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Radiomics characterization 
of tissues in an animal brain tumor 
model imaged using dynamic 
contrast enhanced (DCE) MRI
Hassan Bagher‑Ebadian 1,2,3,4*, Stephen L. Brown 1,2,5, Mohammad M. Ghassemi 6, 
Tavarekere N. Nagaraja 2,7, Benjamin Movsas 1,2,5, James R. Ewing 2,4,7,8,9 & Indrin J. Chetty 1,4,5

Here, we investigate radiomics‑based characterization of tumor vascular and microenvironmental 
properties in an orthotopic rat brain tumor model measured using dynamic‑contrast‑enhanced 
(DCE) MRI. Thirty‑two immune compromised‑RNU rats implanted with human U‑251N cancer cells 
were imaged using DCE‑MRI (7Tesla, Dual‑Gradient‑Echo). The aim was to perform pharmacokinetic 
analysis using a nested model (NM) selection technique to classify brain regions according to 
vasculature properties considered as the source of truth. A two‑dimensional convolutional‑based 
radiomics analysis was performed on the raw‑DCE‑MRI of the rat brains to generate dynamic 
radiomics maps. The raw‑DCE‑MRI and respective radiomics maps were used to build 28 unsupervised 
Kohonen self‑organizing‑maps (K‑SOMs). A Silhouette‑Coefficient (SC), k‑fold Nested‑Cross‑
Validation (k‑fold‑NCV), and feature engineering analyses were performed on the K‑SOMs’ feature 
spaces to quantify the distinction power of radiomics features compared to raw‑DCE‑MRI for 
classification of different Nested Models. Results showed that eight radiomics features outperformed 
respective raw‑DCE‑MRI in prediction of the three nested models. The average percent difference 
in SCs between radiomics features and raw‑DCE‑MRI was: 29.875% ± 12.922%, p < 0.001. This work 
establishes an important first step toward spatiotemporal characterization of brain regions using 
radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor 
response to different treatments.

Radiomics analysis can be viewed as an analytical core or a series of algorithmic pipelines that extract structured, 
meaningful, and mineable information from medical images to reveal subtle characteristic of the data for the 
prediction, diagnosis, prognosis, and monitoring of different  diseases1–6. The entire pipeline relies heavily on 
the hypothesis that medical images contain abundant information and “Images are Data”5, which can present 
an inference of underlying pathobiology of the region of  interest1,5. Various radiomics analyses and adaptive 
models (AMs) have been developed to analyze multiparametric MR images of glioblastoma (GBM) to pre-
dict outcomes of clinical interest, such as recurrence and  survival7–16, response to  treatment7,8,13,14,17, molecu-
lar mutation  status18–22, and subclinical peritumoral  infiltration22–28. Radiomics has shown considerable suc-
cess in the prediction of noninvasive biomarkers of  outcome5,29, quantification and tissue characterization in 
the field of dynamic contrast enhanced (DCE)  MRI30–41, and association of imaging biomarkers to biological 
 mechanisms5,42,43. However, little progress has been made toward modeling and relating radiomics biomarkers 
to those fluxes, vasculature physiology, and flows that are known to be significant in steering tumor growth and 
 invasiveness44–54. Such an understanding is critically needed for the timely selection of  therapies44,55–58 in the 
shifting clinical presentation that is often found in many aggressive tumors. Such a development is a key step 
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toward identifying those radiomics features that can be associated with the physiology and microenvironment 
of the tumor and its surrounding tissues in human cancer studies.

DCE-MRI has been established as a useful, noninvasive, and non-ionizing method for the quantitative evalu-
ation and characterization of tumor microvasculature and permeability  parameters59–69. DCE-MRI experiment is 
performed by applying a fast T1-weighted MR pulse sequence to repeatedly image the volume of interest during 
the intravenous injection of a contrast agent (CA).

In animal models, DCE-MRI pharmacokinetic (PK) analysis shows promise as a stable descriptor of tumor 
 physiology59,70, and of physiological reaction to  treatments61,71–76. Our group has taken an important step toward 
the improvement of the image-based estimation of vascular permeability parameters by introducing a nested 
model selection (NMS)  technique64,77. The NMS utilizes an extended Patlak graphical method that illuminates 
PK compartmental analyses of DCE-MRI data from rat and human brains. We have  shown64,77 that in the 
PK analysis of the DCE-MRI information of rat and human brains, parsimony is an accepted  heuristic78. The 
simplest model with less complexity that fits the data, is considered as an accepted model or the best model to 
meaningfully explain the variation and characteristics of the data. The parameters of the simplest or parsimoni-
ous acceptable model are then taken as the best parameters to summarize the pathophysiological behavior of 
the underlying  tissue64,77,78.

Figure 1.  Subfigure (A) illustrates three physiologically nested models, their vascular and extra-cellular-extra 
vascular compartments, and their estimable vascular parameters corresponding to three different observation 
Eqs. (10–(12). Subfigure (B) shows all different stages of the data analysis in this study.
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The NMS-based PK  analysis64,77 physiologically associates the estimable vascular permeability parameters 
to the relevant information available in the DCE-MRI signal. The NMS-based PK analysis classifies the brain 
regions into one of the following three different pathophysiologically nested models: Model 1 region: tissues 
with normal vasculature with no evidence of CA leakage to interstitium space, Model 2 region: tissue vasculature 
with CA leakage to interstitium space without measurable back-flux to the vasculature compartment, or Model 3 
region: tissues vasculature with CA leakage to the interstitium space and measurable back flux to the vasculature 
compartment (see Fig. 1A).

The NMS  concept64,77 allows for a selection of an optimal PK model with a less biased estimate of its physi-
ological parameters best fitted to the DCE-MR information, which results in a more accurate and robust char-
acterization of tumor physiology and its microenvironmental parameters.

As a proof of concept, this pilot study analyzes radiomics features from DCE-MR images in an animal model 
of cerebral tumors to investigate association of radiomics biomarkers with tumor physiology. The goal is to char-
acterize the tumor microenvironment to identify significant image information relevant to pathophysiological 
properties of brain tissues derived by the NMS-based PK analysis.

Methods
Animal population and DCE‑MR Imaging. Following previously published methods, and using an 
institutionally approved protocol, 32 immune-compromised-RNU/RNU rats were stereotactically implanted 
with 5 ×  105 U-251N cancer cells (The U-251N  cells79 were received as a gift from Dr. Tom Mikkelsen, Depart-
ment .of Neurosurgery, Henry Ford Health System) in 10 µl of phosphate buffered saline (PBS) that formed 
a 3–4 mm diameter orthotopic glioma about two weeks  later80. For each rat, a DCE-MRI study (multi-slice, 
multi-echo gradient-echo sequence, with three 2.0 mm slices, no gap, matrix:128 × 64, FOV:32 × 32  mm2,  TR/
TE1/TE2 = 24 ms/2 ms/4 ms, flip-angle = 18°, SW = 150 kHz) was performed using a 7 T Varian (Agilent, 20 cm 
bore system with Bruker console) scanner. Four-hundred slice packages at ~ 1.55 s intervals (total experiment 
duration: 10 min) were acquired. A bolus of MR contrast-agent (MR CA-Magnevist) was injected (tail-vein) by 
hand push at acquisition 15. Two T1 mapping (TOMROP, T One by Multiple Read Out Pulses, or Look-Locker, 
LL)  sequences81,82 were run to produce voxel-by-voxel maps of tissue  T1 prior to, and immediately after the Dual 
Gradient Echo (DGE) DCE-MRI study. All experiments in this study were performed in accordance with rel-
evant guidelines and regulations (IACUC and NMR lab of Henry Ford Health System).

Nested model selection and observation equations for pharmacokinetic analysis. The Stand-
ard Model (SM) is a starting point for evaluating cerebral  physiology64,77,83 following measurement of contrast 
tracers using DCE-MRI experiment. Modeling of leakage in the vasculature system in integral form was first 
generated by  Patlak84,85 and further modified by Tofts et al.86,87. After intravenous administration of CA, the CA 
concentration in tissue is given by:

where:  Cp and  Ct are the plasma and tissue concentrations of the CA,  Ktrans is the volumetric forward transfer 
rate of the indicator into the interstitial space. The  kep in Eq. (1) refers to the transfer rate from the interstitial 
compartment to the vascular compartment, t and λ denote the experiment time, and  vp is the fractional volume 
of the vascular distribution space, usually thought to be the plasma distribution space. As shown in Fig. 1A, we 
have  shown64,77 that three physiologically nested models can be derived from the standard Toft’s model to describe 
possible physiological conditions of underlying tissue pathology. We have generated a series of stable processing 
pipelines accordingly, for producing vascular parametric maps based on the  NMS64,77. We assume that CA con-
centration, [Gd], is proportional to the change in the longitudinal relaxation rate  (R1) after CA administration: 
[Gd] = CA(t) ~ ΔR1(t), where  R1 = 1/T1  (T1 is the longitudinal relaxation time). This assumption is supported in 
most DCE-MRI studies because they are carried out under the conditions of rapid repetition time and Ernst 
tip-angle adjusted for a mean decrease in  R1. Under these conditions, studies in multicompartmental systems 
demonstrate little effect of exchange  mechanisms88,89.

Calculation of CA concentration (∆R1) from the dual gradient echo pulse sequence. This sec-
tion describes the calculation of [ΔR1] as it is estimated from the data of the dual gradient echo (DGE) that is 
sandwiched between two TOMROP or Look-Locker pulse sequences. DGE imaging allows computation of T1 
and T2* as approximately pure and independent components. This is essential for estimation of CA concentra-
tion based on ΔR1 and ΔR2*. Below, we will describe the method we have developed for calculating the ΔR1 signal 
(~ CA concentration) from the DGE signals. The following equations describe the measured  T1-weighted inten-
sities of the first and second echo signals and their relationship with the longitudinal and transverse relaxation 
times (T1, T2

*), repetition time (TR), echo time (TE), the flip angle (θ), and the equilibrium longitudinal magneti-
zation (M0). F and S in these equations denote the signal from the 1st and 2nd echoes, respectively:

(1)Ct(t) = Ktrans

∫ t

0
e−Kep(t−�)Cp(�)d�+ vpCp(t)

(2)F =

M0sinθ
(

1− e
−TR
T1

)

e
−TE1
T∗2

1− cosθe
−TR
T1
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For each voxel, there are two main phases for the signal: the pre-injection phase and the post injection phase. 
To set a baseline for the signal intensity of each voxel prior to the injection of the CA, the voxel intensities for 
the St and Ft signals are averaged over a few time points prior to injection:

In Eqs. (5) and (6), t denotes the experiment time point and Fpre , and Spre are the mean of the signal intensi-
ties associated with first and second echoes between time points m and n, where m and n are smaller than the 
injection time. In these equations, FSat , and SSat  are the mean of the signal intensities associated with first and 
second echoes (saturated part of the signals) between time points o and p, where p is the last time point of the 
signals (post injection), and p minus o is equal to n minus m (p–o = n–m).

In these equations, t denotes the experiment time point and  Fpre and Spre are the mean of the signal intensi-
ties associated with first and second echoes between time points m and n, where m and n are smaller than the 
injection time. Also, we define Epre and Epost as:

which are T1 associated parameters, estimated from the T1 mapping pulse sequences that are run before and 
after the DCE-MRI study. Using the above definitions, the following equations for the preprocessing of the DGE 
signals for DCE imaging are derived:

As seen in these equations, for each voxel, the pure component �R1(t) , along with its actual tip angle are 
estimated. Of note, one of the interesting observations about this equation is that the estimated �R1(t) is fully 
independent from the value of Epost . In this study, the voxel-wise profiles of the CA concentration map ( �R1(t) ) 
were directly estimated from these equations and the pre and post T1 associated parameters ( Epre , and Epost ) 
during the DCE-MRI experiment.

In this study, given Eq. (1), the time trace of change in the longitudinal relaxation time (ΔR1) in all the 
voxels of the animal’s brain for 32 DCE-MRI studies were  calculated77. Post-processing and pharmacokinetic 
compartmental analyses of DCE-MRI data were carried out following published  methods64,77, initially using a 
nested model selection (NMS) paradigm based on Patlak and extended Patlak graphical  method84,85. As shown in 
Fig. 1A, the NMS  technique64,77 was used to generate maps of brain regions labeled with the number of parameters 
used to describe the data: (a) Model 1 region: normal vasculature with no leakage, the only parameter estimated 
is plasma volume,  vp; (b) Model 2 region: tumor tissues with CA leakage without measurable back-flux to the 
vasculature, in which case,  vp and,  Ktrans can be estimated; or (c) Model 3 region: tumor vessels with CA leakage 
and measurable back-flux and, thus,  vp,  Ktrans, and  kep, or extracellular extra-vascular volume,  ve (ratio of  Ktrans 
and  Kep) can be estimated. Three observation equations [see Eqs. (10)–(12)] corresponding to three physiologi-
cally nested models were constructed from Eq. (1) as follows:
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where CAIF (t) and Ctissue (t) refer to the contrast agent (CA) concentration measured from plasma (or arterial 
input function, AIF) and tissue of interest in the brain, respectively. The Hct in these equations refers to the 
hematocrit ratio of animal’s blood.

For each observation equation, the voxel by voxel time trace of �R1(t) in rat brain was used to estimate its 
PK parameters as well as constructing an AIF for the  brain90, based on a group averaged radiological trace of CA 
concentration in arterial  blood90. At image 15 (corresponds to ~ 23 s after the start of the DCE experiment) of 
the dual GE sequence, a bolus injection of the CA (Magnevist; Bayer HealthCare LLC, Wayne, NJ, 0.25 mmol/
kg at undiluted concentration, no flush) was performed. The group averaged radiological trace was normal-
ized to the time trace of CA concentration in the animal’s normal caudate  putamen90, with the assumption that 
plasma volume fraction in caudate putamen is 1%. Then, the normalized radiological AIF was used as  Cp (CA 
concentration measured from plasma) or CAIF

1−Hct in Eqs. (10)–(12). A Simplex optimization/algorithm91 was used 
to estimate PK parameters for each model. Our  experience59,60,63,64,77,89,92–99 with the Simplex optimization is that 
it is time-intensive but very reliable in converging to a best-fit value.

DCE‑MRI data pre‑processing, data quantization, and radiomics analysis. First and second ech-
oes of DCE-MRI information for all animals were normalized as follows: for each voxel of the rat brain, the last 
10 timepoints of its 1st echo profile, corresponding to the stable portion (plateau) of the signal, were averaged 
and used as the normalization factor to normalize the 1st and 2nd echo profiles. The normalized profiles (1st 
and 2nd echoes) were quantized and uniformly resampled into 128 intensity levels using a Fixed Bin Num-
ber  (FBN100,101) according to the recommendations provided by the image biomarker standardization initiative 
(IBSI)100–102. A 2D-convolutional (symmetrical window, 5 × 5) radiomics analysis was performed on the normal-
ized and resampled DCE-MRI data (for all 400 time points of the three slices of the 1st and 2nd echo images) 
of all 32 animals. The radiomics analysis was preformed using our in-house-developed ROdiomiX software 
 system103,104, which consists of a series of computational cores designed and validated on the recommendations 
provided by the  IBSI100,101. A series of IBSI-validated convolutional radiomics feature maps (133 feature maps, 
window size = 5X5, Chebyshev distance = 1.0, with 8-connected neighborhoods) from eight different feature cat-
egories (see Table 1) were computed for each time point of the three slices using the following three IBSI recom-
mended aggregation techniques (see column 5 of Table 1): (1) DHQ4: features were calculated over the volume 
of interest. (2) BTW3: features were computed from each 2D directional matrix and averaged over 2D directions. 
(3) 8QNN: features were directly computed from 2D  matrices100,101.

Feature engineering, Kohonen self‑organizing map, and clustering analysis. To suppress the 
variations of the MR signal information due to the instability of the MR scanner’s gain at the beginning of 
the DCE-MR imaging, the first 10 timepoints of all dynamic maps (corresponding to the pre injection part of 
the signal for all animals which contains no contrast enhanced information: unstable part of the signal) were 
excluded from the analysis. Thus, for each voxel of the rat brain, 134 information profiles corresponding to 133 
dynamic radiomics information modalities (time-trace of radiomics information) and one raw DE-MRI infor-
mation for each echo with a length of 390 timepoints were selected and used as dynamic feature sets for feature 
engineering analysis. The 390 timepoints corresponded to the acquired information from 15.5 to 620 s of the 
DCE-MRI experiment.

For each information modality (from 268 dynamic maps for both echoes), the normalized contrast-enhance-
ment-ratio (Norm-CER)105 between the tumor volume and normal area (for all feature maps extracted from the 
1st echo and corresponded to Model 1 and Models 2 & 3, respectively, see Section “Nested model selection and 

(11)Ctissue(t) =
1

1−Hct
[vpCAIF

(t)+ Ktrans

∫ t

0
CAIF(�)d�]

(12)Ctissue(t) =
1

1−Hct
[vpCAIF

(t)+ Ktrans

∫ t

0
CAIF(�)e

−Kep(t−�)d�]

Table 1.  This table shows eight different IBSI-validated radiomics feature categories, number of radiomics 
features in each category, and their IBSI aggregation method. As shown in this table, the total number of 
radiomics features for all categories was 133.

No. Feature category Abbressssviation No of features IBSI aggregation

1 Intensity histogram IH 21 2D-averaged (DHQ4)

2 Intensity based statistical IBS 17 2D-averaged (DHQ4)

3 Gray level co-occurrence matrix GLCM 25 2D-averaged (BTW3)

4 Gray level run length matrix GLRLM 16 2D-averaged (BTW3)

5 Gray level size zone matrix GLSZM 16 2D-averaged (8QNN)

6 Gray level distance zone matrix GLDZM 16 2D-averaged (8QNN)

7 Neighborhood gray tone difference matrix NGTDM 5 2D-averaged (8QNN)

8 Neighboring gray level dependence matrix NGLDM 17 2D-averaged (8QNN)
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observation equations for pharmacokinetic analysis”) of the rat brain was calculated. The Norm-CER value was 
averaged over 32 studies and used to exclude the radiomics information modalities with low normalized contrast 
enhancement ratio (NCER < 1.2) that were not DCE informative compared to the raw DCE MR  information105.

For each information modality, extracted from each echo, 143,057 information profiles were selected from 
all the rat brain voxels and used to build 28 different unsupervised Kohonen self-organizing maps (K-SOMs) 
corresponding to 26 radiomics feature maps (13 dynamic feature maps extracted from 1st echo and 13 dynamic 
feature maps extracted from 2nd echo) and two raw DCE-MRI maps (1st and 2nd echoes). The processing details 
are shown in Fig. 1B.

A Kohonen self-organizing map (K-SOM)106,107 or self-organizing feature map is an unsupervised machine 
learning technique used to produce a low-dimensional representation of higher dimensional data set with com-
plex structures while preserving the topological structure of the data. During the K-SOM analysis, a competitive 
learning  algorithm108–110 along with Best Matching Unit (BMU) strategy were employed to identify the winner 
nodes/neurons for a 10 × 10 topology. The cover steps for initial covering of the input space for ordering the 
phase steps of the K-SOM was set to 100. The K-SOM’s architecture was hexagonal with an initial neighborhood 
size of three, and the maximum epoch was set to 200 epochs for batch training mode.

A BMU-based hit map was generated for each information modality (see Fig. 1B). The model choice labels 
(corresponding to three different models) estimated from PK-NMS analyses (see Section “Nested model selection 
and observation equations for pharmacokinetic analysis” and Fig. 1B) for all profiles of different information 
modalities were used as the source of truth to calculate the tagged BMUs on each K-SOM topology. For each 
information modality (28 maps, corresponding to 1st and 2nd echoes and their 13 respective radiomics maps), 
the hit maps and their corresponding labels were used to estimate three K-SOM probability and iso-probability 
maps for three different model choices. To investigate the information content of each radiomics features to 
perform NMS on DCE-MRI data, and to reveal non-linearity in the clusters and their  associations106,107with 
the physiological state (identified by the NMS analysis, see Section “Nested model selection and observation 
equations for pharmacokinetic analysis”), an unsupervised Silhouette clustering  analysis111,112 was performed 
on the K-SOM feature space.

Silhouette coefficients near + 1 indicate that the samples are far away from the neighboring clusters. A value 
of 0 indicates that the sample is on or very close to the decision boundary between the two neighboring clusters 
and negative values indicate that those samples might have been assigned to a wrong cluster. A variable threshold 
(from 0.01 to one with interval of 0.01, corresponds to 100 probability states) was applied on the K-SOM feature 
space of each information modality and a Silhouette analysis was performed for each state of probability. Lev-
ene’s  test113 was applied on the mean values of the Silhouette coefficients (SCs) of the K-SOM space for different 
clusters to test the homoscedasticity (homogeneity of variance) of various SCs on the K-SOM space (1st and 
2nd echoes, compared to their corresponding radiomics information). According to the Levene’s  test113 results 
(variance homogeneity condition), either an ANOVA or Welch’s  test114 was used as the null hypothesis test at 
the 0.95 significance level (see the final step of Fig. 1B, step 11). The Holm–Bonferroni  method115 was used for 
circumventing the problem of multiple comparisons for the computed p-values.

The percent difference between the average values of the SCs (DSC% = 100 ×  [SCRadiomics/SCraw-DCE − 1], 
where  SCRadiomics and  SCraw-DCE refer to average values of SCs for dominant clusters generated by the radiomics 
and raw-DCE-MRI information, respectively) measured from radiomics and raw DCE-MRI information was 
calculated. The DSC% value was used as the distinction power of the radiomics feature compared to the raw 
DCE-MRI information for classification of the three physiologically nested-models. Different steps of the analysis 
are fully described in Fig. 1B.

In addition to the Silhouette clustering analysis (SCA), the association of the two raw DCE-MRI information 
and their respective radiomics information with the three physiologically nested models were evaluated using 
a k-fold Nested Cross Validation (NCV)  technique116. We performed a voxel-wise k-fold NCV (k = 10) analysis 
for the two raw DCE-MRI data (1st and 2nd echoes) and their 13 respective radiomics features extracted from 
all the rat brain voxels. The full dataset was randomly permuted (using Random Permutation Sampling,  RPS117) 
and split into 10 non-overlapping folds. Two independent loops were defined as outer and inner loops. In the 
outer loop, for each trial, the data was split into two folds (training + validation fold, and a test fold), and for the 
inner loop, only the validation + training fold was used to construct a series of Kohonen self-organizing maps 
(K-SOMs). Thus, for each iteration, 28 different unsupervised K-SOMs corresponding to 26 radiomics feature 
maps (13 dynamic feature maps extracted from 1st echo and 13 dynamic feature maps extracted from 2nd 
echo) and two raw DCE-MRI maps (1st and 2nd echoes) were constructed in the inner loop using the training 
cohorts. The trained KSOM constructed in each fold of the inner loop was used as the classifier of the test cohorts 
of its respective fold in the outer loop. This process was repeated 10 times (k = 10) and at each repetition, an 
independent test set was withheld for the estimation of the performance of the constructed KSOMs of the inner 
loop for the three different nested models. Two hundred eighty K-SOMs were constructed (corresponding to 
28 information modalities times 10 folds). Since the number of the samples for the three nested models were 
highly imbalanced, an adjusted AUC, Balanced Accuracy, and F1 score were used as the evaluation metrics to 
quantify the performance of different K-SOMs for multi-class classification of the three nested models. Similar 
to the Silhouette clustering analysis, for the ROC analysis of the k-fold NCV, the KSOM’s hit maps were con-
structed at different specificity levels (or probability thresholds, varying from 0.01 to 1.00, corresponding to 100 
probability intervals) based on the NMS concept. A non-parametric Receiver-Operating-Characteristic (ROC) 
 method118,119 was used to calculate the adjusted value of the Area-Under ROC (AUC) based on different class 
labels (multi-class classification). Finally, the micro averaging  technique120 was recruited to calculate the average 
values of all the matrices (AUC, BA, and F1 Score) and their respective confidence intervals over all the three 
models and the NCV’s 10-folds.
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Animal study. This study was approved at the Institutional Animal Care and Use Committee (IACUC) 
board of Henry Ford Health System and conducted with an approved IACUC # 1509. The animal study of this 
work was performed and reported in compliance with the ARRIVE guidelines.

Results
Table 1 shows the eight different IBSI-validated radiomics feature categories, number of radiomics features in 
each category, and the IBSI aggregation method used for their radiomics feature computation. Fig. 1A shows 
three different physiologically nested conditions associated with normal tissue and leaky tumor, their respective 
physiological compartments, and estimable vascular parameters, respectively. Fig. 1B shows the workflow of the 
data analysis in this study.

Figure 2A–F demonstrate the 1st echo image of the raw DCE-MRI, the related 4 different significant radiom-
ics maps, and the model choice map estimated by the PK-NMS analysis (Section“Nested model selection and 
observation equations for pharmacokinetic analysis”) for a slice of rat brain. Figure 2A–F demonstrate the 1st 
echo map of raw DCE-MRI, significant radiomics maps, and conventional model choice map (estimated by the 
PK-NMS, Section “Nested model selection and observation equations for pharmacokinetic analysis”) for a slice 
of rat brain at timepoint 100 (around 2 min after DCE-MRI experiment). As shown in this figure, compared to 
the 1st echo information, the following radiomics features significantly distinguished the three model choice 
regions after administration of CA concentration: (1) Intensity Variance feature (from IBS feature category), (2) 
Dissimilarity feature (from GLCM feature category), (3) Small Distance High Grey Level Emphasis feature (from 
GLDZM feature category), and (4) Large Distance High Grey Level Emphasis feature (from GLDZM feature 
category) with DSC% = 32% (p < 0.001), 49% (p < 0.001), 12% (p < 0.046), and 13% (p < 0.037), respectively. Fig-
ure 2G-L demonstrate the 2nd echo map of raw DCE-MRI, the related different significant radiomics maps, and 
conventional model choice map (estimated by the PK-NMS, Section “Nested model selection and observation 
equations for pharmacokinetic analysis”) for the same slice of rat brain at timepoint 100 (~ 2 min). As shown 
in this figure and Table 2, compared to the 2nd echo information, the following radiomics features significantly 
distinguished the three model choice regions after administration of CA concentration: (1) Dissimilarity feature 
(from GLCM feature category), (2) Autocorrelation feature (from GLCM feature category), (3) Large Distance 
High Grey Level Emphasis feature (from GLDZM feature category), and (4) Low Dependence High Grey Level 
Emphasis feature (from NGLDM feature category) with DSC% = 42% (p < 0.001), 23% (p < 0.001), 32% (p < 0.001), 
and 28% (p < 0.001), respectively.

Among 133 dynamic radiomics feature maps, only 13 dynamic radiomics feature maps met the normalized 
contrast enhancement ratio  criteria105 (NCER < 1.2, see Section “Feature engineering, kohonen self-organizing 
map, and clustering analysis”) and were included and used in the study.

Figure 3A and B demonstrate Silhouette clustering analysis of the K-SOM topologies for the 1st and 2nd 
echoes of DCE-MRI and their respective radiomics features (met the NCER criteria, NCER < 1.2) at different 
probability thresholds (100 thresholds: varied from 0.01 to 1 with probability interval of 0.01). Subfigure 3C 
demonstrates the percent difference between the average Silhouette coefficient of the 1st echo K-SOM’s topology 
and the related radiomics K-SOM topologies that were rejected by the Levene’s and Welch’s tests as the signifi-
cant features. Figure 3D demonstrates the percent difference between the average Silhouette coefficient of the 
2nd echo K-SOM’s topology and related radiomics K-SOMs’ topologies that were rejected by the Levene’s and 
Welch’s tests as the significant features. Table 3 demonstrates the overall variation of the SCs for each information 
modality, the mean and standard deviations of the SCs for all information modalities (the two raw DCE-MRI 
information, 1st and 2nd echoes, and their 13 respective radiomics features) were calculated and reported in this 
table. Figure 4A–F demonstrate the normalized K-SOM hit map (K-SOM unsupervised clustering of 143,057 
information profiles, Section “Feature engineering, kohonen self-organizing map, and clustering analysis”) for 
the 1st echo DCE-MR information and the fused probability maps (labeled from conventional PK analysis for the 
three nested models, Section “Nested model selection and observation equations for pharmacokinetic analysis”) 
of K-SOM for the 1st echo and corresponding significant radiomics feature maps. Figure 4G–L demonstrate the 
normalized K-SOM hit map (K-SOM unsupervised clustering of 143,057 information profiles, Section “Feature 
engineering, kohonen self-organizing map, and clustering analysis”) for the 2nd echo DCE-MR information and 
the fused probability maps (labeled from conventional PK analysis for the three nested models, Section “Nested 
model selection and observation equations for pharmacokinetic analysis”) of K-SOM for the 2nd echo and cor-
responding significant radiomics feature maps.

Figure 4A and G demonstrate the K-SOM’s normalized hit map for all the voxels of the 32 rat brains measured 
from the raw-DCE-MR information of the 1st and 2nd echoes, respectively. The K-SOM hit maps represent the 
distribution of the data structures and their similarities on the feature space. Each point on the map is associ-
ated with unique properties of a signal (time trace of information), and its value corresponds to the normalized 
number of the winning BMU (best matching unit) for that specific signal characteristics. On the feature space, 
the adjacent points represent similar characteristics while distant points show the highest dissimilarities.

Figure 4B–F and H–L illustrate the probabilities of different models for different information modalities 
calculated from their respective K-SOM hit maps and labeled according to the associated nested model selection 
information (source of truth). Figure 4B–F and H–L clearly demonstrate how different time traces of informa-
tion modalities (raw-DCE MRI and their four respective significant radiomics features) correspond to different 
pathophysiological states of tissue that are grouped together based on their structural similarities at different 
timepoints. The blue, green, and red zones on the fused K-SOM’s topology maps (Figure 4B–F,H–L) correspond 
to the models 1, 2, and 3, estimated from the NMS-PK analysis, respectively.

The blue, green, and red zones on the K-SOM topology maps (Figure 4B–F,H–L) correspond to the models 
1, 2, and 3, estimated from NMS-PK analysis, respectively.
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Figure 6A–D illustrate four model choice maps estimated by the K-SOM of the significant radiomics informa-
tion of the 1st echo. Each model map was estimated by its corresponding radiomics-based K-SOM NMS analysis 
at a probability threshold of 0.5. The time trace information (raw DCE-MRI and their respective four significant 
radiomics features) of each voxel was fed into its corresponding trained and model-labeled K-SOM and its BMU 
winning node was estimated and identified on the feature space. Then, the winning node was projected on the 
fused probability map of its respective information modality and the three chances/probabilities (corresponds 
to three NMS) for that voxel were calculated. Figure 5A–C demonstrate the baseline normalized time traces of 

Figure 2.  Subfigures (A–F) demonstrate the 1st echo image of the raw DCE-MRI, its four different significant 
radiomics maps, and the model choice map estimated by the PK-NMS analysis for a slice of rat brain. Subfigures 
(G–L) demonstrate the 2nd echo map of raw DCE-MRI, its four different significant radiomics maps, and 
conventional model choice map (estimated by the PK-NMS) for the same slice of rat brain at timepoint 100 
(~ 2 min).
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Table 2.  This table shows the radiomics feature category, feature name, DSC%, and p-value of the significant 
radiomics features extracted from the two raw DCE-MRI information (1st and 2nd echo images).

Significant radiomics features (1st echo)

DSC% p-value

Significant radiomics features (2nd echo)

DSC% p-valueFeature category: name Feature category: name

IBS: intensity variance 32 < 0.001 GLCM: autocorrelation 23 < 0.001

GLCM: dissimilarity 49 < 0.001 GLCM: dissimilarity 42 < 0.001

GLDZM: small distance high grey level emphasis 12 < 0.046 GLDZM: large distance-high grey level emphasis 32 < 0.001

GLDZM: large distance high grey level emphasis 13 < 0.037 NGLDM: low dependence-high grey level emphasis 28 < 0.001

Figure 3.  Subfigures (A) and (B) demonstrate Silhouette clustering analysis of the K-SOM topologies for the 
1st and 2nd echoes of DCE-MRI and their respective 13 different radiomics features at different probability 
thresholds. Subfigure 3C demonstrates the percent difference between the average Silhouette coefficient of the 
1st echo K-SOM’s topology and its four radiomics K-SOMs’ topologies that were rejected by the Levene’s and 
Welch’s hypotheses testing as the significant features. Subfigure 3D demonstrates the percent difference between 
the average Silhouette coefficient of the 2nd echo K-SOM’s topology and its four radiomics K-SOMs’ topologies 
that were rejected by the Levene’s and Welch’s hypotheses testing as the significant features.

Table 3.  This table shows the mean and standard deviation values of the Silhouette coefficients (SCs) for the 
two raw DCE-MR information and their 13 respective radiomics features

Feature category—feature name 1st Echo—SCs (mean ± std) 2nd Echo SCs (mean ± std)

Raw DCE MR information 0.392 ± 0.162 0.332 ± 0.131

IBS-mean intensity 0.336 ± 0.146 0.358 ± 0.183

IBS-intensity variance 0.522 ± 0.226 0.368 ± 0.187

IBS-intensity skewness 0.235 ± 0.215 0.275 ± 0.202

IBS-intensity kurtosis 0.067 ± 0.195 0.022 ± 0.123

GLCM-dissimilarity 0.583 ± 0.154 0.472 ± 0.177

GLCM-autocorrelation 0.342 ± 0.141 0.411 ± 0.202

GLDZM-small distance low grey level emphasis − 0.050 ± 0.037 − 0.000 ± 0.128

GLDZM-small distance high grey level emphasis 0.435 ± 0.201 0.377 ± 0.261

GLDZM-large distance high grey level emphasis 0.438 ± 0.201 0.439 ± 0.191

NGLDM-high grey level count emphasis 0.429 ± 0.175 0.313 ± 0.171

NGLDM-low dependence low grey level emphasis − 0.037 ± 0.184 0.131 ± 0.352

NGLDM-low dependence high grey level emphasis 0.341 ± 0.132 0.427 ± 0.209

NGLDM-high dependence low grey level emphasis 0.079 ± 0.087 0.158 ± 0.186
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different information modalities (1st echo and its four corresponding significant radiomics information) aver-
aged over three different model choice regions for all 32 animals. Figure 5D–F demonstrate the baseline normal-
ized time traces of different information modalities (2nd echo and its four corresponding significant radiomics 
information) averaged over three different model choice regions for all 32 animals. Figure 5G–L demonstrate 
the temporal changes of the 1st and 2nd echoes along with their respective significant radiomics features for the 
three models measured from an individual rat brain. Figure 6A–D illustrate four model choice maps estimated 
by the K-SOM of the significant radiomics information of the 1st echo. Each model map was estimated by its 
corresponding radiomics-based K-SOM NMS analysis at probability threshold of 0.5.

Table 4A and B demonstrate the average values of AUC, Balanced Accuracy, and F1 Score along with their 
respective confidence intervals estimated for the outer loop (unseen test cohorts) of the k-fold NCV (k = 10) 
for the two raw DCE-MR information and their 13 respective radiomics features. The bold features in this table 
refer to the discriminant radiomics features for the two echoes identified by the SCA.

Discussion
The outcome information was tagged on the feature space according to the NMS theory to reveal the level of 
agreement and association between the detected structures and the outcome information. The K-SOM technique 
is an unsupervised learning method which enables detection and preservation of the topological relationship of 
the training dataset based on the data similarity. This implies that the underlying properties of the feature space 
are uncovered to discover associations that are not easily identified from the raw signal.

We investigated the superiority of the raw DCE-MRI information compared to their respective radiomics 
information (total of 28 information modalities: the two echoes and their respective radiomics features, 13 fea-
ture per echo) to explain different pharmacokinetic-based pathophysiological states of tissues according to the 

Figure 4.  Subfigures (A–F) demonstrate the normalized K-SOM hit map (K-SOM unsupervised clustering 
of 143,057 information profiles, Section “Feature engineering, kohonen self-organizing map, and clustering 
analysis”) for the 1st echo DCE-MR information and the fused probability maps (labeled from conventional 
PK analysis for the three nested models, Section “Nested model selection and observation equations for 
pharmacokinetic analysis”) of K-SOM for the 1st echo and its four corresponding significant radiomics feature 
maps. Subfigures (G–L) demonstrate the normalized K-SOM hit map (K-SOM unsupervised clustering of 
143,057 information profiles, Section “Feature engineering, kohonen self-organizing map, and clustering 
analysis”) for the 2nd echo DCE-MR information and the fused probability maps (labeled from conventional 
PK analysis for the three nested models, Section “Nested model selection and observation equations for 
pharmacokinetic analysis”) of K-SOM for the 2nd echo and its four corresponding significant radiomics feature 
maps. The blue, green, and red zones on the K-SOM topology maps (B–F and H–L) correspond to the models 
1, 2, and 3 estimated from NMS-PK analysis, respectively. All the maps are up sampled by four for a better 
visualization.
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Figure 5.  Subfigures (A–C) demonstrate the baseline normalized time traces of different information modalities (1st echo 
and its four corresponding significant radiomics information) averaged over three different model choice regions for all 32 
animals. Subfigures 5D-F demonstrate the baseline normalized time traces of different information modalities (2nd echo 
and its four corresponding significant radiomics information) averaged over three different model choice regions for all 32 
animals. Subfigures 5G-I demonstrate the baseline normalized time traces of different information modalities (1st echo and its 
four corresponding significant radiomics information) averaged over three different model choice regions for an individual rat 
brain. Subfigures (J–L) demonstrate the baseline normalized time traces of different information modalities (2nd echo and its 
four corresponding significant radiomics information) averaged over three different model choice regions for an individual rat 
brain.
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concept of nested model selection theory. In this study, no predictive model was developed, while for each echo, 
we compared the pathophysiological-based clustering power of raw DCE-MRI information against 13 respective 
radiomics features using an unsupervised (no forced/supervised learning) similarity analysis. The goal was to 
evaluate, reveal, and compare the pathophysiological information content (such as distribution of the informa-
tion and their uncertainty levels or penumbra effects) of different information modalities on the feature space.

We investigated the information content of different DCE-based radiomics features extracted from 32 
treatment-naïve rat brains using convolutional radiomics information analyzed by an unsupervised K-SOM 
 algorithm106,107,121,122. The aim of the study was to reveal and explore the physiological associations of these 
features with different characteristics of underlying pathologies (tumor and normal tissue) compared to their 
respective raw DCE-MRI information.

The time traces of radiomics information were projected on a two-dimensional topology space to reveal 
any potential non-linearities, similarities, and dissimilarities of the spatiotemporal structures of the data in the 
form of clusters in the K-SOM feature space. The notable characteristic of K-SOM technique is that the detailed 
structures of input vectors that are close, and similar in high dimensional space are mapped to nearby nodes in 
the topology space of the network. It is in essence, an unsupervised method for data dimensionality reduction 
and grouping the information, as it maps high-dimension inputs to a low dimensional discretized representation 
while conserving the underlying structures of its input  space106,107,121,122.

The K-SOM analysis technique used in this study, not only preserved and mapped the characteristics of each 
information modality (time traces of radiomics features and raw DCE-MRI information) at different time points 
to a feature space, but also correspondingly compared the information of different time points of these modali-
ties during the mapping process using a competitive learning approach. In this study, the recruitment of such an 
unsupervised mapping revealed different degrees of  associations106,107 among dynamic information modalities 
extracted from tumor and its soft surrounding normal tissues with their respective pathophysiological states. 
Figure 4B–F and H–L clearly demonstrate how different time traces of information modalities (two raw-DCE 
MRI and their four respective significant radiomics features) corresponding to different pathophysiological states 
are grouped together based on their structural similarities at different timepoints. This generated distinct clusters 
with less scattered fragments of information without supervision on the K-SOM’s feature space. The blue, green, 
and red zones on the fused K-SOM’s topology maps (Figure 4B–F and H–L) correspond to the models 1, 2, and 
3, estimated from NMS-PK analysis, respectively.

Figure 6.  Subfigures (A–D) illustrate four examples for the model choice maps estimated from the significant 
radiomics information of the 1st echo. Each map was estimated by its corresponding radiomics-based K-SOM 
NMS analysis at probability threshold of 0.50.
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Feature 
category Feature name

Feature 
aggregation 
technique AUC 

AUC lower 
confidence 
bound

AUC upper 
confidence 
bound

Balanced 
accuracy

Balanced 
accuracy 
lower CB

Balanced 
accuracy 
upper CB F1 score

F1-score 
lower CB

F1-score 
upper CB

(A)

 Mean inten-
sity IBS DHQ4 0.7488 0.7300 0.7675 0.6301 0.6172 0.6430 0.6717 0.6566 0.6867

 Intensity 
variance IBS DHQ4 0.7820 0.7662 0.7979 0.6921 0.6783 0.7059 0.7325 0.7162 0.7489

 Intensity 
skewness IBS DHQ4 0.6832 0.6657 0.7008 0.5975 0.5806 0.6145 0.6325 0.6112 0.6538

 Intensity 
kurtosis IBS DHQ4 0.6671 0.6411 0.6930 0.5877 0.5664 0.6089 0.6195 0.5924 0.6466

 Dissimilarity GLCM BTW3 0.8242 0.8104 0.8380 0.7186 0.7078 0.7294 0.7583 0.7456 0.7711

 Autocorrela-
tion GLCM BTW3 0.7631 0.7443 0.7820 0.6373 0.6252 0.6494 0.6801 0.6661 0.6941

 Small 
distance low 
grey level 
emphasis

GLDZM 8QNN 0.6304 0.5824 0.6784 0.5726 0.5425 0.6026 0.5968 0.5556 0.6381

 Small 
distance high 
grey level 
emphasis

GLDZM 8QNN 0.7737 0.7561 0.7913 0.6572 0.6453 0.6692 0.6980 0.6838 0.7123

 Large 
distance high 
grey level 
emphasis

GLDZM 8QNN 0.7813 0.7633 0.7993 0.6615 0.6497 0.6733 0.7037 0.6899 0.7176

 High grey 
level count 
emphasis

NGLDM 8QNN 0.7602 0.7451 0.7753 0.6375 0.6272 0.6479 0.6804 0.6683 0.6925

 Low depend-
ence low 
grey level 
emphasis

NGLDM 8QNN 0.5682 0.4885 0.6479 0.5321 0.5029 0.5614 0.5353 0.4903 0.5803

 Low depend-
ence high 
grey level 
emphasis

NGLDM 8QNN 0.7434 0.7292 0.7577 0.6281 0.6157 0.6405 0.6695 0.6550 0.6841

 High depend-
ence low 
grey level 
emphasis

NGLDM 8QNN 0.7424 0.6995 0.7854 0.6345 0.6110 0.6580 0.6757 0.6465 0.7048

 Raw DCE 
MR informa-
tion

First echo NA 0.7619 0.7436 0.7803 0.6412 0.6304 0.6520 0.6844 0.6717 0.6970

(B)

 Mean inten-
sity IBS DHQ4 0.7388 0.7233 0.7543 0.6230 0.6124 0.6336 0.6634 0.6508 0.6760

 Intensity 
variance IBS DHQ4 0.7006 0.6795 0.7217 0.6138 0.5984 0.6292 0.6526 0.6337 0.6714

 Intensity 
skewness IBS DHQ4 0.6713 0.6551 0.6874 0.5861 0.5695 0.6027 0.6181 0.5968 0.6394

 Intensity 
kurtosis IBS DHQ4 0.6648 0.6522 0.6773 0.5764 0.5581 0.5946 0.6054 0.5816 0.6292

 Dissimilarity GLCM BTW3 0.8129 0.7930 0.8328 0.7204 0.7078 0.7331 0.7606 0.7454 0.7759

 Autocorrela-
tion GLCM BTW3 0.8008 0.7834 0.8182 0.6834 0.6710 0.6957 0.7242 0.7096 0.7389

 Small 
distance low 
grey level 
emphasis

GLDZM 8QNN 0.5445 0.4907 0.5982 0.5496 0.5248 0.5745 0.5678 0.5332 0.6024

 Small 
distance high 
grey level 
emphasis

GLDZM 8QNN 0.7312 0.7114 0.7510 0.6149 0.6027 0.6272 0.6536 0.6387 0.6685

 Large 
distance high 
grey level 
emphasis

GLDZM 8QNN 0.8156 0.7995 0.8316 0.6987 0.6881 0.7094 0.7396 0.7269 0.7523

 High grey 
level count 
emphasis

NGLDM 8QNN 0.7420 0.7228 0.7611 0.6255 0.6112 0.6399 0.6661 0.6490 0.6831

Continued
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We recruited the NMS analysis along with a series of statistical  analyses113–115 and unsupervised  SCA111,112 
which were repeated at different levels of specificities or probability thresholds to measure the stability of the 
distinction power (among different nested models) of each information modality on the K-SOM’s feature space. 
The NMS and PK analysis results of the standard Patlak analysis were used as the source of truth for labeling the 
K-SOM topology maps and evaluation of the SCA.

Figure 3A and B, clearly demonstrate the sensitivity and stability of the distinction power of different informa-
tion modalities (1st and 2nd echoes of raw DCE-MRI information and their 14 respective radiomics features). 
This allowed us to evaluate and measure the cohesiveness, integrity, and separation of the three clusters (labeled 
from conventional PK analysis for the three nested models, Section “Nested model selection and observation 
equations for pharmacokinetic analysis”) at different specificities or probability thresholds (from 0.01 to 1.00, 
corresponding to 100 probability intervals) based on the NMS concept.

The statistical analysis results showed that there are eight significant radiomics features (four features for 
each echo) that outperform the raw-DCE-MR information in discrimination of the three nested model regions 
(labeled from conventional PK analysis for the three nested models, Section “Nested model selection and observa-
tion equations for pharmacokinetic analysis”). These significant radiomics features provide a higher certainty in 
discrimination of the three physiologically nested model regions within tumors and their soft surround normal 
tissues at different specificity levels (100 different probability thresholds based on NMS analysis). This resulted in 
a more precise physiological characterization of normal tissue and tumor microenvironment and heterogeneity.

The time traces of significant radiomics information shown in Figure 5A–F strongly support the physi-
ological associations of the information contents of the different information modalities (two raw-DCE MR 
information and their respective radiomics features) for characterization of the pathophysiological state of the 
regions associated with the three different  models64,77,92,123,124, after CA administration. In these subfigures, the 
differences among the rise time and slope of the time traces of the radiomics information compared to their 
respective raw-DCE-MR information (1st or 2nd echo), for different model choice regions, strongly confirms the 
value and distinction power of the identified radiomics features for characterization of tumor heterogeneity and 
microvascular characteristics. Interestingly, the time traces of the Intensity-Variance and Dissimilarity features 
demonstrate clear evidence of the CA washout trend from extravascular extracellular space after ~ 180 s of the 
experiment. This strongly supports the expected PK trend associated with the Model 3 regions formulated in 
the washout kernel of observation Eq. (12). Similarly, for the 2nd echo, the time traces of Low Dependence High 
Grey Level Emphasis and Dissimilarity features show similar trends that support the expected PK trend for the 
CA washout for Model 3 regions.

Figure 6A–D illustrate four model choice maps estimated from the significant radiomics information of the 
1st echo. Each map was estimated by its corresponding radiomics-based K-SOM NMS analysis at probability 
threshold of 0.5. As shown in these subfigures (Figure 6A–D versus 2L or 2F), the radiomics-based K-SOMs 
produced stable maps of nested model regions with Model-1 regions less impacted by the dispersion effects due to 
arterial input function and magnetic field gradient effect. Thus, less mis-classification for Model-1 and 2 regions.

Since the physiological properties of brain tissue are mostly constant across species and  pathologies125–127, 
the associations of radiomics information with brain tissue physiology revealed in this study, can be expected 
to reliably scale and translate to human Glioblastoma (GBM). Physiological and mechanical properties of 
tumor have been shown to characterize heterogeneity in gene expression, and phenotype for Glioblastoma 
(GBM)52,54,63,70,128–133. Many  studies30–36,39–41,134–139 have developed different DCE-based radiomics model for char-
acterization of tumor’s phenotype, vascular properties, and regional heterogeneity in the field of cancer research. 
However, none of these studies have explored the power of PK-based spatiotemporal radiomics information 
for characterization of tumor’s pathophysiological condition according to a DCE physiological-based model as 
well as its comparison with raw DCE MR information that includes the full spectrum of information content. 

Table 4.  Table A illustrates the mean values of AUC, Balanced Accuracy, and F1 Score along with their 
confidence intervals estimated for the outer loop (unseen test cohorts) of the k-fold NCV (k = 10) for the 
first echo and its 13 radiomics features. Table 4B illustrates the same information for the second echo and its 
respective 13 radiomics features. The bolded features in both tables (A–B) refer to the discriminant features 
identified by the Silhouette clustering analysis.

Feature 
category Feature name

Feature 
aggregation 
technique AUC 

AUC lower 
confidence 
bound

AUC upper 
confidence 
bound

Balanced 
accuracy

Balanced 
accuracy 
lower CB

Balanced 
accuracy 
upper CB F1 score

F1-score 
lower CB

F1-score 
upper CB

 Low depend-
ence low 
grey level 
emphasis

NGLDM 8QNN 0.5875 0.5388 0.6362 0.5356 0.4872 0.5840 0.5392 0.4678 0.6105

 Low depend-
ence high 
grey level 
emphasis

NGLDM 8QNN 0.8078 0.7944 0.8213 0.6869 0.6766 0.6973 0.7276 0.7151 0.7401

 High depend-
ence low 
grey level 
emphasis

NGLDM 8QNN 0.6546 0.5980 0.7112 0.5998 0.5710 0.6285 0.6308 0.5933 0.6683

 Raw DCE 
MR informa-
tion

Second echo NA 0.7514 0.7365 0.7663 0.6324 0.6232 0.6416 0.6740 0.6632 0.6849
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The results of this pilot study can help generate novel MR-based radiomics estimators to interpret and translate 
estimation of the physiological properties of solid tumors and soft surrounding normal tissues in embedded 
tumors—initially focused on GBM, but extendable to other tumors.

Recent  studies40,139 have recently shown the association between the subregional PK-based radiomics infor-
mation of breast tumor and its histological characteristics. These studies also shown that compared to the entire 
tumor region, subregional PK-based radiomics information can enhance the predictive performance of the 
radiomic models. Many  studies30–41,134–137,139,140 have developed different DCE-based radiomics model for char-
acterization of tumor’s phenotype, vascular properties, and regional heterogeneity in the field of cancer research. 
These studies mainly focused on the radiomics analysis of the parametric maps (such as  Ktrans,  vp, etc.) and 
their associations with different outcome of interests. For instance, Fusco et al.32 have discriminated between 
benign and malignant breast lesions using several classifiers and radiomics features extracted from DCE-MRI 
images. In a similar study, Zhao et al.141 constructed different radiomics models as well as an ensemble model 
from DCE-MRI and Mammography images to improve diagnosis of breast cancer. In another  study142, Peng et al. 
explored the association of pretreatment DCE-MRI radiomics signatures with pathologic complete response 
(pCR) to neoadjuvant therapy (NAT) in breast cancer. However, none of these studies have explored PK-based 
spatiotemporal radiomics information for characterization of tumor pathophysiology using a DCE-based model 
and comparison against raw DCE-MR information. This is the first such study.

This highlights the importance of the inclusion of local information in characterization of tumor heterogeneity 
and strongly supports the dynamic convolutional radiomics analysis used in this study.

In general, the value of DCE-MRI experiment in tissue characterization mainly relies on revealing the con-
trast enhanced (CE)-based information content of underlying pathology. The normalized CE ratio threshold 
(CER > 1.2)105 used in this study, excluded a series of radiomics feature maps with non-significant contrast-based 
information content which may still have adequate signal-to-noise ratio (SNR) for radiomics analysis. Such a 
feature exclusion facilitated the feature engineering part of the study and drastically reduced the computation 
time and complexity of the statistical analysis. To this end, decreasing the CER  threshold105 would increase 
the number of radiomics feature maps with adequate SNR for feature engineering that might not have enough 
DCE-based or CE-based information. Therefore, finding an optimal CER value for exclusion or inclusion of 
the radiomics features that are less associated with the DCE-MR information warrants further investigation.

Dual Gradient Echo (DGE) pulse sequence used in this study, allows computation of T1 and T2* as approxi-
mately pure components. This is essential for estimation of CA concentration (ΔR1 and ΔR2*).

The ability to estimate pure components is an advantage to the Spoiled Gradient Echo (SPGRE)-based DCE-T1 
imaging. Specifically, where nonlinearities in the MR measurement of ΔR1 due to limited access of water in tissue 
compartments distal to the CA and the T2* contrast competing with T1 contrast. These effects can substantially 
bias estimates of tissue CA concentration. Another advantage of the DGE sequence is the relatively short time 
interval between image acquisitions (~ 1.55 s in this study).

The  T2* relaxation effect is associated with the decay or dephasing of the transverse magnetization caused 
by a static and local magnetic field inhomogeneities. A longer echo time  (TE) would allow more dephasing of 
the signal. Thus,  T2* dephasing directly affects the uncertainty level and heterogeneity content of the raw DCE-
MRI signal due to the local and static magnetic field inhomogeneity. The echo time  (TE = 4 ms) for the 2nd echo 
images was twice as long as the 1st echo images. Thus, compared to the 1st echo images, the 2nd echo images 
exhibit more signal heterogeneity with less signal to noise ratio (SNR). As shown in Table 2, the Dissimilarity 
feature (DSC% = 42%, p < 0.001), extracted from the 2nd echo showed less association (%7 lower DSC%) with the 
model choice information compared to the same feature (Dissimilarly, DSC% = 49%, p < 0.001) extracted from the 
1st echo. This confirms our expectation from the higher dephasing effect associated with the 2nd echo images.

The DSC% of the Large Distance High Grey Level Emphasis feature (from GLDZM feature category) extracted 
from 2nd echo being almost three times higher than the same feature extracted from 1st echo, implies that com-
pared to the 1st echo, the 2nd echo might contain higher or richer information for tissue characterization. This 
might be due to fact that the 2nd echo may contain some information, relative to the 1st echo, about the size and 
shape of the spaces (such as cell tortuosity information) that CA is occupying. Thus, despite the 2nd echo having 
less Signal-to-Noise ratio compared to the 1st echo, its information content seems much higher.

In this study, the convolutional radiomics analysis was not performed with different convolutional window 
sizes and we only performed the analysis using a 5 × 5 convolutional window size. We didn’t increase the size 
of the convolutional/sliding window to avoid high computation time and to prevent high spatial aggregation 
of the information inside the sliding window which ‘smears’ the data around the central voxels and would lead 
to loss of spatial details or high-frequency information. Of note, this is a spatiotemporal radiomics analysis, 
and the values of the elements in the textural matrices (feature space) highly depend on the saturation level of 
the tumor (contrast-enhancement ratio, as discussed in Section “Feature engineering, kohonen self-organizing 
map, and clustering analysis”) during the DCE-MRI experiment. As for the typical values of the elements of the 
textural matrices, in general, most of the elements of the symmetrical GLCM matrices are ranged between 0 to 
4 or maximums of 6 to 8.

The range of the elements falls in the order of the contrast enhancement ratio (~ 1.2 or 20% that corresponds 
to about 5 times of enhancement) and would allow the effective capture of the local spatial variations of the 
intensity. It is also wide enough to capture the information relevant to the “intensity-change” that is caused by the 
extravasation of the contrast agent concentration (CA) during the DCE-MRI experiment with the same order as 
mentioned in Section “Feature engineering, kohonen self-organizing map, and clustering analysis”. As the inten-
sity of the sliding window increases temporally, and it becomes saturated (CA concentration increases inside the 
tumor zone), the non-zero elements of the feature space (textural matrix) would not only show changes in their 
cluster shape around its diagonal elements, but also are shifted toward the lower section of the matrix. In fact, 
the more saturation effect inside the sliding window will result in less variations in the information occurrence 
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inside of its textural matrix. Furthermore, choosing a relatively large quantization level (gray-level, 128) would 
enable a wide range of intensity change (due to the tumor leakage) throughout the DCE-MRI experiment and 
help with the revelation of the DCE informative features. As mentioned in Section “Feature engineering, kohonen 
self-organizing map, and clustering analysis”, the contrast enhancement ratio (CER) plays a central role in the 
DCE-MRI experiment, and we used the normalized CER averaged over 32 studies to exclude the radiomics infor-
mation modalities with low normalized contrast enhancement ratio (NCER < 1.2) that were not DCE informa-
tive. Recruitment of different convolutional window sizes can capture and extract different levels of information 
details from raw DCE-MRI information. This may produce time trace of radiomics information with weaker or 
stronger associations to the local variations of the tissue regarding its contrast enhancement, spatial heterogeneity, 
and the physiologically inspired effects, such as washout of CA from extra-cellular extra-vascular volume, etc. 
We performed all the convolutional radiomics analyses using a symmetrical convolutional window  (wx ×  wy) 
with size of 5 × 5. As the size of the convolutional window increases, the less local information is captured and 
incorporated into the radiomics feature information and the aggregation of the information around each central 
voxel would increase. This would result in the loss of information heterogeneity that is captured and extracted 
by the radiomics analysis. The effect and trade-off for choosing different sizes of the convolutional window and 
the optimal Chebyshev distance which is relevant to the sampling frequency of the information on the analysis 
results requires further investigation.

As to translation to the clinic, the goal of this study was not to develop any translatable model. The scope of 
this study was to reveal the power and ranking of different DCE-MRI based components (1st and 2nd echoes 
which are associated with  T1 and  T2* based information, respectively) to explain the pathophysiological and 
microvascular properties of normal and cancerous tissues.

The MRI features of the U-251N animal model tumors correlate with human GBM, including a necrotic 
center, poorly demarcated, infiltrative tumor borders, and an enhanced rim on T2-weighted imaging (one of 
the main components of the Dual Gradient Echo used in this study); on post-contrast T1-weighted images an 
intense rim is observed similar to human  GBM126. It has already been shown that in murine models, DCE-MRI 
measures of vascular  permeability59,60,63,64,70,77,82,94,96–99,123,129,143–148 agree with those of human  studies77.

Our group is one of the few studying animal tumors using the dual gradient-echo (DGE) pulse sequence. 
In the construction of vascular permeability and parametric maps, such a sequence allows the separation of  T1 
and  T2* effects. In an information-centered approach, the data contains additional information concerning the 
extravascular regime of the tumor which can be explained and modeled by these two components. Thus, given the 
fact that cerebral physiology and mechanical properties are relatively constant across  species125–127, the analysis 
results of this study can shed light on different DCE-MR based components and their values in characterization 
of microenvironmental information of tumors. Such information has an excellent potential for positively inform-
ing the assessment and treatment of deadly tumors in humans and should be considered as vital information to 
the clinical research community for understanding the underlying physiology of solid tumors. Thus, this work, 
if repeated and fine-tuned on the clinical pules sequence (such as spoiled gradient-recalled echo, SPGRE) with 
different time resolution, is very likely to be translatable to clinical studies.

In animal models, DCE-MRI, Pharmacokinetic analysis shows promise as a stable descriptor of tumor 
 physiology59,70, and of physiological reaction to  treatments61,71–76. It also shows promise for describing stresses, 
flows, and fluxes, but it is newer and needs validation. In the clinical setting, DCE-MRI has also been established 
as a useful, noninvasive, and non-ionizing method for quantitative evaluation and characterization of tumor 
microvasculature and permeability  parameters59–69. This pilot study supports the promise and value of the radi-
omics information as a descriptor of tumor physiology with a higher certainty in discriminating the three physi-
ologically nested-model regions in and around tumors. This would result in a more precise physiological-based 
characterization of tumor heterogeneity and normal tissue. In recent years, many studies have investigated the 
development of various deep learning and Convolutional Neural Networks (CNNs) to generate more accurate 
and stable estimates of PK vascular parameters by extracting time-dependent features from DCE-MRI62,149–154. 
Compared to the recent  studies62,149–154, one of the novel components of this study is the incorporation of the 
nested model selection concept into the radiomics analysis. The NMS is considered as the first key step in pre-
dicting the PK  parameters64,77 and in general, for DCE-MRI data analysis, one of the main challenges is choosing 
the best PK model among competing models to describe the behavior of the time trace of CA concentration in 
DCE MR experiments.

The goal of this study was not to develop any predictive models while the focus was to investigate the value 
of the radiomics information for association of the image information to the pathophysiological information 
of underlying tissue.

This study confirmed the superiority of the radiomics-based K-SOMs compared to conventional PK analysis 
of raw DCE-MRI information in connecting different pathophysiological states (model regions) with imaging 
information. Given the results of this study, our group is currently working on the development of a supervised 
predictive model that incorporates unsupervised radiomics-based K-SOM (constructed from different radiomics 
features at different NMS probability thresholds) for a more accurate prediction of the NM regions in PK analysis.

We used a competitive learning  algorithm108–110 along with BMU strategy to identify the winner nodes for 
a 10X10 hexagonal  topology106–110,121. However, recruitment of different topology sizes can affect the quality 
of the K-SOM algorithm in detecting the association and distinction of the NM clusters on the feature space.

As for the SC analysis, we did not make any assumption regarding the distributions of the three model-based 
clusters and their changes at different probability thresholds on the feature space. The K-SOM hit map and its 
respective clustering analysis heavily relies on the cumulation of number of hits and grouping of the data on 
the feature space based on their similarities. To reveal potential linear/non-linear trends and structures of all 
the clusters’ distributions and their changes at different probabilities corresponds to different sensitivities/spe-
cificities, an SC analysis (see Table 3) with variable thresholds was performed. This allows the discovery of any 
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unexplored insights of the cluster information and their distinction power (the agreement between the revealed 
structures and the labels from the NMS) on the feature space. Thus, like the ROC analysis, the SC analysis with 
variable threshold allowed us to perform an empirical sensitivity analysis to calculate the distinction power of 
the three major clusters formed at different probability levels calculated from the K-SOM hit maps.

The results of this study can be used for further modeling (see Fig. 5) to improve the PK analysis of DCE-
MRI data of rat brain. As a continuation of this study, our group is currently working on the predictive analyt-
ics and feature imitating network (FIN)  technique155 to refine the features at the feature engineering stage and 
to construct more robust adaptive models to refine the estimation of the PK parameters, as well as predicting 
microvasculature properties of rat brain tissues. The goal is to combine the transfer learning technique with the 
FIN to generate imitated feature maps from the significant features revealed in this study to improve the predic-
tive power of the adaptive models. As future work, we believe that if the K-SOM is combined with the Transfer 
Learning with Feature Extraction Modules Network (TrFEMNet)156, Feature representations from General Fea-
ture Extraction Module (GFEM)156, and Specific Feature Extraction Module (SFEM)156, it would generate more 
stable and in-depth results for further modeling. The major role for the transfer learning will come into play when 
the significant radiomics features/biomarkers discovered by this study (in form of K-SOM topology or feature 
space) are used as a learned representation for physiological knowledge transfer into the clinical setting that uses 
the same imaging concept with a slightly different DCE-MRI pulse sequence (SPGRE). This will preserve the 
properties or the potential pathophysiological structures of the DCE data that are similar across rat and human 
brains for more robust modeling. Significant radiomic features will be identified that will be independent from 
both pharmacokinetic and mechanical parameterizations, but correlated with the local tissue properties (e.g. cell 
density, and extracellular matrix) identified by histopathology or nested model selection theory.

The k-fold NCV analysis results shown in Table 4 are strongly in agreement with the results obtained by 
the Silhouette clustering analysis (SCA). As shown in this table, the discriminant features (bolded features in 
Table 4A and B as follows: Dissimilarity, Intensity Variance, Large Distance High Grey Level Emphasis, and 
Small Distance High Grey Level Emphasis features for the first echo, and Dissimilarity, Large Distance High 
Grey Level Emphasis, Low Dependence High Grey Level Emphasis, and Autocorrelation features for the second 
echo) identified by the SCA, show higher performances (see their AUCs, Balanced Accuracies, and F1 Scores 
along with their confidence intervals) for classification of the three nested models compared to other radiomics 
features and their respective raw-DCE-MRI information (1st and 2nd echoes).

Of note, the k-fold NCV analysis performed in this study, reveals the information content of different infor-
mation modalities and their stabilities to describe the three pathophysiological states of the tissue. As shown in 
Table 4, the average values of the evaluation metrices for all the information modalities reported for the outer 
loops of the k-fold NCV (see Table 4A,B) are less than 0.80. This is due to the fact that the unsupervised data 
analysis recruited in this study, only reveals the association of different information modalities with the three 
nested models. Thus, the K-SOMs and their corresponding feature spaces developed by the training cohorts (in 
the inner loop) can reveal signal similarities and dissimilarities which are highly susceptible to different effects 
(such as noise, arterial input function dispersion or  delay157,158 in normal tissue, contrast agent arrival time 
differences among different temporal signals of different information modalities, etc.). These systematic and 
random effects can also result in uncertainties in the classification models (source of truth). In contrast to the 
unsupervised data analysis, in the supervised model development, a set of optimal classification thresholds can 
be chosen according to the desired level of the misclassification errors and the error tolerance among different 
classes/models. Thus, for supervised models it is expected to see less overlap among different classes/models 
which leads to higher classification performance. The goal of this study was to connect and compare the raw-
DCE-MRI information and their respective radiomics features extracted from tumor and its surrounding normal 
tissues with the conventional NMS analysis results. Of note, this allows the incorporation of many effects, i.e., 
systematic, and random-like errors, both in the target and input signals of the K-SOMs networks. Regardless 
of the type of the adaptive model (supervised/unsupervised) used for this study, these effects would not usually 
be included in model simulations, are not easily evaluated in those processes, and thus might introduce bias in 
evaluating the performance of an adaptive model when applied to practical situations.

Indeed, K-SOM algorithm is considered as one of the first self-organizing  algorithms121 that groups multi-
dimensional data in the form of clusters on the feature space with no supervision for the purpose of visualiza-
tion, clustering analysis, and dimensionality  reduction106–110,121,159. There have been several  improvements121,159 
made to the original algorithm proposed by Kohonen, such as the Batch-SOM121, Dot-Product-SOM121, a SOM 
which identifies a linear mixture of model vectors instead of winner  nodes122, and a O(log2M)-SOM160, that 
works based on a stratification technique which inherently deals with information propagation to neighbor-
hood nodes on the feature space. These approaches mainly improve the optimization and feature information 
representation on the feature space. There are other algorithms that can also help improve the original K-SOM’s 
performance, convergence, stability, and its adaptability on different problems. These include the Growing Grid 
 SOM161, Growing Neural  Gas162 algorithms, and Hierarchical-SOM163, which incorporate an additional layer 
of nodes to automatically determine of the optimal topology size of the K-SOM based on the properties of the 
original algorithm. While these altered algorithms demonstrate some clear advantages over the original K-SOM 
such as improved data representation, memory and speed optimizations, etc., they might introduce some bias to 
the generated clusters as well as the quality of the feature visualization on the feature space. Further investigation 
of the effects of different K-SOM architecture sizes and algorithms and their impact on the K-SOM efficiency on 
the radiomics data clustering analysis is warranted.
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Conclusions
This study incorporates a spatiotemporal analysis of the radiomics information of cerebral tumor and sur-
rounding normal tissue using DCE-MRI studies. The methods have enabled evaluation of the time-varying 
 information164, content of the raw data and subsequent associations with physiological parameters on a voxel-by-
voxel basis. K-SOM Radiomics-based models constructed in this study can be used to identify missing informa-
tion not estimated by conventional DCE-MRI PK analysis. This study is the first to discover the potential value of 
radiomics information to explain physiological parameters of embedded and solid tumors in an animal, brain 
tumor model. We have used standard model selection techniques and IBSI-approved radiomics analyses to 
circumvent the reproducibility and biasing effects of compartmental modeling in the pharmacokinetic analysis. 
This study provides detailed information to describe the physiological properties of solid tumors and surrounding 
normal tissues. If it is fine-tuned and translated for human use, such tools can significantly improve the clinical 
diagnostic and prognostic decisions made for patients with high grade gliomas. This research has potential for 
positively informing the assessment and treatment of deadly tumors in humans.

This study is the first to develop radiomics-based predictors of physiological parameters of GBM tumors in 
an animal model that recruits standard model selection  techniques64,77 and IBSI approved radiomics analysis 
to circumvent the reproducibility and biasing effects of radiomics analysis and compartmental modeling in PK 
analysis. This study supports the promise and value of the radiomics information as a descriptor of tumor physi-
ology with a higher certainty in discrimination of the three physiologically nested-model regions in and around 
tumors, resulting in a more precise physiological-based characterization of tumor heterogeneity and normal 
tissue. This is an important step toward spatiotemporal radiomics-based characterization of brain regions which 
is fundamental in staging of aggressive tumors, evaluation of their response to different treatments, design and 
optimization of DCE-MR imaging, and PK modeling to improve tumor characterization.

Data availability
All imaging data used in this investigation along with programming codes and results can be shared upon request 
to the corresponding and senior authors, Dr. Hassan Bagher-Ebadian and Dr. Indrin J. Chetty, respectively. Of 
note, the animal data used in this study, is collected as a part of the NIH grant (R01, NCI/NIH R01-CA218596) 
and can be shared upon reasonable request sent to the principal investigators of the grant, Drs. James R. Ewing 
and Stephen Brown (co-authors). Also, a MATLAB version of the ROdiomiX software which is a validated soft-
ware for radiomics analysis of medical images in radiation oncology (developed and validated according to the 
IBSI guidelines by Drs. Bagher-Ebadian and Chetty in the year  2021165) has already been publicly shared at the 
GitHub website: (https:// github. com/ Ebadi an- HFHS/ ROdio miX).
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