,legl | < i

v (0)] < max{[p;l.lp,|} < - (17)
el < B0l + O],

GGG — )| = Gilxi(t — 15)| + g (O)]

GO < Hilxol + )]

From (16) and Cauchy-Schwarz inequality, we obtain:

w n w n w
aﬁ/x,?(t)dt < ZbgFj/|xi(t)||xj(t)|dt+chGj/m(t)nxj(t—rij)|dt
j=1 0 j=1 0

0

n t
+§P}}Hj Iy ( J kit — 5)|xi(5)||xj(5)|d5) dt (18)

Zb O]+ chlg O] + = M st + 71 /|x,<t)|dt

Noticing that
0—Tii (w) —T1;(0)
7 : (0] S F=I0] ol
/ o TEeT O S =t -y o)

w
1 : 5 .
_ﬁ/ |xj Mldt, j =1,2,.,n,
ij
0

(19)
where @i Lis the inverse function ofgj =t —1;(t), i,j = 1,2,.,n
Then, for i=1,2,..,n, we obtain
u G' M u ’ 2 1
/x (t)dt <Z bijFj + 7}) + ;pinj /lxj ®ldt |2 + Vo Zb (0] + ¢ g (0)]
\V 1 -7 0
Z p%h:(0 1 ,
+apl]| ;(0)] +L)
(20)
which implies
@ n
2 1 u G 1
X2 (t)dt 527 biF + ——=— = + pl]H |x (t)|dt | 2
0 =1 \/
Zb )] + ciilgi )] + p,th ) +J! 1)
1
0] n [0] 2
/xiz(t)dt X /sz(t)dt +Jwbii=1,2,.,n,
0 =1 \0
where
6 = Z Zb 0] + cllgi(0)] + p,]|h O +J] |, i=1L2.n.
1
Let|x ¢ = (J© x2(0)dt)’, xi € CR,R), i = 1,2,.,n.
Thus
T
A=) (xS 12201 - - -5 xally) < Voour. (22)

Since (I — S) is an M-matrix, assumption (H4) holds and Lemma 1, there exists a vector

Scientific Reports |

(2023) 13:12545 | https://doi.org/10.1038/s41598-023-37737-2 nature portfolio



www.nature.com/scientificreports/

V= (vf,v;‘,...,v;) =v(I-S) > (0,0,...,0),
and from (22), we have
min{vi,v3, ..o (IS 1x205s - xall) < vilxalls + vslixels + ..+ v llxalls
=0 =) (I8, 1512, ., Ixall2) T < v/ (01,6n, .., 00)T
n
= \/EZU,»Qi.
j=1

Thus, we obtain

n
r Vo ovio;
2 1 [} i=1 A
x:(t)|dt |2 = ||x; < 2 J/oN.
J/| 2(0) bl <
0
Obviously, we can see that there exists t; € [0, @] such that
lxi(H)] < VoN,i=12,...,n
Since for t; € [0, w],
t
50 =) + [ s,
ti
thus we obtain
w
mOI<N+ [ 56ds i = 12m
0

we can derive from (17) and (19) that
/ %i(0)|dt < al / xi(0)]dt + Y buF; (/ |xj(t)dt)
0 0 j=1 0
n [ n w t
+ ZC}}G} / | (F — ‘L’,‘]'(t))|dt + ZPZH] (/ /k,‘j(t - S)|x]‘(5)|d5dt)
j=1 0 j=1 0 “oo
- u u M u 1
+o| (O] + g + —pilO1 ) +J;
j=1

:/|5c,-(t)\dt < aﬁ/\x,-(t)|dt+2bgpj (/ |xj(t)dt> +chcj/\xj(t—r,-j(t))|dt
0 0 j=1 0 j=1 0
n @ @ n M
+ > piH; (/ |x/‘(5)|/kij(t - s)dtds) +w (Z (h;‘-Lﬁ(O)l + cglg;(O)\) + Ep,*;-lhj(o)\ +I{)
j=1 00 s j=1

= / %:(£)|dt < al / li(O)ldt + > _biF; (/ |xj(t)dt> +) G / |x;(t — i (t))|dt
0 0 =1 0 j=1 0
n @ @ n M
+ > piH; ( / ()| ( / it — s)dt) ds) +o (Z (51501 + <5l 1) + pliyO) +1{)
j=1 0 s j=1

< / % (t)|dt < al / i () |dt + E h;ﬂ</|xi(t)|dt) + E ciGj / | (t — T (1)) |dt
0 0 j=1 0 =L
M 7 . B M,
+1§=:1 o Pt ( 0/ |x,-<s)ds) +w(§ (b,ju;<0>| +c,-j\gj<0>|) + POl +L-’)

j=1

n G M n M
J
<aVolxly +> (b;;F,- + JiD + ap}j—h@) Vollxilly + o (Z (b;;-[fj(O)\ + c;‘jlgj(O)l) + PO +Ji
j=1 if

J1-71;

=1

j=1

)

(23)

(25)

n 4G M n M
< VoN + | al+ 37 | b5F + ==+ it | | +o| Y (56O + g ) + i1 +] | £ R,
j=1 1—- ‘[i]-
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for eachi = 1,2, .., n. Then, it follows
()| <N+R 2 H;,i=1,2,.,n (27)

One may readily verify that H;, i = 1, 2, .., nis independent of 1. Again taking (H4) into account, we can get

from Lemma 1, that there exists a vector = (1,2, ..., {,,)T > (0,0,... ,O)T,such that(I — S)¢ > (0,0,... ,O)T.
Hence, we can choose a sufficiently large constant o such that

= (g5 ¢hh . ¢)) = (06,08,...,08)" > 0¢,and that
(=00 >Hi(i=12,...,n), and(I — 8){* > 0. (28)

In order to finish our proof we will proceed in three steps:
Stepl let us take

A={x(t) € Cy: =" <x(t) <"Vt e R}. (29)

Hence A is an open bounded set of C,, and for any 4 € (0, 1), x ¢ dA . Thus, the condition (1) in Mawhin
coincidence theorem is satisfied.
Step 2 we shall use contradiction to demonstrate the condition (2) in Lemma 2. Let us consider that there

exists a solution u = (uy, u,. .., un)T € A N R" of the inclusion
w
1
0e — /F(t, w)dt = go(u).
w
0

Then u is a constant vector on R” such that |u;| = ¢;fori € (1,2,..,n).
Therefore, we have forl <i <n

j=1 0

17 u -
0€go(w) = —u— / ai(®ui (Ot +_fi(w)~ / Kby (u;(1)))dt
0

0] 0] t [0
z 1 "1 1
+ -(u)—/K[c,—*(u-(t))]dt—l— —h~(u)/K[b,~-(u-(t))]dt/k,-~(t—s)ds+f/l,~(t)dt,
j:Zng o J ij (U ];w j J ij () J if o

0
(30)
or
1 7 n 1 @ , ) »
0= —ui; /ai(t)dt+2/[1‘(u);/ylj(t)dt+ ng(”);/ﬁij(t))dt
0 i=1 0 j=1 "
[ 7 31)
n M ] . |
+§ahj(u)wo/vij(t)dt+ wo/l,-(t)dt, i=12.,m
where y;;(t) € K[bj;(ui)], n;i(t) € K[c;j(u;)]and vjj(t) € K[p;j(u;)]. Then, there exists some t* € [0, ) such that
s M
—uiai(t*) + (i (U + m(£)gi () + v () —hi) + () = 0, i = 1,2,.m, (32)
=1
It follows
* 1 n . ) M *
& = luil = m[; Vi (Ef )+ mi (g @) + vt —hi(w) | + 1)
L u v |
= 1D ED + HOD + (G + g (O]) + T (i) + IO + I,
i j=1
" i (33)
: i (Gi(luh) +1g©I1) M
= 1> (B + O)) + ; (G 11 s )+Ep;(Hj(lule|hj(0)|))+liu]
i j=1 — Tij

n n
= Zsijlujl +6; = ZS;‘]‘CJ-* + 6;.
j=1 j=1

Therefore (I — S)¢* < 6, which contradicts the fact (I — S)¢* > 6 and the condition 2 of Lemma 2 holds.
Step 3 In order to prove condition 3 let us define homotopic set-valued map

¢: ANR" x [0,1] = Ay

(u,h) —> hdiag(—ay, —ay, ..., —an)u + (1 — h)go(u),
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where
ai=21 [Vaitydt,i=12,...,n
if u= (u,uz,...,u;)T € IANR" then u is a constant vector on R” such that |u;| = ¢ for some

iel{l,2,...,n}.
It follows that

1] " 17 n 17
(P(u,h)); = —ui;/ai(t)ui(t)dtﬂl —h)[Zﬂ'(u);/K[bij(“j(t))]dt+Zgj(u);/K[Cij(uj(t))]dt
0 0 0

=1 j=1

J
"M 17 17
Jrz:;hj(u)5 / Klpij(a ()l + — / L(tdt].
0 0

j=1
(34)
Which implies that
0¢ (Pp(u,h),i=12,...,n (35)
If this is not true, then 0 € (¢(u, h));, i = 1,2,...,n,ie.,
1 e n 1 @ n . 15}
veTHe / @O+ 1 =D ) / Kby (s ()t + Y g5(0)— / Kleij(i(0)1dt
j=1 j=1 s
(36)

g~

0
/ L(t)dt).
0

Similarly, there exist y;;(t) € K[bjj(u;)], n;j(t) € Klcij(ui)]and v;(#) € K[p;j(ui)l,i = 1,2,...,nsuch that

n M 1 @
+ 3 ht [ Kipyaeonide +
J=1 0

w

17 - 1 - 1] "M 1]
0 =(—u)— / ai(®)dt + (1= WY_fie— / yi(O)d + Y _gi(w)— / m(O)dt + > —hy(w)— / vii()dt
0 =1 =1 0 j=1 0

0
w
1 .
+ — /Ii(t)dt], i=12,.,n,
w
0

(37)
consequently, there exists some t** € [0, w] such that

0 = —wiai(£) + (1 = W)LYy (™) (u) + i (£**)gj (w)
= (38)
M ok *ENT
+ ;v,-j(t Yhj(u) + ()i = 1,2,...,n.
We derive from (38) that
1—h

* < *k ok M *x ok
& = luil = m[;%j(t )i (W) + 13 () gi(w) + ;Uij(t Yhij(u) + Li(£™)]

IA

1 & M

S @ (F ) + 5O + e (Gl + g 1) + Pl (Hyla) + B O)1)) + I}
i j=1

1 A(Gillwh + g ©O)) M

S (Fi (D + 50)]) + Gy Dg’ ) + P (H(lg) + By (0)1)) + 1]

i j=1 1-— Tjj

IA

n n
> ailuil + 6= q5i" + 6,
=1 j=1

which yields that (I —S)¢* <6, which contradicts (I —S)¢* > 6. Thus, (30) holds. Which
implies that (0,0,...,O)T ¢ ¢(u,h) for any u= (ul,uz,...,un)TBA NR" he[0,1]. Thus,
using the solution properties of the topological degree and the homotopy invariance, we have

deg{g0, A NR",0} = deg{9(,0), A N R",0} = deg{#(u, 1, & NR",0} = deg{ (~nm, ~azun, .., ~anun) |, ANR", 0}
—a; ... 0
=sign] .1 [=(=D"#0. (39)
0 - —a
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This means that A satisfies all the conditions in Lemma 2, then the system (1) possesses at least one w—
periodic solution.
The proof is finished. d

Uniqueness and global exponential stability

Now, we will prove the uniqueness and global exponential stability of the w-periodic solution for the system (1).
Mainly, when the system (1) is considered autonomous, we will find the sufficient conditions on the existence,
uniqueness and global exponential stability of fixed point of the system.

Definition 6 (Stability) We denote x* (¢, ¢) a periodic solution of the system (1). The periodic solution x* (¢, ¥r)
is said to be globally exponentially stable if for any solution x(¢, ¢) of the system (1), there are constants M > 1
and p > 0 such that forany ¢ € C;

lx(t, ) —x*(t, )|l < Mllg — Yllce™, t > 0.

Let us firstly introduce the following lemma.

Lemma3 “If f(£T)) =0, g{(+Tj) = 0and hj(£T;) = 0(j = 1,...,n) then for every xj, y; € R we have

Klbij (xj (O)]fj (xj) — Klbii(yjO)1fj () < bFjlxj — yjls (40)

and
Kleij(xi (1)]1Gj () — Kleij (v (1)1g ) = €3 Gjlxj — yjl, (41)

and
Klpij(xj(D)1H; (xj) — Klpij(yj(t)1hj(yj) < pisHjlxj — yjls (42)

fori,j=1,2,...,n.

Lemma 4 * Let x(t) : [0,+0o[— R" an absolutely continuous on any compact interval of [0, +oo[ and
V(x) : R" — Ris Clarke’s regular, then x(t) and V (x) : R" — R are differential for allt € [0, +o0[. We get

d .

VO =yOTX0, Yy (1) € IV (x(1)),
where dV (x(t)) is Clarke’s generalized gradient.
Next, we consider the assumption below.

(H5) I — Sis an M—matrix, I is the identity matrix of sizen, S = (sij) and

nxn

5 = é(b;}Fj+c3Gj+ MpsH;), ivj=ij = 1.2,....m.

Theorem 2 Suppose that f;(£Tj) = 0, gj(£T;) = Oand hj(£T;) = 0 for j = 1,...,n, and the assumption (H5)
holds. If there exists periodic solution x*(t, ) for system (1), then x*(t, V) is a unique periodic solution of sys-
tem (1) and is globally exponentially stable, and for any other solution x(t, @) of system (1), there exist constants
M, > 0such that

[[xi(t,0) — %7 (&, )| < Rl — )l e,
foranyt > 0.

Proof Consider x(t) = (x1(t),x2(t), ..., xn(t))T any solution of system (1) and x*(¢) = (x] (¢), x5 (£), ..., x}: (t))T
is an w—periodic solution of system (1). We get:

B0 € —apxi(t) + ZlK [bii (5 (1 (x5(8)) + 2K[Cij(xj‘(t —5(ONgi (x (t — 1;(1)))
J= J=
n t
+> " Klpij(x ()] [ hj(xi(s))ds + Jil,
j=1 —00
i € —an )+ LRI )1 (0] + LKley ¢ = 50)Ig (st = (0))
j=1 =

n t
+2_Klpii(x ()] [ kij(t — $)hj(xj(s))ds + Ji].
j=1 —00
Assume that y;(t) = x;(t) — x7(t), then
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dyi(t)
dt

—aiyi(t) + ZBI, (0, x5 (1)) + ZCq(y;(t Tii(D), x5 (t — 7(1) + Z Py(yj(1), 5} (1)),
j=1 j=1
(43)
where Bjj(u, v), Cij(u, v) and Pjj(u, v) are given as following

Bij(u,v) = Klbjj(u + v)If;(u, v) — K[byi(»)]fj (x;())
Gij(u,v) = Klejj(u +v)]gj(u, v) — K[c(»)]gj (xi(1))
Pij(u,v) = Klpij(u +v)hj(u,v) — K[p;j(»)]hj(x;(1))

Similarly, there exist y;j(y;(t)) € Bij(yj(t),x]*(t)), nij(yj(t — 7;j(1))) € Cyj(y;(t — t,'j(t)),x]*(t — 7;j(t))) and
vij(j (D) € Pij(y;(1), x} (1)) verify,

D e —aiyir) + Zyy(yj(t) yi(®) + an(yj (t — 7(1), yj(t — 7i(1)) + Z PUii0.3(0),  (44)

foreveryt € [0,T),i = 1,2,...,n
Taking (44) and Lemma 3 into account, we obtain

Yii (i () = biFjly; (0]
i (i (t — 7ii(£))) = i Gjlyj(t — i (1)
vii (i () < p,]H lyj(®)]

Obviously, basing on (H5), the matrix diag(all, all, .dl w) — (b i+l GJ + p,]HJ)nxn is also a nonsingular
Mmatrix. In addition, there exists a positive 8;(i = 1,2, ...,n) such that

,3 (buF+C”G]—|— szH)>0’—12

As a result, there exists a sufficiently small positive number  such that
Bial— 1) - Zﬂ,(b“F + Gt + p,]H) >0,i=1.2,. (45)

We consider the Lyapunov function:

I
V() = max{w,i = 1,2,...,n.}.
Bi
V(1) is differential for all# > 0because any solution x(t) of system (1) including the w-periodic solution x*(¢)
are absolutely continuous.
The function |y;(¢)| is locally Lipschitz continuous in y; on R. Hence, the Clarke’s generalized gradient of
function |y;(t)|at y;(¢) is
-1 if yi(t) <0,
3(|yi (D)) = co[sign(yi(t))] = { [—L1] if yi(t) = 0,
-1 lfy,(t) > 0. ut
Foragivent > 0,thereexistsak € {1,...,n}suchthatV(t) = %,andletvk(t) = sign(yk (¢), if yk () # 0,
while v (¢) can be arbitrarily chosen in [—1, 1], if yx(t) = 0. From Lemma 4 and system (44), it follows for all
t>0:

e i ()]

V() = puV(t) + Vi(t)
B

< —(a(t) = WV (D) + ° o Zwy(y](tm

j=1

et M
Zm,,(y,(t — GO+ S-S T )]
j=1 ﬂ j= la

/3

< —(af - )va) +— Zb FiBiV (1) + Zc GiBie" IV (t — 7 (t)) + Z —PyH;BV (1)

j=1 j=1
1 n
s —(ak—n)Be— Z(b;;F,» +CiGieh + p,]H>/3] V() <0,

j=1

(46)

whenV(t +5) < V(¢)foranys € [—7,0]. Let V() = sup V(t+s), then we get
—7<s<0
m <0,Vt> —t1 (47)
dt
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Therefore
(D] < BiV (e ™™ < BiV(0)e ™, (48)
foralli =1,...,n. Thus, foranyt > 0,
n
YO <y ®e > " Bi/Br.
i=1
Moreover,

e—/L[

x®) —x*®)| < Rllg — ¥l ",

where R = Zﬁ,/ﬂmm, x(t) = x(t, ) and x*(t) = x* (¢, ¥).

Hence, the w-periodic solution x* (¢) of system (1) is globally exponentially stable. Then, the periodic solution
x*(t) of system (1) is unique. The proof is complete. O

Theorem 3 Consider that fj(£T;) = 0, gj(£Tj) = 0and hj(£T)) = 0(j = 1,...,n), and the assumption (H4) is
satisfied. Then system (1) has a unique periodic solution x*(t, {), and it is globally exponentially stable.

Next, we demonstrate the existence and global exponential stability of the equilibrium point for autonomous neural
network model (1).

Letal = a;, bji = max{|l3,-j|, |lv7,j|},c1’-]‘- = max{|¢;l, |E,-j|}pg- = max{|pjl, |pij } in the assumption (H4) and (H5)
for system (1).

Firstly, for autonomous system (1), using Theorems 1 and 3 we can get the following result.
Corollary 1 Consider that f;(£T;) = 0and gj(£T;j) = 0, hj(£T;) = 0and 7;(t) = T, where (i,j =12,..., n)
are all nonnegative constants. if (H5) is satisfied, then there exists a unique equilibrium point x* for system (1),

which is globally exponentially stable.

Proof Clearly, system (1) is an w-periodic system, then, basing on Theorems 1 and 2, for any constant @ > 0
system (1) possesses a unique w-periodic solution x*(¢) and it is globally exponentially stable.

Let x*(t) be unique for all @ > 0, then we have x* (¢ + w) = x*(¢) for any constants w > 0 and ¢ > 0. Hence
x*(t) = x*forallt > 0.

Thus x* = x*(0) is an equilibrium point of system (1) and x* is unique and globally exponentially stable.

Theorem 4 Consider that f;(£Tj) = 0and gj(£T)) = O(j =12,..., n). Since (H5) holds, there exists an unique-
ness equilibrium point x* for system (1), which is globally exponentially stable.

From the assumption (H5), there exist positive constants B;(i = 1,2, ..., n) such that

n
ﬁ1ﬂ1—2ﬁj<buF +C“G + p ) >0,i=1,...,n
j=1

After that, let a set-valued map I (u) = (T'1(w), 1 (0), .. ., T, and

Fitw) = @[ZKW . >]ff( )+ZK[C’J( 1o (555
i

+2K[py( ) f kit = 9y (355 ) ) ds + 1l

(49)

fori=1,2,...,n, whereu = (ul,...,un)T

Using Lemma 3, for any two vectorsu = (uy, .. ., u)T e R"andv = (v1,...,vy)T € R", we have
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T (u) — F(v)l_ﬁ,[ZK[b,J(ﬂ] )1f]<ﬂf> K[b,J( ] )1ﬁ<ﬂ]al> +¥K[CIJ( )]g]< </3a ))
I M [
_ZK[CU( )]gf< ( >> +Z K[p,, ]h </3] z>ds_;aK[pq(ﬂjai)]h]<ﬁjai>]’

1

(50)
fori=1,2,...,n,then,
IT;(w) =TI < oflu—vl, (51)
where
o= max ZZ@ <b Fj + ciiG;j + p;;H) ; (52)

l]l

and0 < o < L Thus, the mapT : R" — R"is a contraction mapping on R". It follows that, there is a unique fixed
pointu* € R" such that u* € T'(u*), i.e.,

)+ZK[Cu< J)]g;( >+Z K[pt] )]h (”f')m
P Bja Bjai

*

uf eﬂ,[ZKW ﬂ’ )]f(

fori=1,...,n. Letx = forz_l .., n, then

ﬂa

e —aixt +ZK[b,,(x )]fj( ) +ZK[c,,(x*)]g,( ) + Z Kipy () (x ( ) 7.

wherei = 1,...,n, and u is unique, we obtain that system (1) has a unique equilibrium x*.

Thus, following the proof of Theorem 1, we prove easily that equilibrium x* of system (1) is globally exponentially
stable.

Finite-time periodic synchronization

In this section, we will examine the finite-time synchronization problem of delayed memristive neural networks.
For this purpose, we consider the delayed memristive neural network model (1) as the drive system, and a

controlled response system is modeled by the following functional differential equation:

yi(t) = — ai@®)yi(t) + Z[bij(t)ﬁ()’j(t)) + ¢ij(Dg (it — wij(D))

=1
t
+mm/ﬁw—9mmm¢+mm+wm

where y;(t) is the controller to be designed.

Definition 7 The memristive neural network (1) is said to be completely synchronized onto (53) in finite time
if by designing a suitable controller v;(¢) to system (53), there exists a constant #;>0 (#; depends on the initial
value), satisfying
lim [|y;(£) — xi(t)|| = 0
t—1
Hyi(t) — xi(t)H =0, fori=1,2,.n,t >t

We take e; () = x;(t) — y;(¢) the error term. Then, one can obtain the following result.

Theorem 5 We consider that then system (1) exists at least one w-periodic solution. If there exists a positive definite
matrix S satisfying

1 M 1
7 = —A+3;S+BF+ PH 5CG
* —1s
_ 1 B M 1c
Zz:( A+ZS+*BF+aBH Z_CES)<0,

Scientific Reports |

(2023) 13:12545 |

https://doi.org/10.1038/s41598-023-37737-2 nature portfolio



www.nature.com/scientificreports/

where F = dlag(Fl,Fz,. .F,), G= dlug(Gl,Gz,. .Gy), H = diag(Hy,Hy,...Hy,), B = diag(b;,b,,...b,),
B= dzag(bl, by,...by), C= dzag(cl,cz, ...¢y), C=diag(c1,C2,. . .Cn), then system (53) can synchronize onto
system (1) in aﬁmte timet) = % V2
adaptive controller

(0) and to adapt to changes in the process that occur with time, we define the

vi(t) = —o;i(t)ei(t), (54)
and adaptive updated law, where

=

0i(t) = & (eiz(t) -1 z’g; sign(ei(t)) — ki’ﬁ; sign(ei(t)) — szgn(o,(t))) - km(ﬁ . f(s)ds) ),
and
V(0) = 2eT(0)e(0) + 1 [, e (s)Se(s)ds + ;Z"lsiio?(oy
i=
g; > 0is a constant, k > 0 is a tunable constant,
ti > 0,i=1,2,...,n, are the control parameters to be determined and satisfies:
ti > |A|T; + ZF |bij — byl Ti + ZZlblj - bz]|G]ZM|p1] Ijij|Hj.
Proof Set A = diag{0;(t), 02(t),...0,(t)}. Consider the following Lyapunov functional:
V() = %eT(t)e(t) + % ft(lt el (s)Se(s)ds + %Zn:lg%of(t). (55)
i=

The master model (1) and the slave model (53) are state-dependent switching systems, hence, we can divide
the error system into the following four cases at time ¢.

Case 1 If |x;(t)| > Tj, |yi(t)| = Tj at time ¢, then the master system (1) and the slave system (53) decrease
respectively, to the following models:

xi(t) = —ai()x;(t) + Zb,](l‘)ﬁ(x;(t))-i—cy(t)g](x](t le(t))) +P ®) / ky(t S)h (x](s))ds +Ji(),
j=1
(56)
and

Jit) = —ai()yi(t) + Zh,]a)f O30 + €5 (g (¢ = TN +p, (1 / Kij(t — B () ds + ui(t) + Ji(0).

j=1
(57)
Correspondingly, the error system can be written as
éi(t) = —ai(t)e;(t) + Zbl,(t)f(ej(t)) + <08 (ej(t — 7(1))) + P, (1) /kg(t s)hj(ej(s))ds + ui().
j=1
(58)

Let us denote fi(ej(t)) =fi(xj(®) —fi(yj®); g(ej(t — 1)) = gi(xj(t — 7)) — g(yj(t — 7)) and
hj(ej(t)) = hj(x;(t)) — hj(y;j(t)). Under assumption (H2), evaluating the derivation of V{(¢) along the trajectory
of error system gives
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V() = el () (—Ae(t) + B (e(t) + Cgelt — 1) + - Phe(t) + u(t)) + 5l @St

— leT(t —1)Se(t — 1)

IE iszgn(el(t)) — OIE ;

+ Zoz(t)(e ® -1 sign(ei(t))

¢ 3
(1)) — kv 2max (S) ( / e%(s)ds) )

-7

< —eT(t)Ae(t) + e BFe(t) + e' CGe(t — T) + eTMBHe(t) — el ) Ae(t)
o
+ %eT(t)Se(t) - %eT(t —)Se(t — 1)

t 2
+eT<t>Ae<t)—Za,|e,<t)| —kZ|el(t>|—kZ—|o,<t>| - ( / eT<s>Se(s>ds)

i=1 -7

< (ET(t),eT(t — T)>Z1 <eT(t),eT(t — ‘L'))T — ;L,‘|ei(t) — kZ|€1(t)||

t 3
n 1 ‘ r
_k;ﬁ|o,(t)|—k((/e (s)Se(s)ds) )

-7

Using previous results, we obtain

l—

1
¥ _ - ()12 i_ 't T _ "L )
V) < k(ge,(m) k(jHe (s)Se(s)ds) kY Jeloi(ol.
By Lemma 1, one has

Vi = V2 k{ eT(De(t) + 1 [ eT(s)Se(s)ds + 22 <t)r = —V2kVi(t).

Case 2 Let |x;(t)| > Tj,|lyi(t)| > T;at time ¢, then the master system (1) and the slave system (53) decrease
to the following systems:

xi(t) = a(t)x,(t)+Zbg(t)ﬁ(x,(t)>+Zc,J<t>g,<x,(t rzj(t)))+2p,](t) / kij(t — $)hi(xj(s))ds + Ji(£) ,
j=1
(60)

and

yi(t) = —ai@®)yi(t) + Zbg(t)f i) +Cii(0)g (st — 7 (1)) + py (1) / kij(t — $)hj(yj(s))ds + Ji(t) + u;(t).
j=1
(61)
Hence, we obtain the following error system

ei(t) = —ai(t)ei(t) + Zby(t)f](e](t)) +Cij(0)gj (i (t — 7;5(1))) + py; () / kij(t — s)hj(ej(s))ds + wi(t).
j=1
(62)

Similarly, we write

V(0 <(e" 0.7~ 1)) 22T @0t = 1) = Dby ~ Yl
i=1 i=1

; (63)

t 3
"1
kS Joi(t)] — k / T (©)Se(s)ds | .
5 oo f )

-7

According to Lemmas 1, it follows

Scientific Reports|  (2023) 13:12545 | https://doi.org/10.1038/s41598-023-37737-2 nature portfolio



www.nature.com/scientificreports/

1
V() <= —V2k|LeT(De() + 4 [, eT(s)Se(s)ds + %Zéo%(t)}
i=1
= —V2kV1 (D).

Case 3 If |x; ()| > Ti, | yi(t_)l < Tjat time t, then the master system (1) and the slave system (53) reduce to
(60) and (61). Correspondingly, the error system can be written as

&i(t) = —ai(e(t) + > _by(t)fi(ej(1) + > _ei(t)gi(ej(t — Ty5(1)))
=1 =1
n t
+Zﬁij(t) / kij(t — s)hj(ej(s))ds + (ai(t) — a;(t))yi(t)
=
] n n (64)
+ 37 (B0 = B 0) 50 + D () — (1) )5t = (1))
j=1 j=1
n t
322,01 y0) [ Kyt = I oy60ds + w0
j=1 —00

evaluating the derivation of V(t) along the trajectory of (68), we have

Vi(t) = Zem [ — ai(ei(t) + Zbl,u)f(q(t)) + Zc,](t)gJ(e](t - 7j(1)))

j=1 j=1

+ Zﬁij(t) / kij(t — s)hj(ej(s))ds + |a; — aillyi ()|
‘:1

+Z|b,, bu|m<y]<t>)|+2|cy Syllg Ot — r,](t)>>\+2|p pyl/kw )i (y;(s) | ds

j=1 j=1

ei(t) Pl

+ il + 7eT(t)Se(t) - 7eT(t —1)Se(t — 1) + Zo ) -1 o) 5 n(ei(t)) — 0 7

i=1

0 3
(1)) = kv Zmax(S) ( / e%(s)ds) ]
Jt—1

T TR T~ M T 1 7
< —e’ (t)Ae(t) + e BFe(t) + e CGe(t — 1) + ;PHe(t) —e (t)Ae(t) + Ee (t)Se(t)

sign(e;(t))

- %eT(t —D)Se(t — 1) + el () Ae(t)

- Z|el(r>| - kZ|e,<t>| - kz

-7

t o
(O] —k ( / eT(s)Se<s>ds> +) MlailT;
j=1

n n
+ ) Fjlb; — byl Ti+ > _lcj — &l G — Lilleit)]

j=1 j=1

n
M _
+ XI:EH]'B’J — Pyl
]:

(T, )T et ) kZ|e,<t>| - kZ —loi(0)

t n n
—k (/ eT(s)Se(s)ds) + Z[lailT,- —+ ZFlei - bijIT,-
: =1 j=1

-7
n n M
+ 2@- — ¢lG + 2;;1@@,7 — Pyl T; — lilles(®)].
J= J=

In consideration of the definition /; and Z,, one has V;(¢) < _ﬁkV% ().
Case 4. Let|x;(t)| < Ti,|yi(t)| > T;at time t, then the master system (1) and the slave system (53) reduce to
(60) and (62). Then, we obtain the following error system:
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Gty =— ai(Deit) + Y _bi0)fi(ei(t) + > _ci(t)gi(ej(t — Tyi(1)))

=1 j=1

n t
#3850 [ Kyt = Il + a0 (0
s ) (65)
+ 37 (i) = by®) G5 0) + 3 (e — €50 ) (it = Ty

j=1
t

+> (0 —p,®) /k,-j(t — ki (xi(9))ds + ui 0).
j=1 —00

Consider |x;(t)| < T;, we obtain

Vi) <(7 @, )2 (T W0t~ 1) kY Jeito)] - kZ%wi(m
i=1 i=1 V!

t

—k /eT(s)Se(s)ds +> lalTi
j=1

-7

n

1

+ > Flb; — by|T; + Zlc,] ilGj + Zlc,] c,,| — Lllei(t) < —v/2kV2 (1)
j=1 j=1 j=1

OrV(t) =0fort > tywitht; = */TE V2 (0), hencee;(t) = 0fort > t1,i = 1,2,...,n. According to definition

5, the salve system (53) is finite-timely synchronized onto the master system (1) under the designed controller

(54). This completes the proof. d

Numerical example
In this section, numerical example is given to show the effectiveness of our results. We consider the two-dimen-
sional mermristor-based recurrent neural networks described by the following system:

xi(t) = —aixi(t) + Z(szﬁ(x](t)) + Ct]g](x](t TZJ(t))) =+ pij /klj(t S)h (X](S))ds +Ji(®),
j=1
wherei = 1,22,a; = [34], 7;;(t) = écos(t) and forallx e R
+1—|x—1
i) =g = hix) = ¢(x) = %

bua 1 (1) ={ L o) S 1 bata@) = { 0% bl = 1

—0.5 % sin(t), |x2(1)] < 1 _ [ 01xcos(t), 2] <1
ba1 (x2(1)) —{ 1, |x§(t)| > 1 b2e®) = { -1, [x2(8)] > 1

5, |x1(H)| < 1 2sin(t), lx1(t)] <1
() { L (] > 1062 0) = { 0.3 % cos(—t), |1 (0)] > 1

0.2 % sin(t), |x(t)| < 1 0.1 xcos(t), Ix2(0)] <1
21 (x2(1)) ={ dn), o) > 1°200 = { -1, ()] > 1
1 2sin(t), 1
pui () ={ 05, }gg;} S Pt = { 1.2’,10) mgi S
pr () { O B = ()] = {0,5 oo b = 1
M =04,a = 5.

J =[0.1 x sin(t); 0.2 % cos(t)];

We easily calculate
g (049084
— 1 0.65 0.07

function, in the view of Theorem 1, this neural network has at least one periodic solution. It is clear that I — S1is

). Thus, the conditions required in Theorem 1 are satisfied. When I (t) is a periodic
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Figure 2. The state trajectories of x; ().
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Figure 3. The state trajectories of x,(¢).

an M-matrix. Then theorem 4 holds and the system has a unique equilibrium point x*, which is globally expo-

nentially stable.

After simulation of these two systems using matlab Toobox,we obtain the graphical illustration Figs. 2 and 3
shows the periodic dynamic behaviors of the output of the two neurons which are in accordance with theoreti-

cal results.

To prove the effectiveness of our result on finite-time synchronization we consider the master system the

above simulated example and the following system is the slave.
Let consider the following response RNN

yi(t) =

—aixi(

t)+ Zbuf i) + chg,(yj(t ) + sz](t) f kij (t —

$hj(yj(s))ds + ui(t).

j= =
We choose n=2 neurons and u;(t) = exp( 0.5 x t)and t{1e 1n1t1al states x =1[0.5;0.2]; y = [0.7; 0.3];

ei(t) = x;(t) — yi(t),i = 1,2.
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Figure 5. Time-domain behavior of the state variables x2(t) and y2(t).

We obtain in the following the simulation results: the two neurons tend to have the same trajectories in Figs. 4
and 5. Figs. 6 and 7 describes the time responses of finite-time synchronization errors and the trajectory turns

to zero quickly as time goes and t; = 4.4and t, = 2.9.

Conclusions
In this paper, we study a memristive recurrent neural networs by giving assumptions for the existence and

uniqueness of periodic solution. In addition, we detemine sufficient conditions that ensure the global exponential
stability of this solution. Further more, we garantee the finite-synchronization problem of delayed memristive
by determining several assymptions.

Meanwhile, the theoretical proposed model can be tested in practical issues like brain computing interface,
image processing, pattern recognition and intelligent control. In our ongoing future works, the proposed neural

Scientific Reports|  (2023) 13:12545 | https://doi.org/10.1038/s41598-023-37737-2 nature portfolio



www.nature.com/scientificreports/

xyt]
x2,y2

0.6 7 i}

x2,y2

0.2 F

__0‘2 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x1,y1

Figure 6. Phase plane behavior of the master system and the slave system.
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Figure 7. Finite-Time synchronization error.

network model will be adjusted to analyze the electroencephalography (EEG) data for implementing continuous
vigilance estimation using EEG signals acquired by wearable dry electrodes in both simulated and real driving
environments. Also, MNN synchronization and EEG signals can be combined to study the brain dynamics at
rest following a perturbation.
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Data availability

The data that support the findings of this study are available from author Hajer Brahmi but restrictions apply to
the availability of these data, which were used under license for the current study, and so are not publicly avail-
able. Data are however available from the authors upon reasonable request and with permission of the author
Hajer Brahmi.
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