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Multi‑objective optimization 
of multiple droplet impacts 
on a molten PCM using NSGA‑II 
optimizer and artificial neural 
network
Shahin Faghiri 1, Parham Poureslami 1, Hadi Partovi Aria 2 & Mohammad Behshad Shafii 1,3*

Embracing an interaction between the phase change material (PCM) and the droplets of a heat 
transfer fluid, the direct contact (DC) method suggests a cutting‑edge solution for expediting 
the phase change rates of PCMs in thermal energy storage (TES) units. In the direct contact TES 
configuration, when impacting the molten PCM pool, droplets evaporate, provoking the formation 
of a solidified PCM area (A). Then, they reduce the created solid temperature, leading to a minimum 
temperature value (Tmin). As a novelty, this research intends to maximize A and minimize Tmin since 
augmenting A expedites the discharge rate, and by lowering Tmin, the generated solid is preserved 
longer, resulting in a higher storage efficacy. To take the influences of interaction between droplets 
into account, the simultaneous impingement of two ethanol droplets on a molten paraffin wax is 
surveyed. Impact parameters (Weber number, impact spacing, and the pool temperature) govern 
the objective functions (A and Tmin). Initially, through high‑speed and IR thermal imaging, the 
experimental values of objective functions are achieved for a wide range of impact parameters. 
Afterward, exploiting an artificial neural network (ANN), two models are fitted to A and Tmin, 
respectively. Subsequently, the models are provided for the NSGA‑II algorithm to implement multi‑
objective optimization (MOO). Eventually, utilizing two different final decision‑making (FDM) 
approaches (LINMAP and TOPSIS), optimized impact parameters are attained from the Pareto front. 
Regarding the results, the optimum amount of Weber number, impact spacing, and pool temperature 
accomplished by LINMAP and TOPSIS procedures are 309.44, 2.84 mm, 66.89 °C, and 294.98, 
2.78 mm, 66.89 °C, respectively. This is the first investigation delving into the optimization of multiple 
droplet impacts for TES applications.

List of symbols
A  Dimensionless solidified PCM area 
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A  Solidified PCM area  (mm2)
cp  Specific heat capacity (kJ/kgK)
D  Initial droplet diameter (mm)
dh  The dimensionless horizontal impact spacing 

(

dh =
dh
D )

)

dh  Horizontal impact spacing (mm)
H  Falling height (cm)
T  PCM pool temperature (°C)
Tmin  Minimum pool temperature value after the impact (°C)
Ts  Paraffin solidification point (°C)
t  Characteristic time (s)
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v  Impact velocity (m/s)
We  Weber number 

(

We = ρv2D
σ

)

Greek letters
β  The tilted angle of the high-speed camera (°)
θ  Dimensionless temperature 

(

θ =
T
Ts

)

θmin  Dimensionless minimum pool temperature value after the impact 
(

θmin =
Tmin
Ts

)

ρ  Ethanol density (kg/m3)
σ  Ethanol surface tension (N/m)

Abbreviations
ANN  Artificial neural network
DC  Direct contact
FFNN  Function fitting neural network
HTF  Heat transfer fluid
IBF  Intermediate boiling fluid
IR  Infrared radiation
LHTES  Latent heat thermal energy storage
LINMAP  Linear programing technique for multi-dimensional analysis of performance
MOO  Multi-objective optimization
MSE  Mean squared error
NSGA II  Non-determined sorting genetic algorithm II
TES  Thermal energy storage
TOPSIS  Technique of order performance by similarity to an ideal solution

With an eye to diminishing carbon production, renewable energies have gained painstaking attention. However, 
variations in the supply of renewable energies have become a ubiquitous challenge, making thermal energy 
storage (TES) a consequential research  topic1. In fact, TES plays a pivotal role in renewable energies as it bridges 
the gap between power supply and its requirement over the course of peak hours.

Among disparate approaches for storing thermal energy, latent heat thermal energy storage (LHTES) is 
of great significance and applicability by virtue of its noticeable storage  capacity2,3. Phase change materials 
(PCMs) are extensively exploited in LHTES in view of not only high latent heat but trivial temperature changes 
during the phase change processes. Moreover, PCMs are widely employed in solar energy  systems4,  buildings5,6, 
 desalination7, and thermal management of electronic  devices8. However, the inherent defect of PCMs, low 
thermal conductivity, prolongs their melting (charge) and solidification (discharge) processes, restricting their 
applications. Metal  foams9, expanded  graphite10,11,  nanoparticles12,13, or a combination of  them14,15 have been 
widely utilized to enhance the thermal conductivity of PCMs. Applying the direct contact (DC) between the 
PCM and heat transfer fluid (HTF) is another innovative solution by which the heat transfer efficiency of PCMs 
may be critically enhanced, accelerating the melting and, notably, solidification  procedures16.

Martin et al.17 employed the DC procedure to store cold. They asserted that flow rate, temperature difference, 
and droplet size are prevailing factors controlling the discharge process. Ameliorating heat transfer and 
sustainability performance, Hegner et al.18 investigated a direct contact LHTES system, employing ester as the 
PCM. They claimed that flowing HFT through the PCM results in tiny droplets, which improve the effective 
heat transfer area. Furthermore, they concluded that all melting and solidification processes lasted less than 
an hour despite their unoptimized system. Al Omari et al.19 scrutinized the influences of vibrations on the DC 
heat transfer between hot water and a heat sink comprised of a PCM. Comparing the results obtained under 
vibrations and static conditions, they observed a sharp enhancement in the cooling rate of hot water when the 
vibrational effects were brought to bear. Nonetheless, as the authors declared, further optimizations may be 
expected to improve the system’s efficacy. Hosseininaveh et al.20 appreciably precipitated the charge and discharge 
rates of PCMs through the DC method, in which the HTF (acetone) boils within the paraffin and takes heat 
from it, bringing about the PCM solidification and HTF evaporation. Then, the acetone vapor condenses in the 
condenser, leading to numerous tiny HTF droplets. Following this, acetone droplets impinge on the surface of 
molten paraffin. The process continues so that the PCM is exhaustively solidified. They also indicated that, under 
the optimum situation, this approach strikingly lessens the discharge, charge, and total charging-discharging 
times. Utilizing the DC method between the HTF and PCM, Ramezani et al.21 decreased the overall discharge 
rate of PCMs from 2 h to 39 s. Similar to the previous scholarship, acetone droplets formed on the condenser 
impacted the molten PCM and caused it to solidify. Accordingly, the DC technique, through which the trouble 
of PCMs’ slow discharge rate is ironed out, encompasses an interaction between the PCM and HTF droplets. 
This investigation strives to optimize the droplets’ impact parameters and characterize the circumstances under 
which the PCMs’ discharge rate is further expedited in novel TES devices.

Disregarded in most surveys due to its sophistication, multiple droplet impacts (simultaneous, non-
simultaneous, and successive) on liquid films, liquid pools, and solid surfaces have numerous applications, 
including spray  cooling22, inkjet  printing23, spray  coating24,  desalination25, and so forth. Liang et  al.26 
studied the simultaneous and non-simultaneous impact of a droplet pair at room temperature. According to 
their investigation, high Weber numbers (We) result in a central liquid sheet, which is a three-dimensional 
phenomenon. Moreover, increasing droplet vertical spacing (or time lag between droplets) in the 
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non-simultaneous case brings about a decline not only in central liquid sheet height but in the spreading factor. 
They also found that the influence of vertical spacing declines as the We number increases. Employing the 
volume of fluid approach, Guggilla et al.27 studied the hydrodynamic and heat transfer characteristics of drop-
on-drop impact on a hot surface. They maintained that the We number, Bond number, and Jakob number 
have an overriding influence on the spreading factor and evaporation dynamics of droplet impact. Guilizzoni 
et al.28 numerically surveyed multiple droplets simultaneously impacting the deep pool utilizing OpenFOAM® 
software. The results demonstrate that by increasing the impact spacing between droplets, the time evolution of 
craters would resemble that of a single droplet. Moreover, the shorter the impact spacing, the deeper the crater. 
Goswami and  Hardalupas29 concentrated on the simultaneous impingement of two droplets on a dry surface. 
They claimed that the secondary droplets provoked by the uprising sheet splash are larger than those caused by 
a single droplet impingement. Kirar et al.30 experimentally examined the impact of two ethanol droplets on the 
ethanol pool at low impact velocity. They found that when the normalized distance between the droplet exceeds 
3.2, the interaction between neighboring capillary waves is undermined, ending up with a partial coalescence. 
Generally speaking, there are overly few studies in the literature concentrating on the multiple droplet impact 
hydrodynamics and heat transfer.

Optimization is of great momentousness in the design of systems in light of its capability to address complex 
and practical  problems31. As the term suggests, optimization refers to the process of finding the best values for 
an objective function based on a set of parameters. Single-objective optimization, in which only one objective 
function is considered, has a unique Pareto optimal solution. In contrast, multi-objective optimization (MOO)32 
expands the idea of optimization by enabling the concurrent optimization of several individual objectives. MOO 
is a mathematical methodology that discovers diverse possibilities, all representing the optimal Pareto solution.33. 
Conducting MOO to minimize the PCM phase change time and maximize the exergy conversion, Zhang et al.34 
suggested a combination of nanoparticles, metal foam, heat pipe, and fin to boost the efficacy of an LHTES unit. 
Taking heat transfer effectiveness and PCM melting time as the objective functions, Lin et al.35 performed MOO 
for a TES system. They raised heat transfer effectiveness by 34.0%. Huang et al.36 proposed a MOO method 
utilizing a genetic algorithm to reduce entropy generation and the upfront cost of geothermal ground heat 
exchangers. They lessened the operation cost of the system by 9.5%. Liang et al.37 explored the influences of PCM 
heat transfer improvement and geometric optimization on the overall storage performance. The results reveal 
that increasing the ratio of tube length to tube diameter instigates an increment in the effective energy storage 
ratio. Peng et al.38 conducted numerical optimization of patterned metal fins by adjusting their dimensions to 
optimize the convection-controlled and conduction-controlled regions during the charging process. The results 
demonstrated significant improvements in charging performance, which ranged from 42.7% to 63.7%, depending 
on the optimization arrangement and heating temperature. Given the literature, there are few surveys on the 
optimization of TES systems composed of  PCM39. Also, few studies have been focused on optimizing the droplet 
impact  process40, entailing researchers to accomplish thorough investigations in this field. Moreover, no study 
has been conducted to optimize the impact parameters of liquid droplets so that the phase change time of the 
PCM is reduced.

In conclusion, the continuous impact of multiple HTF droplets on the PCM surface in the DC technique, 
solidifying the entire PCM expeditiously, provides an ingenious solution for the PCMs’ meager thermal 
conductivity. As a representative of genuine DC energy storage units, the simultaneous impingement of a droplet 
pair on the PCM surface is considered here so that the interaction between neighboring droplets can also be 
taken into account. Once impacting the molten PCM pool, droplets absorb heat from the pool and evaporate, 
which solidifies a portion of the paraffin and lessens its temperature. Thus, in this research, solidified PCM area 
(A) and the minimum pool temperature value after the impact (Tmin) are the objective functions characterized by 
high-speed and IR thermal imaging, respectively. Three design parameters affecting the objective functions are 
the We number, horizontal impact spacing (dh), and the PCM temperature before the impact (T). As a novelty, a 
MOO is implemented in this scholarship to characterize the impact conditions by which A is maximized, while 
Tmin is minimized, which engenders a more sizeable and more stable solid, leading to a more expeditious charge 
and discharge processes (see Section "Experimental results"), which has been the main stimulant for conducting 
the research. To put it another way, the study strives to enhance the effectiveness of a TES unit working based on 
the direct contact between HTF and PCM, which is its primary significance. In this survey, the following stages 
are performed, respectively:

1. Immense experiments are conducted systematically for various design parameters so that the experimental 
values of the objective functions (A and Tmin) are procured.

2. Experimental data are employed to train the artificial neural network (ANN) to obtain two models for the 
objective functions.

3. The trained network is given to the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) 
to accomplish MOO.

4. Eventually, the optimum impact conditions are attained from the Pareto front by final decision-making 
(FDM) approaches.

Multiple droplet impingement is an intricate phenomenon, which is largely due to the interaction between 
adjacent droplets; therefore, investigations allocated to this challenging topic are rare compared to studies 
surveying the single droplet impact. Hence, delving into the simultaneous impact of a droplet pair is one of 
the novelties of the research. Additionally, studies investigating multiple droplet impacts on a liquid pool are 
scarce. Also, intriguingly, this investigation embraces two simultaneous phase changes (i.e., paraffin solidification 
and ethanol droplet evaporation, which has not been explored previously. Moreover, to the best of the authors’ 
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knowledge, there is no research in the literature concentrating on the optimization of droplet impact parameters 
for TES applications.

Experimental method
Selecting PCM and HTF. Paraffin wax was employed as the PCM due to its low cost, abundance, non-
toxicity as well as high latent heat. The latent heat of paraffin and its phase change point were attained by the 
DSC experiment, whose results are shown in Fig. 1. Based on Fig. 1, the PCM solidification peak is 66.89 °C. 
Furthermore, the PCM’s thermal conductivity was specified by a KD2 pro instrument. Throughout the text, the 
terms PCM and paraffin are used interchangeably.

In the DC technique, the fluid saturation point should be lower than the PCM temperature; therefore, once 
contacting the PCM, the fluid evaporates and absorb heat from the paraffin so that the entire paraffin is solidified. 
Moreover, the HTF should be insoluble in the liquid PCM. Additionally, the density of PCM and HTF should 
be sufficiently different, making the separation between them  uncomplicated17. Complying with the mentioned 
points, ethanol 96% was picked out as HTF for producing the droplets. Tables 1 and 2 summarize the properties 
of ethanol and PCM, respectively. It should be mentioned that the DSC analysis was also conducted for ethanol 
and paraffin mixture, whose results indicated that ethanol did affect paraffin properties negligibly as the ethanol 
is essentially insoluble in paraffin.

Since the paraffin temperature is higher than the ethanol saturation point, ethanol boils inside the PCM 
and subsequently evaporates; hence, the mode of heat transfer will be boiling whose heat transfer coefficient is 
sharply greater than convection; thus, applying a direct contact between the ethanol and paraffin may result in 
an exceeding increase in the melting and solidification rates of PCMs, which is desirable in TES, where paraffin 
is utilized as the storage material. Furthermore, DC heat transfer between ethanol and paraffin is useful for 
applications where the rates of charge and discharge should be monitored, which may be simply accomplished 
by varying the PCM to heat transfer HTF ratio. Also, this approach may be advantageous to cooling systems in 
which there is a limitation for the size of the system. Since the time of melting and solidification is overly short 
due to the high heat transfer rate caused by the boiling of HTF inside the PCM, numerous charge–discharge 
cycles may be fulfilled in a limited time, compensating for the low system size.

Figure 1.  DSC analysis of granular paraffin wax, utilized as the PCM in the present study.

Table 1.  Ethanol 96% properties.

Saturation point (°C) Enthalpy of evaporation (kJ/kg) σ (N/m) μ (Pa.s) ρ (kg/m3) cp (kg/kJK)

78.5 846.0 0.02255 0.0012 785 2.46

Table 2.  Paraffin wax properties.

Solidification point (°C) Enthalpy of fusion (kJ/kg) Thermal conductivity at 80 °C (W/mK) cp at the liquid phase (kJ/kgK)

66.89 158.5 0.227 2.4
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Experimental setup. Figure  2 demonstrates the experimental setup along with its schematic diagram. 
Initially, heated by a hot plate, paraffin reached a specific temperature (70, 75, 80, 85, 90, 95 °C), which was 
measured invariably using calibrated K-type thermocouples, connected to a data logger (BTM-4208SD). Then, 
the hot plate was deactivated. At this stage, by exerting a tiny force on a syringe utilizing a syringe pump, an 
ethanol droplet pair was separated from needles located at the height H (10, 15, 20, 25 cm). By varying the 
droplet release height (H), the impact velocity may be changed, which affects the Weber number (see Section 
"Image post processing"). Hence, the effects of the Weber number on the objective functions are examined 
by changing H. The values of H were chosen so that a wide variety of droplet impact dynamics is taken into 
 account41; therefore, a comprehensive data set was exploited to train the artificial neural network. Furthermore, 
the H values were selected according to a TES unit performing based on the DC  approach20. For droplet pair 
generation, two blunt-tip needles with an inner diameter of 1.6 mm were attached to the droplet generator. To 
survey the horizontal spacing effects on the objective functions, four droplet generator devices were constructed 
in which the distance between needles’ centers varies from 4.02 to 12.06 mm. Equipped with a Macro lens for 
magnification, a digital CMOS camera (Nikon 1 J4) was fixed 50° with respect to the vertical axis so that the PCM 
surface could be captured. To capture the details of the multiple droplet impact phenomenon, the digital camera 
shooting rate was set to 1200 Hz with 416 × 144 pixels in each image in which each pixel roughly corresponds 
to 0.11  mm (the calibration was conducted by an object with determinate dimensions). Moreover, having a 
resolution of 640 × 480 pixels, an IR camera (Seek Thermal) was employed to investigate the paraffin surface 
temperature distribution after the impingement. To carry out the shadowgraph method, an LED light source was 
used. In addition, an optical diffuser was used to monotonously diffuse the light. The paraffin container, whose 
outer diameter is 100 mm, has been constructed from Pyrex. Furthermore, the container’s dimensions were 
selected such that walls would not affect the impact  dynamics42. The PCM height in the container was fixed at 
30 mm in all experiments as well. Though ethanol is insoluble in paraffin and evaporates after the droplet impact, 
the paraffin was completely altered after each experiment to avoid any PCM thermal degradation and exclude 
the effects of ethanol on the paraffin properties. An exhaustive elucidation of the experimental setup has been 
provided in our previous  research41.

Figure 2.  Experimental setup; (a) real image, and (b) schematic diagram.
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Image post processing. Impact velocity and initial droplet diameter were determined by pixel analyzing 
of the images. The initial droplet diameter was calculated as  follows43:

where Dv and Dh are the vertical and horizontal axes of the droplets as indicated in Fig. 3. Since droplets do not 
maintain a spherical shape during falling, Dv and Dh are not the same. By employing Eq. (1), the droplet diameter 
equals 2.68 ± 0.2 mm. Herein, the droplet diameter is supposed to be 2.68 mm for all experiments. The droplet 
impact velocity was obtained as follows:

where �y is the droplet displacement in the y-direction just before the impact, and �t is the time difference 
between the two successive images. It should be expressed that for computing the impact velocity and droplet 
diameter, the high-speed camera was fixed at 0°.

Additionally, the We number can be calculated as follows:

where D is the initial droplet diameter, ρ and σ are the ethanol density and surface tension, respectively, as given 
in Table 1. The experimental and theoretical impact velocities based on four falling heights (H) used in the study 
are provided in Table 3. Regarding Table 3, it is axiomatic that theoretical and experimental results are in apt 
agreement with the average error below 1%. Moreover, the impact nomenclature is schematically illustrated in 
Fig. 3, in which dh represents horizontal impact spacing and varies between 4.02 and 12.06 mm, as mentioned 
above. This parameter is nondimensionalized by the droplet diameter as  follows44:

where dh is defined as dimensionless horizontal spacing, whose values alter from 1.5 to 4.5.
Generated after two ethanol droplets impacting the paraffin surface, the solidified PCM area was determined 

by DMV  software45, whose procedure is shown in Fig. 4. In the first stage, Fig. 4c, background subtraction was 
accomplished, accentuating the desired area. Subsequently, demonstrated in Fig. 4d, the grayscale image was 
converted to an 8-bit binary image via a user-defined threshold. At this step, the boundaries of the area were 
recognized. Then, minuscule erroneous objects, created in previous stages unintentionally (see Fig. 4d), were 
eliminated by a threshold, as shown in Fig. 4e. The border of the image can be omitted at this stage as well. 
Eventually, the fill holes option filled the gaps inside the region, ending up producing a well-defined zone whose 
area could be identified (Fig. 4f). The final values achieved from DMV were corrected by dividing cos(β) , in 
which β is the tilted angle of the high-speed camera (β = 50◦).

(1)D =
(

D2
hDv

)

1
3

(2)v =
�y

�t

(3)We =
ρv2D

σ

(4)dh =
dh

D

Figure 3.  Defining impact parameters.

Table 3.  Experimental and theoretical impact velocity along with the We number based on four different 
falling heights used in this study.

H (cm) vexp(m/s) vtheory (
√

2gH ,m/s) We

10 1.38 1.40 179

15 1.71 1.72 275

20 1.99 1.98 373

25 2.21 2.21 464
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Uncertainty analysis. Inevitable errors in the current investigation chiefly originate from the measurement 
of the PCM temperature and droplet impact velocity. The paraffin temperature prior to the impact was attained 
by a k-type thermocouple, whose accuracy was 0.5 °C. Furthermore, the temperature distribution of the PCM 
surface was determined by an IR camera having an accuracy of 0.3 °C. In addition, data post-processing was 
implemented with an accuracy of 1 pixel, which corresponds to a 0.11 mm error. Thus, given the shooting rate of 
the camera (1200 fps), the impact velocity was calculated with an accuracy of 0.13 m/s. Based on Taylor’s theory, 
the uncertainty in the Weber number is as  follows46:

According to Eq. (5), the error in the Weber number calculation is, on average, 16.4% for different impact 
velocities. Table 4 recapitulates the accuracy of the experimental apparatus utilized in this survey.

Experimental results
Two influential phenomena take place in the wake of ethanol droplet impact on the PCM pool: 1- absorbing 
heat from the PCM, ethanol droplets commence evaporating, and 2- the molten PCM is solidified. A couple of 
objective functions playing a momentous role in describing the mentioned incidences are the PCM solidified area 
(A) and the minimum PCM pool temperature value after the impact (Tmin), which are actually representative of 
the latent and sensible heat. Three design parameters, i.e., PCM pool temperature (T), impact spacing (dh), and 
We number influence the objective functions. The effect of these design parameters on objective functions will 
be scrutinized in this section. The experiments were carried out for four different We numbers (179, 275, 373, 
and 464), four different dimensionless impact spacing (1.5, 2.5, 3.5, and 4.5), and six various pool temperatures 
(70, 75, 80, 85, 90, and 95 °C); hence, a huge amount of experimental data (96 cases) was produced for the 
optimization purpose. To examine reproductivity and ensure accuracy, each case was repeated at least three 
times, and the presented data is the average of three cases.

(5)δWe

We
=

√

(

δD

D

)2

+

(

2δv

v

)2

Figure 4.  The post-processing stages implemented to determine the solidified PCM area; (a) original image, (b) 
grayscale image, (c) background subtraction, (d) binarized image and the edge diagnosis, the incorrect object 
that is occurred in the top left of the figure is unequivocal, (e) eliminating the tiny incorrect object happened in 
the previous step, and (f) the final image after filling the gaps; the area is calculated by this image. The impact 
conditions are We = 373, dh=2.5, and T = 70 °C. 

Table 4.  Uncertainty of experimental apparatus.

Apparatus Error

Syringe pump 1 μl/h

High-speed camera 0.11 mm

k-type thermocouple  ± 0.5 °C

IR camera  ± 0.3 °C
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The process of solid formation on the PCM surface is revealed in Fig. 5 for the impact condition of We = 464, 
dh  = 3.5, and T = 90 °C, where t = 0 is the time at which the first droplet contact the PCM. Based on Fig. 5, craters 
are created shortly after the impingement (t ≈ 2.5 ms); then, they expand vertically downward and radially until 
reach the maximum depth and width (t ≈ 20.8 ms). When attaining maximum depth and width, craters rebound 
and two jets are ejected separately perpendicular to the paraffin surface (t = 47.5 ms), which evolute to achieve 
maximum height (t ≈ 61.7 ms). Next, jets descend, and their heights diminish, ending up forming solidified 
PCM areas (t = 230.8 ms) on the pool surface. The detailed examination of impact dynamics is far beyond the 
scope of the present study.

PCM temperature effect. Figure  6 represents the influence of paraffin pool temperature (T) on the 
solidified PCM area (A) and the minimum pool temperature values after the impact (Tmin) for various We 
numbers at dh = 2.5. Based on Fig. 6a, it is obvious that A increases exceedingly as temperature diminishes for 
all We numbers. Indeed, when T is high, the major portion of heat extracted by ethanol droplets is sensible heat, 
lessening the paraffin temperature; therefore, the insignificant part of the absorbed heat is allocated to the PCM 
solidification, leading to a small solidified area. That is why the area at T = 95 °C is quite small. Conversely, when 
the PCM temperature is sufficiently near to the freezing point, the remarkable portion of the heat absorbed by 
droplets is dedicated to the phase change and the negligible one is utilized to reduce the temperature up to the 
solidification point in the form of sensible heat, engendering a sizeable solidified area.

t sm8.02sm0=

sm5.74sm5.2

sm7.16sm8.5

sm8.032sm8.01

Figure 5.  Time elapsed of solidified PCM area formation after simultaneous double droplet impact when 
We = 464, dh = 3.5, T = 90 °C.
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Figure 6.  Solidified PCM area (A) and minimum pool temperature value after the impact (Tmin) as a function 
of PCM temperature (T) for different We numbers at dh = 2.5; (a) A(T), and (b) Tmin (T).
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Moreover, regarding Fig. 6b, it is lucid that Tmin decreases when the pool temperature dwindles. At low 
pool temperatures, the chief part of the absorbed heat causes the phase change and curtails the created solid 
temperature well below the freezing point. In contrast, at high pool temperatures, Tmin is rather close to the 
phase change point, indicating that the solid zone can be wiped out promptly after the formation by absorbing 
heat from the pool, which is at a higher temperature. Consequently, not only does lessening the temperature 
provide a larger solidified area, but it reduces its temperature as well, which provokes a more “stable” solid 
region preserving for a longer period. In contrast, when Tmin is high, the created solid swiftly melts. It should 
be stated that although at T = 95 °C minimum temperature value does not necessarily reach the solidification 
point of 66.89 °C, the solidified PCM area was observed for this temperature since based on the DSC analysis 
the solidification process is actually initiated at about T = 75 °C (see Fig. 1).

Figure 7 indicates the influence of PCM temperature on A for several pool temperatures when We = 464 
and dh  = 3.5. Unambiguously, the less the temperature, the more sizeable the solidified area. For instance, A 
at T = 90 °C is 83.5  mm2, while that at T = 80 °C is 218.7  mm2; thus, an 11.1% reduction in temperature brings 
about a dramatic increment of 161.9% in A. Additionally, achieved by IR thermal imaging, Fig. 8 demonstrates 
the influence of pool temperature on Tmin in the mentioned impact conditions. As can be seen, the maximum 
temperature in each contour is slightly higher than the reported values of T since reported pool temperatures 
are indeed the average value measured by the thermocouple and slightly lower than the maximum temperature. 
Based on Fig. 8, by reducing the temperature from 75 °C to 90 °C, the minimum temperature is increased by 
roughly 11.0%.

Weber number effect. As indicated in Fig. 6a, augmenting We raises A for all pool temperature values. 
Actually, increasing the We number enhances the droplets’ inertia, which facilitates the spreading of the droplets 
onto the pool surface after the impact. Hence, the effective heat transfer surface between the PCM and the fluid 
is ameliorated, which instigates the solidified PCM area growth. For instance, A at We = 275 is, on average, 25.7% 
higher than that at We = 179. Additionally, scrutinizing the graphs of Fig. 6, one can figure out that the influence 
of We on A becomes weaker when the paraffin temperature diminishes. Increasing the viscosity due to the 
temperature decrement accounts for the phenomenon since growth in the viscosity boosts viscous dissipation, 
impeding droplet spreading on the surface, engendering a lower heat transfer area.

By contrast, given Fig. 6b, increasing the We number gives rise to a gain in Tmin, which is unfavorable in energy 
storage units. In fact, when the We number is low, droplets do not spread aptly on the PCM surface, reducing 
the pool-droplet interaction. Hence, in low We numbers, droplets interact with an insignificant portion of the 
paraffin surface, and their enthalpy of vaporization is devoted to solidification and lowering the temperature of 
a small area. Consequently, at low We numbers, droplets solidify a small region and then lessen its temperature 
remarkably, provoking a low Tmin. In contrast, at high We numbers, droplets interact with a notable part of 
the PCM, meaning that the evaporation of droplets is allotted to heat exchange with a larger PCM surface. 
Accordingly, as causing a phase change of a substantial area, the heat absorbed by the droplets is not adequate to 
diminish the solidified area’s temperature after the formation, engendering a higher Tmin. Accordingly, preserving 
for a longer time, the solid produced by low We numbers are more “stable” inasmuch as its temperature is far 

T = 75°C T = 80°C T = 85°C T = 90°C

Figure 7.  Solidified paraffin produced on the pool surface for various pool temperatures at We = 373 and dh
=3.5.

Figure 8.  IR images of the PCM surface after the simultaneous impact of two droplets for various pool 
temperatures at We = 373 and dh = 3.5.
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from the melting point. Conversely, being in higher temperatures, solidified PCM generated by high We number 
impacts have less stability and are annihilated shortly after the formation. This point is notably authentic when 
T > 85 °C.

Figure 9 reveals the effect of We on A when dh  = 4.5 and T = 85 °C. At We = 275 the solidified PCM area 
is 146.4  mm2, while this value reaches 206.6  mm2 for We = 464, implying that improving We by about 68.7% 
prompts a 41.1% enhancement in A. Figure 10 illustrates the temperature distribution of the paraffin surface 
after the impingement is in similar impact conditions. According to Fig. 10, reducing the We number from 464 
to 179 has led to a 7% decrement in Tmin. Moreover, the impingement region can be differentiated conveniently 
in all cases due to the noticeable temperature reduction that occurred in the wake of the impact. Additionally, 
regardless of the We number, the most efficient heat transfer region has occurred in the impact crater zone since 
Tmin has taken place in this region, which is consistent with Zhang et al.47.

Impact spacing effect. Horizontal spacing has a consequential influence on the interaction between 
droplets, which in turn directly affects the objective functions of A and Tmin. Augmenting impact spacing 
substantially improves the solidified PCM area as demonstrated in Fig. 11a. Indeed, curtailing dh strengthens the 
droplet–droplet interaction and attenuates the droplet-PCM interaction, which diminishes the spreading area of 
the droplets. Therefore, less fluid contact with the paraffin, and the effective heat transfer area lessens, instigating 
a decline in A. For instance, according to Fig. 11a, A at dh = 3.5 is, on average, 35% higher than that at dh = 1.5. 
Additionally, the effect of horizontal spacing on A diminishes as the temperature decreases since lessening the 
temperature intensifies paraffin surface tension, which hampers droplets spreading on the surface and lessens 
the heat transfer area between the droplets and the PCM.

Conversely, concerning Fig. 11b, Tmin is raised as the horizontal impact spacing increases, which is an 
undesirable factor in the TES system. At low impact spacing, since the spreading area is insignificant, droplets 
absorb heat from a small region of PCM, meaning that absorbed heat is dedicated to solidifying as well as 
lessening the temperature of a small zone. Consequently, in the case of shorter impact spacing, the created 
solid has a lower temperature. Hence, the shorter the impact spacing, the more stable the produced solid as it is 
maintained for a longer time.

The effect of horizontal spacing on the A is indicated in Fig. 12, in which We = 464 and T = 85 °C. Vividly, 
increasing impact spacing has engendered a dramatic improvement in A. IR images of the PCM surface are 
displayed in Fig. 13 in the mentioned impact parameters. Regarding Fig. 13, the impingement zone for dh = 1.5 
is smaller than that for dh = 4.5. Therefore, the sensible and latent heat of the droplets absorbed from the PCM 
is assigned to a tiny region that not only solidifies it but also reduces its local temperature exceedingly after the 
phase change. As a result, an insignificant solidified PCM area with a lower temperature is accomplished for the 
lower values of impact spacing. In addition, the heat transfer in the impact crater has the foremost efficacy since 
Tmin has occurred in this zone in all cases.

Figure 14 represents non-dimensional solidified area ( A) and non-dimensional minimum pool temperature 
value after the impact (θmin) as a function of non-dimensional impact spacing for different Weber numbers are 
provided in, in which T = 90 °C. Evidently, A grows when horizontal spacing is boosted. Furthermore, dh profiles 
shift upwardly as the We number is raised, indicating that the We number plays a critical role in the heat transfer 

We = 179 We = 275 We = 373 We = 464

Figure 9.  Solidified paraffin produced on the pool surface for various Weber numbers at T = 85 °C and dh=4.5.

We = 179 We = 275 We = 373 We = 464 

Figure 10.  IR images of the PCM surface after the simultaneous impact of two droplets for various We numbers 
at T = 85 °C and dh = 4.5.
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characteristics of double droplet impingement. Therefore, as expected, the greatest A value corresponds to dh = 
4.5 and We = 464. On the other hand, θ increases as the We number and impact spacing grow, as described before.

Generally speaking, larger solids created on the pool after the impact are favorable in the DC approach as 
they hasten the discharge process; hence, more charge and discharge cycles can be achieved in a specific time. 
Moreover, the less Tmin, the more stable the solid. On the contrary, solids, whose temperatures are relatively high, 
are swiftly obliterated by absorbing heat from the molten PCM pool having a high temperature. Accordingly, 
the formation of a sizeable solid possessing a low temperature after the droplet impact is desirable in the DC 
procedure. However, as profoundly discussed in this section, though directly proportional to A, the Weber 
number and horizontal impact spacing are inversely proportional to Tmin. Therefore, by exploiting MOO, the 
current investigation strives to determine the optimum impact parameters through which A is maximized, and 
Tmin is minimized, which enhances the efficacy of the TES unit. Designed under this optimum condition, a system 
may take advantage of a low volume since numerous charge and discharge cycles conducted in a particular time 
can compensate for a small volume.
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Figure 11.  Variation of solidified PCM area (A) and minimum surface temperature (Tmin) against PCM 
temperature for four different horizontal impact spacing at We = 373; (a) A (T), and (b) Tmin(T).
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Figure 12.  Solidified paraffin produced on the pool surface for various horizontal impact spacing at We = 464 
and T = 85 °C.
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Figure 13.  IR images of the PCM surface after the simultaneous impact of two droplets for various horizontal 
impact spacing at We = 464 and T = 85 °C.
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ANN and modeling
An artificial neural network (ANN) is a biologically-inspired computational model featuring numerous 
computational elements known as "neurons"48. In fact, ANN is a programming approach that acquires 
knowledge by observing data patterns. Initially, a collection of interconnected neurons is established to facilitate 
communication among them. Subsequently, a problem is formulated to be addressed by the network. The network 
undergoes iterative processes in an attempt to solve the problem and identify the correlation between input and 
output data. During the process, the network endeavors to minimize the error between the predicted and exact 
values. Eventually, by repeating this process, and with the help of thorough training examples and advanced 
computational power, ANN is capable of providing respond to various inquiries. The architecture of ANN 
comprises three layers, namely input, hidden, and output. It is worth mentioning that ANN has attracted the 
attention of researchers regarding modeling, predicting, or optimization problems such as optimizing energy 
systems, owing to its efficient capability in simulating and modeling nonlinear  processes49.

Obtained in Section "Experimental results", the experimental values of Tmin and A are considered as the 
inputs to the modeling problem serving as training data for the ANN . The trained network is then integrated 
into the multi-objective NSGA-II algorithm as a fitted function to perform MOO. In this regard, to evaluate 
the precision of the network in producing output results, a mean squared error (MSE) coefficient is utilized. 
Figure 15 represents the optimization methodology coupling the experimental and the neural network, as well as 
the neural network and NSGA-II. To train the network, the two variables of solidified PCM area and minimum 
pool temperature value after the impact ought to be dimensionless. By using the initial droplet diameter (D) and 
the paraffin phase change point, the aforementioned variables were nondimensionalized as  follows44:

Also, the ranges at which design parameters vary are listed in Table 5.
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Identical to ANN, the function fitting neural network (FFNN) bears three layers. The initial point of 
connection begins with the inputs, and each subsequent layer is linked to the preceding one, ultimately resulting 
in the production of the output  layer49. The performance of the network is contingent upon the number of hidden 
neurons. The optimization of this number is achieved through a process of trial and error. Furthermore, two 
neural networks were trained to improve the accuracy of modeling for optimization purposes for A and θmin. 
Table 6 presents the neural network specifications applied to model the dimensionless solidified PCM area. For 
the purpose of training and testing the network, the data should be divided into three distinct datasets, including 
training, validation, and testing. During training, it is this set of data used to detect hidden features or patterns 
in the data. In each epoch, the model learns the features of the training data by feeding it the same training data 
repeatedly. At the same time, validation sets, separate from training sets, are used to validate the model during 
training. This validation process provides information that can be used to fine-tune the model’s hyperparameters 
and configurations and determine whether the training is progressing in the right direction. The model is trained 
on the training set while being evaluated on the validation set at the end of each epoch, preventing the model from 
overfitting. A test set is then used to test the model’s accuracy once it has been trained, providing an unbiased 
measure of the model’s performance. In this concern, 15% of the data is used for validation, 15% for testing, and 
the rest for training. Furthermore, since the dataset is not noisy, Levenberg–Marquardt’s algorithm is employed 
in the current scholarship. According to this algorithm, training stops automatically when generalization does 
not improve, as shown by increasing the mean square error of validation samples.

By using the abovementioned parameter variables, the neural network was trained. Figures 16, 17 and 18 
depict the neural network analysis of A . According to Table 6 and Fig. 16, the validation process undergoes 
changes after 13 iterations, and the validation increment comes to a halt at iteration 19 to prevent overfitting 

Table 5.  The range of the input variables changes.

Design parameters bounds

dh 1–5

θ 1–2

We 100–1000

Table 6.  Variables used for dimensionless solidified PCM area’s neural network.

Parameters Value

Validation percentage 15%

Testing percentage 15%

Number of hidden layers 1

Number of hidden neurons 10

Training function Levenberg–Marquardt

Validation checks 6
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Figure 16.  The ANN model’s performance during training, testing, and validation for A.
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during neural network iterations. That shows many iterations do not enhance the neural network’s accuracy; in 
this scenario, iteration 19 is the best value.

Furthermore, Fig. 17 reveals the error histograms generated by the corresponding ANN model providing an 
exhaustive analysis of the model’s suitability and validity. The average relative error of this network to estimate 
the amount of A is equal to 2%, which indicates the acceptable accuracy of the trained network. In addition, to 
examine the efficiency of the neural network, the coefficient of determination  (R2) is utilized. It is the value of  R2 
that determines how much the output results vary. Figure 18 provides a comparison between the ANN’s output 
and the exact values. The closer the  R2 value to one, the more accurate the estimate and, hence, the more reliable 
the trained network. This value for the dimensionless solidified PCM area’s network is 0.98, which denotes high 
accuracy and reliability.

Another network is utilized to model the dimensionless minimum pool temperature value (θmin) as well. The 
specifications and parameters that are used in the neural network for θmin are listed in Table 7.
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Figure 18.  Results of the ANN prediction versus the actual data for A.
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Table 7.  Variables used for dimensionless minimum pool temperature’s neural network.

Parameters Value

Validation percentage 15%

Testing percentage 15%

Number of hidden layers 1

Number of hidden neurons 5

Training function Levenberg–Marquardt

Validation checks 6
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Figure 19.  The ANN model’s performance during training, testing, and validation for θmin.
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Figure 20.  ANN model error histogram for θmin.
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Figures 19, 20 and 21 represent the neural network analysis of θmin. According to Table 6 and Fig. 13, it can 
be concluded that, as in the previously trained network, the validation increment stops at iteration 28 to prevent 
overfitting after six iterations. Moreover, Fig. 20 shows the ANN model error histogram for θmin. According to 
Fig. 20, the average relative error for this network is 0.9%, demonstrating exceptional accuracy of ANN model. 
Moreover, based on Fig. 21, the network’s coefficient of determination is equal to 0.99, testifying to the high 
accuracy of the trained network.

Optimization
Optimization is a procedure leading to finding the optimal points of the system to minimize or maximize its 
performance; as it can be predicted, optimization is of great importance, having rendered many studies to focus 
on optimizing and designing energy systems to achieve higher  performance32. In the meantime, the MOO 
approach is considered an efficient means of addressing real problems since systems in the real world usually 
contain several objective functions that are inconsistent with one  another50. Real-world problems can have 
constraints and, in some cases, nonlinear objective functions, making them overly challenging to be solved. The 
mathematical representation of a MOO can be described as  follows51:

which is subjected to:

in which the decision parameter vector is represented as x, and k indicates the count of objective functions. 
Equality and inequality constraints are represented by Gp(x) and Hq(x) , respectively. Additionally, P and Q are the 
parity and constraint numbers,  respectively32. Unlike single-objective optimization, in MOO problems, attaining 
a single optimal solution is impossible. Therefore, the Pareto optimal solution can be used. There is a concept 
called a non-dominant solution in solving MOO problems. In this case, a candidate solution for a MOO problem 
is referred to as a non-dominated solution when it improves the values generated by one or more objective 
functions of the problem while diminishing the quality of the values generated by other objective functions. 
These answers are known as "Pareto optimal solutions," which are equally suitable and considered as equal. For 
the purpose of optimizing several objective functions, in this research, the NSGA-II algorithm, an evolved genetic 
algorithm, is utilized due to its high efficiency and effectiveness in handling multi-objective problems. This is 
attributed to its fast crowded distance estimation strategy and non-dominated sorting  procedure52. Figure 22 
illustrates the schematic of the NSGA-II algorithms flowchart.

The ideal point (utopia) in optimization problems is where all the objective functions are in the most optimal 
possible state, and the non-ideal point is where all the objective functions are in the most non-optimal state. 
These points actually define the upper and lower limits. By considering these points, methods based on the final 
decision-makers (FDMs) can be used to overcome the problem of not providing a single optimal point in MOO 
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Figure 21.  Results of the ANN prediction versus the actual data for θmin.
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problems. Herein, to attain a single optimal point on the Pareto frontier, two methods, the Linear programming 
technique for multi-dimensional analysis of performance (LINMAP) and the technique of order preference by 
similarity to an ideal solution (TOPSIS) are used. The governing equations of the LINMAP method are given 
as  follows53:

here, R signifies the quantity of Pareto optimal solutions, while k represents the total number of objective 
functions. Equation (9) can be obtained by measuring the distance of each Pareto front point from the ideal point 
based on its Euclidean distance, while in the TOPSIS approach, in addition to considering the distance of the 
points from the ideal point, the distance from the non-ideal point is also taken into account. Thus, the TOPSIS 
method determines the closest point to the ideal point and the greatest distance from the non-ideal point with 
the following  equations53:

where k and R are defined previously. Regarding Section "Experimental results", the parameters governing 
multiple droplet impact are the Weber number (We), paraffin temperature (T), and the impact spacing ( dh ). 
Therefore, these three variables are considered optimization parameters of the MOO problem. The objective 
functions of the problem are A and θmin as well. As pointed out previously, this research aims to maximize A 
while minimizing θmin so that each droplet impact leads to a large stable solid, which lessens the charge and 
discharge process. Figure 23 shows the Pareto front diagram of two-objective optimization by considering the 
mentioned objective functions.

Table 8 provides the results of MOO at the LINMAP and TOPSIS points.
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Figure 22.  schematic of the NSGA-II  flowchart53.
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In Fig. 24, scatter distributions are displayed for various design parameters, showcasing the ideal range 
for the primary decision variables. As can be seen from Fig. 24, the large proportion of optimum points of 
nondimensionalized temperatures (θ) is in the range of 1.003 < θ < 1.005, and the horizontal distance is in the 
range of 1 < dh  < 1.2 as well. Nonetheless, the optimal points of We numbers are distributed across the entire 
range of 250–700.

Conclusion
The multi-objective optimization (MOO) of a thermal energy storage (TES) unit working based on the direct 
contact of heat transfer fluid droplets (ethanol) and a phase change material (paraffin wax) was conducted for 
the first time. To carry out optimization, solidified PCM area (A) and minimum pool temperature value after the 
impact (Tmin) were considered as objective functions. Weber number (We), impact spacing (dh), and PCM pool 
temperature (T) have an outstanding effect on objective functions. Initially, experiments were implemented for 
179 ≤ We ≤ 464 , 4.02 ≤ dh ≤ 12.06 mm, and 70 ≤ T ≤ 95◦C . By altering impact parameters, a great amount of 
objective functions data was obtained employing high-speed and IR imaging as well as image post-processing. 
Subsequently, exploiting the artificial neural network (ANN), two models were fitted to each of the objective 
functions. In addition, it was shown that the accuracy and reliability of suggested models are excellent. Afterward, 
the trained networks were given to the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) 
to perform multi-objective (MOO) optimization. Ultimately, through two disparate decision-making methods 
(FDMs), the optimum impact conditions were accomplished. The pivotal outcomes of the study can may be 
recapitulated as follows:

• Diminishing the PCM pool temperature results in a greater solidified area and a lower Tmin; both of which 
are advantageous to TES.

• While enhancing A, the increment of the We number raises Tmin. Accordingly, one should fulfill a trade-off 
between A and Tmin when determining the Weber number.

• A decrement in horizontal spacing instigates a lower Tmin, while providing a smaller solidified area, entailing 
a trade-off between A and Tmin during characterizing horizontal impact spacing.

• Final ideal solutions were obtained by LINMAP (We = 309.44, dh = 1.06, θ = 1.00) and TOPSIS (We = 294.98, 
dh = 1.04, θ = 1.00) form the Pareto front diagram.

• The maximum solidified PCM area determined by LINMAP and TOPSIS equals 192.34mm2 and 188.21mm2, 
respectively.

• The minimum pool temperature values attained by LINMAP and TOPSIS are 50.10 °C and 49.90 °C, 
respectively.
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Figure 23.  The Pareto front of the objective functions.

Table 8.  Ultimate optimum solutions procured by MOO.

FDM A θmin We θ dh

LINMAP 8.524 0.749 309.444 1.000 1.061

TOPSIS 8.341 0.746 294.978 1.000 1.039
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The datasets generated during and/or analyzed during the current study are available from the corresponding 
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