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Development and validation 
of a 21‑gene prognostic signature 
in neuroblastoma
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Survival outcomes for patients with neuroblastoma vary markedly and reliable prognostic markers 
and risk stratification tools are lacking. We sought to identify and validate a transcriptomic signature 
capable of predicting risk of mortality in patients with neuroblastoma. The TARGET NBL dataset 
(n = 243) was used to develop the model and two independent cohorts, E‑MTAB‑179 (n = 478) and 
GSE85047 (n = 240) were used as validation sets. EFS was the primary outcome and OS was the 
secondary outcome of interest for all analysis. We identified a 21‑gene signature capable of stratifying 
neuroblastoma patients into high and low risk groups in the E‑MTAB‑179 (HR 5.87 [3.83–9.01], 
p < 0.0001, 5 year AUC 0.827) and GSE85047 (HR 3.74 [2.36–5.92], p < 0.0001, 5 year AUC 0.815) 
validation cohorts. Moreover, the signature remained independent of known clinicopathological 
variables, and remained prognostic within clinically important subgroups. Further, the signature was 
effectively incorporated into a risk model with clinicopathological variables to improve prognostic 
performance across validation cohorts (Pooled Validation HR 6.93 [4.89–9.83], p < 0.0001, 5 year AUC 
0.839). Similar prognostic utility was also demonstrated with OS. The identified signature is a robust 
independent predictor of EFS and OS outcomes in neuroblastoma patients and can be combined with 
clinically utilized clinicopathological variables to improve prognostic performance.

Neuroblastoma is the most common extracranial solid tumour in children accounting for approximately 7–10% of 
all childhood  cancers1–3. Neuroblastoma is characterized by substantial heterogeneity in tumour  characteristics4–6 
and patient outcomes, ranging from spontaneous regression in some  patients7 to metastatic treatment-resistant 
disease in  others8. Given this heterogeneity, multiple staging systems have been developed to stratify risk for 
patients diagnosed with neuroblastoma. The International Neuroblastoma Staging System (INSS) is a postsurgical 
staging system, developed in 1986, that utilizes the disease location, lymph node status, and the extent of surgical 
resection for patient  classification9,10. The INSS has been largely supplanted by the International Neuroblastoma 
Risk Group Staging System (INRGSS), which was formed in 2005 to create a staging classification independent 
of the findings from surgical resection. This tool utilizes the presence of image defined risk factors (IDRF) to 
categorize locoregional tumors as L1 (IDRF absent) or L2 (IDRF present)11,12. Both of these tools have consist-
ently demonstrated a strong association with survival  outcomes11–13.

In addition to these well-established staging systems numerous studies have identified other clinical, patho-
logic, and genomic characteristics associated with survival in neuroblastoma. For example, patient age at diagno-
sis represents an important prognostic variable, with older patients (often defined as those greater than 18 months 
of age) consistently being shown to experience worse  outcomes8,14. MYCN copy number amplification has been 
shown to be independently associated with poor clinical outcomes and is found in approximately 25% of neuro-
blastoma cases and 40% of high-risk  cases15. Other segmental chromosomal aberrations such as chromosome 1p 
deletion, 11q deletion or 17q gain have also been associated with poor survival outcomes in  neuroblastoma16,17. 
Additionally molecular and pathologic features such as histologic  category18, DNA  ploidy19 and grade of tumor 
differentiation have been identified as prognostic markers in neuroblastoma.
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Therefore, current management approaches largely rely on risk classification scores that incorporate the 
INRGSS staging system along with a combination of the clinical, pathologic, and genomic characteristics that 
have shown an association with survival in neuroblastoma. Among the most well recognized of these scores is the 
2021 revised Children’s Oncology Group (COG) risk classification  criteria8. This scoring system utilizes INRGSS 
stage, as well as age at diagnosis, histologic classification and the presence of molecular and pathologic biomarkers 
such as MYCN amplifications status, DNA ploidy, and segmental chromosomal aberrations to categorize patients 
into low, intermediate and high-risk  group8,20. A majority of patients classified as low-risk can be observed for 
spontaneous tumor regression or treated with surgical resection  alone21. Those with intermediate-risk disease 
are often treated with neoadjuvant multi-agent chemotherapy followed by surgical  resection21. High-risk patients 
receive an intensive treatment regimen including an induction phase with multi-agent chemotherapy and surgical 
resection, a consolidation phase of high-dose chemotherapy with autologous stem cell rescue and radiotherapy, 
and a post-consolidation phase where patients often receive immunotherapy to target minimal residual disease, 
in an effort to prevent  relapse22. Outcomes vary considerably between groups, with low risk patients experienc-
ing a 5 year overall survival of 98% compared to 62% of those with high-risk  disease8. Due to this substantial 
prognostic difference, a great deal of effort has been directed towards deintensification of treatment for low and 
intermediate-risk  patients23,24, and intensification of therapy for high-risk  patients25–27to improve outcomes in 
neuroblastoma.

In addition to the improving the efficacy of therapeutic approaches, efforts to improve patient outcomes in 
neuroblastoma have focused on development of clinical and molecular risk stratification tools to inform clinical 
decision-making28. In particular, improved stratification of neuroblastoma patients may allow for intensification 
and deintensification of treatment for the appropriate patients, minimizing toxicity while maximizing thera-
peutic  benefit21. This is particularly important in neuroblastoma, given that pediatric populations are at risk of 
late complications of toxicity from chemotherapy and radiation therapy regimens during early  development29.

Substantial work has gone into the development of novel molecular biomarkers to predict prognosis of neu-
roblastoma patients, including studies of long noncoding  RNAs30,31,  mircoRNAs32,33, and genomic  aberrations34. 
However, the most well studied category of prognostic biomarkers for neuroblastoma utilize high throughput 
transcriptomic sequencing technologies to identify gene expression-based predictors known as gene signa-
tures. Many studies have attempted to generate such signatures in  neuroblastoma35–38, varying substantially 
with regards to the statistical techniques used, rigor of external validation, quantification platforms used, and 
number of transcripts included. Many of the previous studies attempting to develop prognostic signatures for 
neuroblastoma have 2 incorporated biological insights into the selection of prognostic genes. Some studies utilize 
differential expression analysis, or ontological groups of genes implicated in signaling pathways, tumorigenesis, 
or neuroblastoma aggressiveness to restrict their pool of candidate  transcripts39–42. While these approaches are 
biologically informed and may drive improved understanding of the biology underpinning neuroblastoma, 
limiting the selection of genes in this way may exclude those with prognostic importance that are not currently 
associated with biological processes implicated in neuroblastoma. Additionally, only a small number of these 
signatures have been developed and validated across different transcript quantification platforms, limiting the 
generalizability of the tools  developed43. Moreover, clinical translation of many of these proposed signatures may 
be difficult given the large number of transcripts included which would require costly and complex analysis, or 
the lack of a proposed mechanism to help clinicians incorporate existing risk stratification techniques with the 
generated signatures to create more nuanced risk  groups44. As a result of these factors, there are no transcriptomic 
signatures for neuroblastoma patients currently used in the clinical setting.

In this study, using a biologically unbiased machine learning approach, we developed and externally vali-
dated a 21-gene transcriptomic signature predictive of overall survival (OS) and event-free survival (EFS) for 
neuroblastoma patients. In multivariate analysis with relevant clinical covariates, our signature remained an 
independent prognostic factor. Finally, we built a clinically translatable risk-stratification model by combining 
our 21-gene signature with clinical and molecular features currently used for prognostication in neuroblastoma.

Methods
Patient cohorts. A two-phase study design was utilized, with the initial discovery phase consisting of devel-
oping a prognostic signature via in-silico analysis of microarray expression data, and a subsequent validation 
phase being used to ascertain the prognostic utility of the signature in two external, independent cohorts.

The discovery dataset consisted of patients enrolled in the Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET) initiative (n = 249) neuroblastoma study (sub-study ID phs000467). The samples 
analyzed in this cohort consist of optimal cutting temperature (OCT) embedded primary tumor samples col-
lected at the time of diagnosis from patients enrolled in COG studies and clinical trials. Samples were prepared 
and transcription was quantified as described by the TARGET  consortium45. In brief, transcript quantification 
was performed on an Affymetrix Human Exon ST 1.0 microarray and scanned as per manufacturer’s instruc-
tions. Transcript data was normalized and summarized using rma-sketch analysis (which approximates quantile 
normalization) using Affymetrix power tools. Probe sets with low expression and low variation were removed 
and the resulting probe sets were averaged by transcript identification based on Affymetrix annotations. Clinical 
and transcriptomic data was obtained from the TARGET neuroblastoma repository available at https:// portal. 
gdc. cancer. gov/ proje cts.

Two independent cohorts were utilized for validation of the signature generated in the discovery dataset, 
E-MTAB-179 and GSE85047. The E-MTAB-179 cohort (n = 478) consists of snap-frozen primary neuroblastoma 
tissue samples obtained prior to cytotoxic treatment as described  previously46. This cohort quantified transcript 
expression utilizing a custom Agilent Neuroblastoma array (A-MEXP-1746). Clinical and transcriptomic data 
for this cohort was obtained from the European Bioinformatics Institute ArrayExpress platform (accession ID 

https://portal.gdc.cancer.gov/projects
https://portal.gdc.cancer.gov/projects
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E-MTAB-179). Transcriptomic data was normalized using a quantile algorithm. The GSE85047 cohort (n = 283) 
consists of primary neuroblastoma tissue samples obtained prior to treatment from the Neuroblastoma Research 
Consortium (NRC) and was processed as described  previously47. Transcript quantification in this cohort was 
performed using a Affymetrix Human Exon ST 1.0 microarray. Downloaded transcript data was normalized and 
summarized using rma-sketch analysis, which approximates quantile normalization, using Affymetrix power 
tools. Expression and clinical data for this cohort was obtained from the Gene Expression Omnibus (accession 
ID GSE85047).

Candidate transcripts in the discovery cohort were filtered to include only those present across all discovery 
and validation cohorts, to ensure any generated prognostic signature could be validated (n = 1780). Stage 4 s 
patients were excluded from further analysis (TARGET n = 0, GSE85047 n = 27, E-MTAB-179 n = 62) as the 
unique genetic, epigenetic, and transcriptomic characteristics that drive spontaneous regression and improved 
outcomes in these patients may have interfered with the selection of candidate transcripts that were broadly 
prognostic across other stages of  neuroblastoma48. Additionally, those with missing survival and/or pathologi-
cal variables (TARGET n = 6, GSE85047 n = 16, E-MTAB-179 n = 0) were also excluded from further analysis. 
Following exclusions, a total of 243 patients were included in the TARGET cohort, 240 in the GSE85047 cohort, 
and 416 in the E-MTAB-179 cohort for further analysis. Clinicopathological and patient demographic data for 
the cohorts is shown (Table 1).

Prognostic model generation. To create a prognostic model from the TARGET neuroblastoma cohort 
expression profiles, Least Absolute Shrinkage and Selection Operator (LASSO) regularized regression employ-
ing Cox Proportional Hazards (CoxPH) was utilized (available through the glmnet R package). This technique is 
a biologically unbiased machine learning model that is useful in cases where the number of predictors is much 
larger than the number of observations, and thus is particularly well suited to transcriptomic data. 20-fold cross 
validation with partial-likelihood deviance loss was performed to obtain the optimal lambda (0.1006), which 
represents the regularization parameter utilized in the creation of the final model. Following lambda tuning, the 
model was generated with an alpha of 1 to limit the number of features selected. EFS was used as the primary 
endpoint to generate the prognostic model.

Signature validation and survival analysis. EFS was used as the primary endpoint, and OS as the sec-
ondary endpoint for all statistical analyses. The model weights obtained in the discovery phase of the study were 
used in all subsequent validation analyses to prevent overestimation of effect caused by retraining of the signa-
ture. Univariate CoxPH regression analysis was used to estimate the hazard ratio (HR) to evaluate the association 
of the obtained prognostic signature with EFS and OS in discovery and validation cohorts. Median signature 
risk score was used to subgroup patients into low and high-risk groups in all analyses. EFS and OS curves were 
visualized using Kaplan–Meier curves. 5 year receiver operator characteristic (ROC) curves were constructed to 
evaluate the sensitivity and specificity of the prognostic signature in predicting survival outcomes. 95% confi-
dence intervals are reported for regression analysis as well as on ROC and Kaplan–Meier curves.

To evaluate the performance of the prognostic signature within clinically important subgroups, patients 
were stratified based on age at diagnosis (> 18 months or < 18 months), MYCN amplification status (amplified 
or unamplified), and INSS stage (I/II or III/IV). Once stratified, patients in each subgroup were divided into 
high and low-risk groups by the median prognostic signature risk score, and univariate CoxPH regression was 
performed to assess the prognostic utility of the signature in these subgroups.

To assess the independent prognostic value of the signature, available clinicopathological variables were 
dichotomized: age at diagnosis (> 18 months vs. < 18 months), MYCN amplification status (amplified vs. 

Table 1.  Clinical and pathological characteristics of neuroblastoma patients included in study cohorts: 
TARGET NBL, GSE85047, and E-MTAB-179. Data are n (%) unless otherwise indicated.

TARGET NBL GSE85047 E-MTAB-179

(n = 243) (n = 240) (n = 416)

MYCN amplification status

 Amplified 68 (28.0%) 53 (22.1%) 64 (15.4%)

 Not Amplified 175 (72.0%) 187 (77.9%) 352 (84.6%)

INSS Stage

 Stage 1 30 (12.3%) 43 (17.9%) 119 (28.6%)

 Stage 2 0 (0%) 34 (14.2%) 80 (19.2%)

 Stage 3 1 (0.4%) 42 (17.5%) 69 (16.6%)

 Stage 4 212 (87.2%) 121 (50.4%) 148 (35.6%)

Age at diagnosis (days), median (range) 1040 (6–7450) 565 (0–7100) 459 (0–8980)

Follow-up for overall survival (days), median (range) 1560 (2–5560) 1230 (1–6460) 1380 (8–6600)

Overall survival events 137 (55.6%) 72 (30.0%) 87 (20.9%)

Follow-up for Event-free survival (days), median (range) 715 (2–5560) 813 (1–6460) 1080 (8–6600)

Event-free survival events 134 (55.1%) 94 (39.2%) 140 (33.7%)
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unamplified), and INSS stage (I/II vs. III/IV). Univariate CoxPH regression was performed on clinicopatho-
logical variables to assess their association with survival outcomes, with variables significantly associated being 
retained for multivariate CoxPH regression with the dichotomized scores for the 21-gene signature.

Combined risk‑stratification model generation. Both validation cohorts were pooled together, and 
dichotomized clinicopathological variables and signature risk were regressed in multivariate CoxPH analysis. 
This multivariate model was then used to generate nomograms for the prediction of 5-year survival outcomes. 
These nomograms generated a combined risk score incorporating the signature risk group as well as prognostic 
clinicopathologic variable status. Kaplan–Meier curves were plotted to visualize survival differences between 
high and low-risk groups using the median combined risk score as cut-off; univariate CoxPH analysis was used 
to assess the association of the combined risk score with survival. ROC curves were also generated to ascertain 
the sensitivity and specificity for prediction of 5-year survival outcomes for the combined risk score in compari-
son to dichotomized clinicopathologic variables or the prognostic signature alone.

All statistical analyses were performed using R (version 3. 4. 1; http:// www.r- proje ct. org/). All reported P 
values are two-tailed, and an alpha of 0.05 was used as the threshold for statistical significance.

Results
A 21‑gene signature for survival risk stratification of neuroblastoma patients. LASSO penal-
ized regression utilizing the CoxPH model in the TARGET discovery cohort identified a set of 21 genes sig-
nificantly associated with EFS in neuroblastoma patients (Fig. 1). Of the genes included in the signature, 10 
were associated with improved prognosis, and 11 were associated with poor prognosis (Supplementary Table 1). 
The signature effectively discriminated between patients with good versus worse prognosis in the discovery 
cohort (TARGET HR 4.20 [2.89–6.10], p < 0.0001) (Fig. 2A). These findings were validated in multiple valida-
tion cohorts, where significant differences in EFS were observed based upon the signature risk score (GSE85047: 

Figure 1.  Expression heat map of genes included in the 21-gene prognostic signature. Each column represents 
one patient in the TARGET neuroblastoma discovery cohort (n = 243), and each row represents a gene included 
in the model. Patients are arranged from low risk (left) to high risk (right) based on the 21-gene risk score and 
genes are arranged from highest positive association with the risk (bottom) to highest negative association 
with the risk (top). The line plot demonstrates the risk score of patients as calculated by the 21-gene prognostic 
signature, with low values associated with low risk and high values associated with high risk (A). For the 
heatmap, blue represents low expression and orange represents high expression. Genes above the separation 
are positively associated with risk, and genes below the separation are negatively associated with risk. Clinical 
variables including MYCN amplification status, INSS stage and age at diagnosis are shown as annotations for 
each patient in the sample (B).

http://www.r-project.org/
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HR 4.20 [2.82–8.65], p < 0.0001; E-MTAB-179: HR 5.87 [3.83–9.01], p < 0.0001) (Fig. 2B,C). 5 year ROC curves 
in discovery and validation cohorts also demonstrated a substantial ability to predict EFS for neuroblastoma 
patients (TARGET AUC = 0.898; GSE85047 AUC = 0.815; E-MTAB-179 AUC = 0.827) (Fig. 2D,F). Similar asso-
ciations between the generated signature and OS were also observed. The 21-gene signature was able to stratify 
OS across discovery (TARGET HR 4.20 [2.89–6.10], p < 0.0001) and validation cohorts (GSE85047; HR 4.941 
[2.823–8.647], p < 0.0001; E-MTAB-179; 37.240 [11.760–117.900], p < 0.0001) (Supplementary Fig. 1 A-C). Simi-
larly, 5 year ROC curves demonstrated substantial predictive utility of the 21-gene signature for OS (TARGET 
AUC = 0.840; GSE85047 AUC = 0.833; E-MTAB-179 AUC = 0.904) (Supplementary Fig. 1 D-F). These results 

Figure 2.  Event-free survival stratified by 21-gene prognostic signature risk score in discovery and validation 
cohorts. Kaplan Meier survival curves with cox proportional hazards analysis showing risk of event-free 
survival in low risk (black curve) and high risk (grey curve) groups generated using a median cut-off for the 
21-gene risk score and ROC curve analysis demonstrating the predictive capacity of the risk score for 5 year 
event-free survival in the discovery cohort (Panel A and B), GSE85047 validation cohort (Panel C and D), and 
E-MTAB-179 validation cohort (Panel E and F).



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12526  | https://doi.org/10.1038/s41598-023-37714-9

www.nature.com/scientificreports/

demonstrate that we have identified a 21-gene signature that robustly predicts both OS and EFS outcomes in 
neuroblastoma patients.

The 21‑gene signature is predictive of survival within clinically important neuroblastoma sub‑
groups. In addition to predicting survival within unstratified neuroblastoma cohorts, analysis within clini-
cally relevant subgroups was conducted to assess if the identified 21-gene signature could be utilized to stratify 
these patients more accurately. Patients in validation cohorts were iteratively subdivided based on age at diag-
nosis (> 18 months or < 18 months), MYCN amplification status (amplified or unamplified), and INSS stage (I/
II or III/IV) and univariate CoxPH was used to assess signature association with survival. In both validation 
cohorts, the 21-gene signature demonstrated significant ability to stratify EFS within age < 18 months at diagno-
sis, age > 18 months at diagnosis, INSS stage III/IV, and unamplified MYCN status subgroups (Table 2). Similar 
trends were noted in OS analysis, with the signature able to stratify within age < 18 and > 18 months at diagnosis, 
INSS stage III/IV and unamplified MYCN status patients in the GSE85047 cohort. In the E-MTAB-179 cohort, 
due to the absence of OS events in the low-risk strata of the INSS stage I/II and age < 18 months at diagnosis 
subgroups, these specific analyses could not be performed. However, the signature remained significant within 
age > 18 months at diagnosis, INSS stage III/IV and unamplified MYCN status groups (Supplementary Table 2). 
Further analysis in a pooled validation cohort demonstrates that the obtained signature is a strong predictor 
of EFS in patients with multiple clinicopathologic prognostic factors associated with low-risk (Supplementary 
Table  3), though similar findings were not replicated in OS given the paucity of events in for this outcome 
measure (Supplementary Table 4) These findings suggest that the generated 21-gene signature may be useful for 
identification of neuroblastoma patients at higher and lower risk even within existing clinical subgroups cur-
rently used for prognostication.

21‑gene signature is an independent predictor of survival outcomes in neuroblastoma 
patients. Univariate and multivariate CoxPH analyses were conducted to compare the signature with vari-
ous clinicopathological features including age at diagnosis, MYCN amplification status and INSS stage. Patients 
in validation cohorts were classified into clinicopathological subgroups as before, and high and low risk groups 
based on the median 21-gene signature risk score. In univariate CoxPH analysis, age > 18 months at diagno-
sis, INSS stage III/IV, MYCN amplification and high 21-gene risk score were all significant predictors of poor 
survival in both validation cohorts (p < 0.0001 for all analyses) (Table 3). Multivariate CoxPH analysis utiliz-
ing features statistically significant in univariate modelling, demonstrated that the identified 21-gene risk score 
remained an independent prognostic factor for predicting outcomes in neuroblastoma patients. In addition to 
the prognostic signature, INSS stage and MYCN status also emerged as independent risk factors, while age at 
diagnosis was only significantly associated in the GSE85047 validation cohort (Table 3). These results indicate 
that the 21-gene prognostic signature maintained its independent association with EFS when analyzed in multi-
variate analysis adjusting for significant clinicopathologic covariates. OS analysis revealed similar trends in uni-
variate CoxPH analysis, with all variables being significant (Supplementary Table 5). In multivariate analysis, all 
variables retained significance in the E-MTAB-179 cohort, however the 21-gene signature was not significantly 
associated with survival in the GSE85047 cohort (Supplementary Table 5).

Establishment of a nomogram for prediction of survival in neuroblastoma patients. To 
improve the performance and clinical utility of the generated 21-gene signature, multivariate regression was 
used to incorporate the signature with significant clinicopathological variables to generate a combined risk 
score. Validation cohorts were pooled together for these analyses, and multivariate CoxPH incorporating the 
21-gene signature, age at diagnosis, MYCN amplification status, and INSS stage was performed. Analysis in the 
pooled cohort for EFS and OS demonstrated that validation cohort identity was not associated with survival 
(EFS p = 0.5210, OS p = 0.5270), while the 21-gene signature score, age at diagnosis, MYCN status, and INSS 
stage remained significant. These clinicopathological characteristics and the 21-gene score were used to generate 
a nomogram giving a combined risk score for 5 year EFS outcomes (Fig. 3A) and 5 year OS outcomes (Supple-
mentary Fig. 2A). Higher combined risk score indicated by the nomogram is associated with worse 5 year EFS 
outcomes, with high 21-gene signature risk score, age > 18 months at diagnosis, MYCN amplification, and INSS 
stage III/IV increasing a patient’s score in both EFS and OS analysis. The combined risk score demonstrated 
significant ability to stratify EFS (HR 6.93 [4.89–9.83], p < 0.0001) (Fig. 3B) and OS (HR 54.29 [20.10–146.60], 
p < 0.0001) in the pooled validation cohort (Supplementary Fig. 2B). 5 year ROC curves also demonstrated an 
improved ability to predict survival outcomes compared to the signature or any clinicopathological variable in 
isolation (EFS AUC = 0.839; OS AUC = 0.908) (Fig. 3C and Supplementary Fig. 2C). These results suggest that 
our 21-gene risk signature can be effectively incorporated with commonly used clinicopathological tools to 
improve risk stratification and survival outcome prediction in the clinic.

Discussion
Despite dramatic advances in treatment strategies for neuroblastoma in the past decades, risk stratification 
continues to present a barrier to clinical care for neuroblastoma  patients28. As a highly heterogenous tumor, 
stratifying those patients with aggressive disease from those with relatively indolent disease presents significant 
value to inform therapeutic intensification and deintensification  strategies21. While risk stratification tools have 
been effective in improving patient outcomes, there continues to be patient subpopulations who may benefit 
from more accurate risk stratification to maximize treatment benefit and reduce morbidity associated with high 
treatment  burden29. This study utilized an unbiased machine learning approach, LASSO regularized CoxPH 
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regression, to generate and robustly validate a novel 21-gene transcriptomic signature that is able to accurately 
predict 5 year EFS and OS outcomes in neuroblastoma patients.

The 21-gene signature demonstrated a substantial ability to stratify EFS and OS across all cohorts studied 
and was capable of effectively predicting 5 year survival outcomes for patients, with AUC values in excess of 0.8 
for all analyses. These findings suggest that the obtained signature has strong prognostic value and supports the 
ability of the 21-gene signature to provide clinically significant prognostic information. Further, the signature 
was capable of stratifying within several relevant subpopulations, including the MYCN unamplified clinical 
subgroup which demonstrates substantial prognostic  heterogeneity49. The developed signature also retained 
its independent prognostic effect in multivariate analysis with clinicopathological variables, including age at 
diagnosis, MYCN amplification status, and INSS stage–all of which are used to varying degrees to stratify neu-
roblastoma patient risk. These results supports the signature’s utility in stratifying patients regardless of their 
clinicopathologic features at presentation. Given this strong performance, we generated an intuitive nomogram 
to allow for easy incorporation of risk as defined by the 21-gene signature with these clinicopathologic vari-
ables for both EFS and OS outcomes. When combined with these clinicopathological risk factors to generate 
a combined risk score using these tools, the predictive capacity of the signature further improved beyond that 
of the risk factors or prognostic signature alone–validating the synergistic benefit of combining variables and 

Table 2.  Univariate cox proportional hazards analysis of event free survival for high versus. low-risk groups 
as defined by the 21-gene prognostic signature in clinically relevant subgroups. Subgroups were stratified 
by age at diagnosis (< 18 months and > 18 months groups), INSS stage (I, II and III, IV groups) and MYCN 
amplification status (amplified and unamplified groups). Dichotomization of patients into high and low-risk 
groups was performed using the median prognostic signature score. Significant P values are shown in bold.

HR (95% CI) p-value

GSE85047 (N = 240, events = 94)

Age diagnosis 1.608

0.0500(> 18 Months)
(0.9998–2.587)

n = 126, events = 71

Age at diagnosis 5.715

0.0016(< 18 Months)
(1.942–16.820)

n = 114, events = 23

INSS stage 2.026

0.0017(III, IV)
(1.304–3.149)

n = 163, events = 85

INSS stage 3.757

0.0989(I, II)
(0.780–18.100)

n = 77, events = 9

MYCN 0.932

0.8290Amplified
(0.492–1.764)

n = 53, events = 38

MYCN 3.652

 < 0.0001Unamplified
(2.015–6.618)

n = 187, events = 56

E-MTAB-179 (N = 416, events = 140)

Age at Diagnosis 2.050

0.0007(> 18 months)
(1.352–3.109)

n = 168, events = 94

Age at diagnosis 3.203

0.0005(< 18 months)
(1.657–6.191)

n = 248, events = 46

INSS stage 2.801

 < 0.0001(III, IV)
(1.893–4.143)

n = 217, events = 115

INSS stage 1.888 0.1280

(I, II)
(0.834–4.275)

n = 199, events = 25

NMYC 1.089

0.7760Amplified
(0.606–1.955)

n = 64, events = 45

NMYC 5.720

 < 0.0001Unamplified
(3.381–9.677)

n = 352, events = 95
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providing an improved risk stratification tool that incorporates the contribution of both clinical features and 
biological correlates. Of note, the combined risk score had an AUC of 0.839 and 0.908 for prediction of 5 year 
EFS and OS outcomes respectively, suggesting strong prognostic utility. Aside from its strong prognostic capa-
bilities across numerous outcomes and the ease of incorporating it with existing clinicopathological variables, 
the 21-gene signature has the added advantage of being developed across numerous platforms. The validation 
cohorts utilized in this study quantified gene expression using the Affymetrix Human Exon ST 1.0 microarray 
and a custom Agilent microarray for the GSE85047 cohort and E-MTAB-179 cohort respectively. Few other 
prognostic signature studies for neuroblastoma have utilized cross-platform  analyses43, and the high predictive 
utility of our signature across platforms suggests its association with survival is independent of the quantifica-
tion technology used. To the best of our knowledge, the combined risk score developed in this study represents 
the highest predictive accuracy, in independent external validation cohorts, of a cross-platform signature for 
prediction of neuroblastoma EFS and OS outcomes.

There have been numerous studies which have looked to generate novel transcriptomic signatures for prog-
nostication in neuroblastoma, incorporating a number of different statistical and methodological  techniques35–38. 
Multiple signatures have been developed for use in particular subgroups of neuroblastoma, particularly among 
high-risk  patients50,51. Additionally, a number of investigators have endeavoured to make biologically attuned 
signatures, selecting for genes associated with signaling or cell-cycle pathways such as  MYCN40, or biological 
processes implicated in neuroblastoma such as those related to  hypoxia41. These signatures have demonstrated 
strong prognostic performance in validation analyses and have generated new insight into the cellular mecha-
nisms that may underly the aggressiveness of a subset of high-risk neuroblastoma  cases40,41. Several different 
transcriptomic technologies have been utilized in these studies, including the use of RT-qPCR36and nanoString 
 nCounter44 platforms which are particularly important given the ease of translating such assays into the clinical 
environment. Previous analyses have also varied significantly with regards to the methods used to generate signa-
tures in their work, with stepwise CoxPH  regression52, support vector  machines53, and artificial neural  networks54 
being among the most widely utilized, with many showing reasonable performance in stratifying survival.

The approach used in the current study has multiple advantages that add meaningfully to this existing litera-
ture. First, we utilize a machine learning approach with no a priori selection of candidate transcripts allowing 
the identification and inclusion of the most relevant prognostic genes. Additionally, unlike neural network 
approaches, the LASSO regularized CoxPH regression utilized in this work allows for a simple mathematical 
model to be used to calculate patient risk enabling easier integration into clinical workflows. Additionally, our 
signature stratifies both OS and EFS both of which are survival outcomes that are routinely used in COG and 
INRG clinical  trials8 and are central to patient and family counselling in the clinical environment. Finally, we 
demonstrate the independence of our signature and generate intuitive nomograms to allow for easy calculation 
of risk scores that incorporate our signature. Finally, the signature presented shows improved prognostic perfor-
mance in validation analyses compared to many of the existing signatures described in the literature, providing 
incremental utility as a molecular biomarker for neuroblastoma.

Table 3.  Univariate and multivariate cox proportional hazards analysis of clinicopathologic variables and 
21-gene risk score for event-free survival. Patients were dichotomized by age at diagnosis (< 18 months 
and > 18 months), INSS stage (I, II and III, IV) and MYCN amplification status (amplified and unamplified 
groups). Dichotomization of patients into high and low-risk groups was performed using the median 
prognostic signature score. Significant P values in multivariate analysis are shown in bold.

Univariate

p-value

Multivariate

p-value

HR HR

(95% CI) (95% CI)

GSE85047 (N = 240, events = 94)

Age at Diagnosis 3.786
 < 0.0001

1.769 0.03810

(> 18 Months vs. < 18 Months) (2.355–6.087) (1.032–3.033)

INSS Stage 6.090
 < 0.0001

2.950
0.00595

(III, IV vs. I, II) (3.056–12.140) (1.365–6.378)

MYCN Status 3.373
 < 0.0001

1.676
0.02464

(Amplified vs. Unamplified) (2.226–5.112) (1.068–2.631)

21-gene risk score 3.736
 < 0.0001

1.772
0.03608

(High vs. Low) (2.357–5.924) (1.038–3.026)

E-MTAB-179 (N = 416, events = 140)

Age at Diagnosis 3.565
 < 0.0001

1.272
0.25546

(> 18 Months vs. < 18 Months) (2.501–5.083) (0.8402–1.926)

INSS Stage 5.172
 < 0.0001

2.782
 < 0.0001

(III, IV vs. I, II) (3.354–7.976) (1.7385–4.451)

MYCN Status 4.025
 < 0.0001

1.685
0.00766

(Amplified vs. Unamplified) (2.807–5.771) (1.1482–2.472)

21-gene risk score 5.869
 < 0.0001

3.024
 < 0.0001

(High vs. Low) (3.825–9.006) (1.8148–5.040)
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Though the precise roles of many genes included in our prognostic signature remain unclear, multiple genes 
have previously been associated with neuroblastoma pathophysiology and prognosis. Increased expression of 
ECEL1 has been associated with favorable prognosis and a more benign phenotype in multiple in-vitro  studies55 
and has been included in previous prognostic signatures for  neuroblastoma35,44. HOXC9 expression has been 
associated with spontaneous regression of neuroblastoma and is a positive prognostic marker for  survival56,57. 
Similarly, decreased expression of GABARAP and GABAergic gene family members have been associated with 
poor outcome in a subset of neuroblastoma  patients58. Additionally, DYRK3 expression has been associated 
with a potential role in differentiation and hypoxic control of neuroblastoma cell lines within in vitro  studies59. 
Though GNA14 expression has not been strongly associated with neuroblastoma survival, somatic mutations 
in this gene have been associated with congenital and sporadic vascular  tumors60. Importantly, the contribution 
of these genes to risk as predicted by our signature has the same directionality as the association with survival 
described in the literature, indicating that our findings are in line with previous work in this area. Given the 
association of the 21-genes identified in this study with survival they may represent a subset of functionally 
relevant contributors to neuroblastoma aggressiveness or host disease susceptibility. As such, further investiga-
tion of these genes, including those with positive contribution to risk score (putative oncogenes) or those with 
negative contribution to risk score (putative tumour suppressor genes) may help further characterize mechanisms 
underlying the heterogeneity of neuroblastoma outcomes.

This study used three independent datasets for which follow-up, clinicopathologic, and expression data 
was available to develop a strong predictor of EFS and OS outcomes in neuroblastoma patients. Our approach 
was not biased by any a priori biological insight, and therefore the candidate gene set was not restricted for 
this reason, allowing for the most significant prognostic genes to be selected. However, the pool of candidate 
genes was restricted in this analysis to those quantified by all three cohorts selected. While a large selection of 
genes was included in this analysis, the exclusion of genes that were not present across all cohorts may have 
removed potentially significant candidates from signature development. Additionally, multivariate analysis was 
also restricted to variables present across all three cohorts. Therefore, potentially useful factors such as patient 
sex, INRGSS stage, and COG risk classification could not be effectively incorporated into the nomogram for 

Figure 3.  Nomogram integrating 21-gene risk score and other clinicopathological variables for prediction 
of 5 year event-free survival in a pooled validation cohort. Nomogram incorporating clinicopathological 
characteristics and 21-gene risk score to generate a combined risk score (Panel A). Kaplan Meier survival curves 
with cox proportional hazards analysis showing risk of event-free survival in low risk (black curve) and high 
risk (grey curve) groups generated using a median cut-off for the combined prognostic risk score in the pooled 
validation cohort (Panel B). ROC curve analysis demonstrating the predictive capacity of the combined risk 
score compared to the 21-gene risk score and other clinicopathological variables in isolation for 5 year event-
free survival in the pooled validation cohort (Panel C).
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combined analysis. Despite this, our signature still has substantial prognostic utility and future work should 
attempt to incorporate the presented signature with other clinicopathological and transcriptomic prognostic 
markers to further improve its performance.

An increasing number of transcriptomic signatures are being translated into the clinical environment, further 
demonstrating the utility and translatability of molecular biomarkers. In particular, multiple gene signatures for 
guidance of treatment selection and prediction of relapse have been validated and are in clinical use in the field of 
breast  cancer61,62, as are tools for more accurate identification of cancerous nodules in the area of thyroid  cancer63. 
Prior to the implementation of the identified 21-gene risk signature into clinical settings, a reliable quantifica-
tion assay must be developed and validated. This could include either real-time PCR or targeted next-generation 
sequencing-based methods. Given that the signature has been validated across multiple expression platforms, it is 
likely that any of these technologies may be utilized successfully. Following these studies, prospectively testing this 
signature in large multi-centre clinical trials will be paramount to incorporate it as a prognostic tool into neuro-
blastoma risk stratification and management. In summary, our combined prognostic signature may help identify 
a subset of patients with poor prognosis that are candidates for treatment intensification and close monitoring.

Data availability
Gene expression and clinical data included in this study was obtained from the following publicly available data-
sets: Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative (sub-study ID 
phs000467), Array Express (Accession E-MTAB-179), and the Gene expression Omnibus (Accession GSE86047). 
All other data relevant to the study will be made available upon reasonable request to corresponding authors.
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