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Composable security 
of CV‑MDI‑QKD with secret key 
rate and data processing
Panagiotis Papanastasiou *, Alexander G. Mountogiannakis  & Stefano Pirandola 

We provide a rigorous security proof of continuous-variable measurement-device-independent 
quantum key distribution which incorporates finite-size effects and composable terms. In order to use 
realistic and optimized parameters and be able to derive results close to experimental expectations, 
we run protocol simulations supported by a Python library, including all the protocol operations, from 
simulating the quantum communication till the extraction of the final key.

Quantum key distribution (QKD) uses a quantum channel for the transmission of signals between two distant 
legitimate parties to create a shared secret key1–3. The secret key can be later utilized for the symmetric encryption 
of confidential messages exchanged between the parties. In particular, based on the laws of quantum mechanics, 
QKD allows for the detection of the presence of an eavesdropper in the quantum channel and the quantification 
of the compromised amount of information4,5. Depending on this amount, the shared data after the quantum 
communication can be compressed into a shorter shared key, about which the eavesdropper possesses negligi-
ble knowledge. This leads to quantum-safe applications, i.e., applications safe against attacks by large quantum 
computers.

In the beginning, QKD protocols were based on a discrete-variable (DV) encoding6–8, such as the polariza-
tion of a photon. The security of such protocols has been thoroughly investigated. More recently, protocols that 
exploit continuous degrees of freedom, such as the position and momentum of the electromagnetic field9 have 
been developed10–12. These are called “continuous-variable” (CV) QKD protocols. CV-QKD is highly compatible 
with the current telecommunications and, consequently, promises simpler and cost-effective practical imple-
mentations. Furthermore, it produces high rates, which approach the capacity limit of repeaterless quantum 
communications, also known as PLOB bound13. Their performance with respect to larger distances has improved 
significantly14,15.

Crucial improvements have also been demonstrated in their security level. We have different levels of security 
(on top of the levels listed below, the security is characterized also by the level of attacks, i.e, individual, collec-
tive, or coherent ones9) according to the assumptions taken into consideration when one calculates the secret 
key rate (secret bits per channel use). The first is the asymptotic security which assumes an infinite number of 
signals. The finite-size security16 refers to the practical use of a finite number of signals. And finally, the compos-
able framework17 considers all the post-processing subroutines in the evaluation of the security of the protocol.

A standard QKD protocol provides security against channel attacks, where the eavesdropper interacts with 
the quantum signals propagating through the channel. However, equivalently crucial, if not more dangerous, 
are the attacks connected with the preparation or detection processes, where the eavesdropper has direct access 
to the labs of the two legitimate parties. These attacks are known as side-channel attacks1. MDI-QKD18,19 and 
CV-MDI-QKD20–24 have the intrinsic property of relieving the parties from any detection obligation. In fact, it 
uses an intermediate relay, which is responsible for the detection part of the protocol. The relay can be considered 
part of the channel, i.e., under the control of the eavesdropper. The outcomes of this detection are classically 
broadcast to the parties, who utilize them to build correlations between their data strings. This configuration 
can be used as a basis for constructing multi-user applications25,26 (see27, Appendix VII) that can be extended to 
QKD networks28. Experimental implementations have also taken place recently29,30.

Here, we focus on a simulation analysis similar to Ref.31,32 but for the CV-MDI protocol20,21. Its finite-size 
security analysis has been presented in Ref.33, with a first composable study discussed in Ref.34. In “Protocol and 
asymptotic secret key rate” section, we give a detailed summary of the protocol and the calculation of its asymp-
totic key rate. Then, we assume finite-size effects and describe the postprocessing subroutines. In “Composable 
security” section, we adapt the composable proof of Ref.17 to the CV-MDI protocol. This proof removes an issue 
from a previous treatment34 (see also27, Appendix VI). In “Privacy amplification” section, we explain how the 
parties apply the appropriate amount of compression to the data to extract a secret key, according to the previous 
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analysis. We present all the results of the simulation with the help of a developed Python library in “Simulation 
and results” section. Conclusions are in “Conclusion” section.

Security analysis
In this section, we investigate the quantum communication part of the protocol (considering the classical post-
processing part ideal). We focus on the potential to build strong correlations secret to the eavesdropper consider-
ing an infinite number of signals between the parties. We present this analysis here because, as we show later, the 
asymptotic secret key rate is an integral part of the composable secret key rate, along with the correction terms 
because of the non-ideal character of the classical postprocessing procedures.

Protocol and asymptotic secret key rate.  Alice and Bob prepare coherent states |α� and |β� with ampli-
tudes α = (1/2)(QA + iPA) and β = (1/2)(QB + iPB) , carried by modes A and B respectively. In particular, they 
encode the real vectorial variables α = (QA, PA) and β = (QB, PB) following the Gaussian distributions

with variances σ 2
A and σ 2

B respectively. The two bosonic modes travel to an intermediate relay, where a Bell 
measurement is applied to them with outcome γ = (1/2)(QR + iPR) . We also use the notation γ = (QR , PR).

Eve interacts with the traveling modes via a two-mode attack where mode E1 is mixed with mode A through 
a beam splitter with transmissivity TA and mode E2 with mode B through a beam splitter with transmissivity TB 
(see Fig. 1). The CM of Eve’s modes is given by

where the bona fide conditions for g and g ′ are given in Ref.21. In fact, given the previous description (These 
attacks are collective Gaussian two mode attacks and represent the entangling cloner attack35,36 counterpart of a 
channel comprised of two links.), the best attacks are those with g < 0 and g ′ > 0 . Taking into consideration this 
area of values, one can see that as |g| and |g ′| become larger, the modes become more quickly and more strongly 
correlated (entangled). Then, one can choose gmax = max{|g|, |g ′|} and assume the attack with

as the worst-case scenario. In such a case, the quadratures can be treated equivalently, as they follow the same 
probability distribution.

The outputs QR and PR are dependent on the variables QA , PA and QB , PB according to the following equations:
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(5)QR =τBQB − τAQA + Qz ,

(6)PR =τBPB + τAPA + Pz ,

Figure 1.   Alice and Bob send coherent states |α� and |β� with modes A and B to the intermediate relay. Eve’s 
modes E1 and E2 interact with the traveling modes via beam splitters with transmissivities TA and TB respectively. 
Eve’s two-mode attack is characterized by thermal noise parameters ω1 and ω2 (see Eq. 3). Eve’s modes are stored 
in a quantum memory waiting for an optimal measurement after the communication between the parties.
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where τA and τB are rescaling parameters connected to the overall attenuation via

and the noise variables Qz and Pz have variance σ 2
z  such that

where ηeff  and vel are the calibrated detection efficiency and electronic noise of the detectors respectively. In Sup-
plementary Appendix V, we show the details of the calibrated noise attack and its connection to the uncalibrated 
one (see Supplementary Appendix IV). Subsequently, we obtain

with

In the EB representation, one introduces additional modes a and b in two-mode squeezed-vacuum (TMSV) 
states with modes A and B, respectively. These states have variances µA = σ 2

A + 1 and µB = σ 2
B + 1 , respectively. 

Then, the encoding process is simulated by a heterodyne measurement on modes a and b with corresponding 
measurement outcomes α̃ and β̃ . The initial CM of the systems is given by

with VaA(µA) and VBb(µB) being CMs of a TMSV state

and Z = diag{1,−1} . The attack corresponds to applying a beam splitter with transmissivity TA between the 
modes A and E1 and a beam splitter of transmissivity TB between modes B and E2 . The beam splitter symplectic 
operation with transmissivity T is given by

After the beam splitters, Alice’s and Bob’s modes A′ and B′ are mixed in a balanced beam splitter (i.e., T = 1/2 ) 
and conjugate homodyne measurements are applied to the output modes with outcomes grouped in the variable 
γ . In fact, starting from a CM with the following general form

if we apply a homodyne measurement to mode M with outcome xM , the CM after the measurement will be 
given by

with � = diag {1, 0} ( � = diag {0, 1} ) for a Q(P)-measurement and (.)−1 being the pseudo-inverse operation.
In this description, the CM after the relay measurements is given by

where
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The conditional CM after the heterodyne measurement of mode b with outcome β̃ is given by

From the matrices

and Va|γ β̃ , we can calculate the mutual information between β̃ and Alice’s outcome α̃ which is

One may also calculate, from the CM in Eq. (17), Eve’s Holevo information

which is expressed in terms of conditional von Neumann entropies. Then by the assumption that Eve’s systems 
E = E′1E

′
2e purify the whole output state, we have that the von Neumann entropy of the state ρE|γ equals that of 

ρab|γ , and similar equivalence holds between ρE|β̃γ and ρa|β̃γ . These entropies are not dependent on the outcomes 
β̃ and γ and can be expressed in terms of the symplectic eigenspectra {ν±} and ν̃ of of the CMs Vab|γ and Va|β̃γ 
respectively, so that

with

In terms of mutual information, the measurement variables α̃ and β̃ in the EB scheme are equivalent to the 
rescaled P&M variables, α and β . Then the conditioning on γ is equivalent to a displacement on the variables α 
and β so that key-extraction variables, x = (Qx , Px) and y = (Qy , Py) , need to be suitably constructed. In fact, 
the parties use the following relations

An optimal option for the parameters u and v is given by assuming a minimal correlation between the new 
variables, x and y , and the relay outputs. This is explained by the fact that Eve should know as less as possible 
about x and y by knowing γ . Therefore, we impose

so to obtain (These are the regression coefficients. Given a bipartition of a multivariate Gaussian distribu-
tion {x1, x2} with CM � , the regression coefficients are given by the matrix �12�

−1
22  . One may write that 
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Therefore, one may write

where the first equality is proven in Ref.27, Appendix I.
The quantum mutual information between Eve’s system E = E′1E

′
2e and Bob’s key-extraction variable y when 

she has access to the variable γ is given by37, Lemma 7.4.4

and it is equal to the Holevo information χ(E : y|γ ) since y is a classical variable. In particular, we have that, 
given γ , there is a function y = f (β) determined by the relations in Eqs. (31) and (32) such that β = f −1(y) . This 
allows us to apply the data processing inequality in both directions with respect to y and β and obtain

At this point, one may define the asymptotic key rate

which is calculated starting from the CM in Eq. (17) as in Ref.21. Note that ζ is the reconciliation parameter 
defined later in Eq. (70). This parameter accounts for the proportion of mutual information given to Eve during 
the public channel communication of the parties performing a non-ideal reconciliation process.

Parameter estimation.  Here we follow the PE proposed in Ref.33. An alternative way is described 
in27, Appendix  II.B based on extra simplifying assumptions. In particular, based on m samples [QA]i , [QB]i , 
[QR]i , for i = 1, . . . ,m , the parties calculate the maximum likelihood estimators (MLEs) of the covariances 
Cov(QA,QR) = �QAQR� = −τAσ

2
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2
B . These estimators are given by
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with

and obtain the associated variances27, Appendix II.A

Based on σ̂ 2
z  they find an estimator for � given by

with variance equal to

Finally, worst-case scenario values can be derived given the PE error ǫPE . These values are

where

Using the previous values, the parties can compute a secret key rate with an overestimated Holevo information

Note here that m = N − n where N is the number of signals sent through the channel and n is the number 
of signals devoted to secret key extraction for each block. In a practical situation, where the transmission can be 
assumed stable over a large number of blocks nbks , one can use m signals on average from each block in order 
to estimate the channel parameters. Thus the parties sacrifice M = mnbks for PE and the corresponding rate is 
given by

The mutual information and the correlation between the two variables x and y are connected as follows38, 
Eq. (8.56) (see also27, Eq. (2)):

One may derive the estimator for the correlation between the variables by replacing with the MLEs of the 
transmissivities and noise into the mutual information, namely,
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which helps in the calculation of the a priori probabilities for the initialization step of the decoding sum-product 
algorithm of the error correction step31,32.

Data reconciliation.  The parties apply the transformations of Eqs.  (29)–(32) based on the quantities in 
Eqs. (34)–(37) calculated via the MLEs of the previous section. Bob and Alice combine their data from the Q and 
P quadratures into one variable. In particular, Alice and Bob apply the following mapping to their data:

in order to obtain 2n samples from each block. Afterwards, the parties apply the EC procedure using non-binary 
LDPC codes following Ref.32, Sect. III.B (for extra details see also Ref.31). More specifically, they define the 
worst-case estimator (up to an error probability ǫent ) for the reconciliation parameter ζ appearing in Eq. (43) 
which is given by

where 2(Ĥ(l)− δent) is the worst-case scenario entropy of the raw-key string described by l , the normalized and 
discretized version of y. In particular, 2Ĥ(l) is the estimator of the previous entropy, −Rcodeq+ p is the maxi-
mum data exchanged for reconciliation per channel use when one uses a non-binary LDPC code with the rate 
Rcode associated with the Galois filed G(2q) and discretization of p bits. We take into consideration here that Bob 
applies the LDPC encoding only to the q bits of l while the rest p− q bits are entirely sent through the public 
channel. I(x : y)|T̂A ,T̂B ,�̂ is the ideal mutual information between the parties according to the data (i.e., after 
parameter estimation) which appears in Eq. (63). In fact by replacing ζ̂ in the previous equation, one obtains 
the practical key rate

The parties started with two different sequences of nbks blocks each with 2N initial samples and, in the process 
(after PE and EC), these are reduced to two indistinguishable binary sequences (with probability 1− ǫEC ) that 
consist of pECnbks blocks each carrying 2np bits:

Note that lnbin corresponds to the part of the original variable l in binary form that has been sent through the 
public channel using the LDPC encoding, lnbin is the part in binary form that has been sent unchanged through 
the public channel, and l̂nbin is the binary form of the successfully decoded and verified part with probability 
pEC . The parties need to apply on these sequences the appropriate amount of compression during the PA step so 
that the previous raw-data strings become a secret key. This is determined by the composable key rate calculated 
below. Concatenating appropriately the previous parts, the parties end up with the raw data sequences lbin for 
Bob and l̃bin for Alice in binary form.

Composable security.  We adopt the composable framework security analysis presented in Ref.17, Appen-
dix G to the requirements of the CV-MDI-QKD protocol. More specifically, the secret key is characterized by 
certain properties stemming from certain post-processing procedures, and there is an overall probability ǫ that 
the key fails to possess at least one of these properties.

According to the previous analysis, one may write for the length of the secret key17, Eq. (G12):

where l is defined according to the bidirectional mapping

where lQ(lP ) is the l instance corresponding to the q(p)-quadrature. Note that here we have used a virtual concat-
enation assumption (see Appendix A of 32) to pass from a description based on the single-quadrature variable l 
(normalized and discetized) to one based on the vectorial variable l. One may also observe that, in this case, Eve’s 
system is described by the group of modes E plus the classical variable γ . In particular, H(l|Eγ ) is the conditional 
von Neumann entropy of the variable l conditioned on E and γ , and39, Eq. (61)
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with |L| being the cardinality of the discretized variable l, which in our case is 22p . Note that, for the conditional 
mutual information, we have 37, Def. 7.4.1

In particular, this mutual information is between a classical variable l and a quantum system E (conditioned 
on another classical variable γ ). This is therefore the Holevo information χ(E : l|γ ) , i.e., an upper bound for 
the accessible information on l given that Eve possesses E (and knows the variable γ ). Therefore, by reversing 
Eq. (76), one may write

where H(l|γ ) = H(l) (see Eq. 33) is the Shannon entropy of l. In more detail, using the data processing inequality, 
we manipulate Eve’s Holevo bound as follows

Therefore we have

We may replace Eq. (79) in Eq. (73) and then set

In this way, we derive

where we include the asymptotic secret key rate of Eq. (43). One may replace Rasy with REC
M  of Eq. (71) into 

Eq. (81) to obtain (see also17,32,39)

with composable terms

The overall security parameter is equal to

where we note that the factor 3 is due to the fact the ǫPE is defined per parameter.
One may also derive an approximate key rate, which is not based on the data postprocessing

where R̄M is the rate in Eq. (63) but where the estimators are approximated using the initial values of the simula-
tion (see, e.g., the steps in Sects. III.B.1 and III.B.2 in Ref.31). In fact, one may define R̄M from Eq. (63) but where 
the following substitutions have been made:

and

(75)�AEP(ǫs, |L|) = 4 log2(
√

|L| + 2)
√

log2(2/ǫ
2
s ),

(76)I(l : E|γ )ρl = H(l|γ )−H(l|Eγ )ρl .

(77)H(l|Eγ )ρl = H(l|γ )− χ(E : l|γ )ρl ,

(78)χ(E : l|γ )ρl ≤ χ(E : Qy , Py|γ ) = χ(E : y|γ ).

(79)H(l|Eγ )ρl ≥ H(l)− χ(E : y|γ ).

(80)ζ I(x : y) = H(l)− n−1leakEC.

(81)
sn ≥ nRasy −

√
n�AEP(pECǫ

2
s /3, 2

2p)

+ log2[pEC(1− ǫ2s /3)] + 2 log2
√
2ǫh,

(82)R = npEC

N
R̃, R̃ :=

(
REC
M − �AEP√

n
+ �

n

)
,

(83)�AEP := 4 log2
(
2p + 2

)
√

log2

(
18

p2ECǫ
4
s

)
,

(84)� := log2[pEC(1− ǫ2s /3)] + 2 log2
√
2ǫh.

(85)ǫ = ǫcor + ǫh + ǫs + pEC(3ǫPE + ǫent),

(86)Rtheo = npEC

N
R⋆, R⋆ := R̄M − �AEP√

n
+ �

n
,

(87)T̂A → E(T̂A) ≃ TA +O(1/M),

(88)T̂B → E(T̂B) ≃ TB +O(1/M),

(89)�̂ → E(�̂) ≃ �,

(90)T̃A → TA − wσTA ,
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where σTA , σTB , and σ� have been calculated through Eqs. (53),  (54), and (57), respectively, after replacing TA , TB , 
and σ 2

z  in those formulas. Note that the rates presented in this section do not rely on the conjecture mentioned 
in27, Appendix VI.

Privacy amplification.  Now the parties are ready to apply the appropriate amount of compression indicated 
by Eq. (82) on their binary strings in Eq. (72) to create a secret key through the PA step. To achieve this, they 
compress them via universal hashing. More specifically, they apply a modified Toeplitz matrix G(Ir |Tr,2np−r) to 
their sequences in order to extract the secret key40

where r = 2npR̃ , the Toeplitz matrix Tr,2np−r is of r × 2np− r dimensions and Ir is the r × r identity matrix, with 
l
r
bin we denote the first r bits of the raw key string and with l2np−r

bin  the rest.

Simulation and results
In our simulations, the attack is handled by initially defining values for the excess noise of Alice’s ( ξA ) and Bob’s 
( ξB ) channels. These values, along with the transmissivity of each channel, constitute the thermal noise ω for 
each channel respectively as follows:

Using Alice’s thermal noise value, we can estimate the correlation parameter g from Eq. (11). We now have 
all components to find the excess noise variance � , which is shown in Eq. (10). Finally, the noise variance σ 2

z  is 
calculated through Eq. (9).

The parameters used to execute the simulations are listed in Table 2. To begin with, the symmetric version 
of the protocol is examined, which means that the signal variance and the channel parameters will be the same 
between Alice and Bob, i.e. µA = µB , TA = TB and ξA = ξB.

To find a signal variance range, for which the composable rate R becomes positive, the asymptotic rate Rasy was 
maximized using a modulation variance optimization function. Table 1 shows that a positive R can be achieved, 
when 45 ≤ µA,µB ≤ 50 . Under these conditions, the SNR spans from approximately 10 to 11.89. As presented 
in the Table, the choice of the reconciliation efficiency is important, when trying to maximize the value of R. It is 
important to note that neither the asymptotic nor the composable rate will further grow, as the signal variances 
increase. This means that, at some point, the rates will saturate and eventually become negative again.

Knowing the variables, for which the composable rate becomes positive, we can now identify what is the 
maximum tolerable excess noise in the system. For this purpose, µA = µB = 46 is chosen, in order to produce 
a high rate (and therefore tolerate more excess noise), while performing a faster EC procedure (when compared 
to that for µA = µB = 49 ). Therefore, in Fig. 2, the symmetric case of the protocol is considered again, with 
µA = µB = 46 and with the excess noise being variable. As observed from the plot, ξ can take values up to 0.008, 
before the protocol is deemed unsafe for key distribution.

Next, we investigate the asymmetric version of the protocol, where the channel parameters, as well as the 
signal variances, are different between Alice and Bob. Here, two cases are examined: Fig. 3 shows the behaviour 
of Alice’s transmissivity against the composable key rate and Fig. 4 displays the maximum tolerable values for 
Alice’s excess noise. Regarding the former case, it is possible for Alice’s channel to reach transmissivity values of 

(91)T̃B → TB − wσTB ,

(92)�̃ → �+ wσ�,

(93)K = GS = Ir l
r
bin ⊕ Tr,2np−r l

2np−r
bin ,

(94)ωA = TAξA

1− TA
+ 1,

(95)ωB = TBξB

1− TB
+ 1.

Table 1.   Composable secret key rate R (bits/use) versus Alice’s and Bob’s signal variances µA and µB . The 
rightmost column displays the average value for R, which is obtained after 5 simulations. Here we use 
N = 5× 105 and nbks = 100 . All simulations have achieved pEC ≥ 0.95 . Parameters not listed here are taken as 
in Table 2.

µA , µB ζ  (%) Rcode SNR R

45 90 0.833 10.019 0.00452259

46 92.15 0.846 10.252 0.06346475

47 91.35 0.846 10.485 0.04397952

48 90.62 0.846 10.718 0.01369927

49 92.35 0.857 10.951 0.06547397

50 91.64 0.857 11.189 0.04992091
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about TA = 0.94 , which translates to a fiber length of 1.34 km. The latter case shows that it is feasible to achieve 
a positive R under relatively high values for the excess noise, which can be extended to ξA = 0.01 . To ensure a 
positive composable rate is positive under harsher noise settings, it is possible to employ a larger LDPC matrix 
with a block length very close to the order of 106 (The use of non-binary LDPC codes allows for block sizes under 
106 . A fair comparison with existing research (using binary LDPC codes) would be to multiply the current block 
sizes with the Galois field component q. Note that the stable channel assumption (see Eq. 63) and the use of 
high SNR in our study contribute, as well, to obtaining rates with these block size values.) and Rcode = 0.875 for 
the task. Because of the finite-size effect, a larger LDPC block size leads to higher values for the reconciliation 
efficiency, when all other values remain the same.

Conclusion
In this study, we give a rigorous proof for the composable security of the Gaussian-modulated CV-MDI protocol 
and we calculate its rate. Depending on this rate, the appropriate amount of compression is applied, in order to 
extract a secret key. We simulate the quantum communication step and we apply all the classical postprocessing 
steps on the generated data. All of these procedures are performed by means of an associated Python library. 

Table 2.   The input parameters for the simulations.

Parameter Value (Table 1) Value (Fig. 2) Value (Fig. 3) Value (Fig. 4)

TA 0.98 0.98 Variable 0.96

TB 0.98 0.98 0.985 0.985

ξA 0.005 Variable 0.006 Variable

ξB 0.005 Variable 0.004 0.004

η 0.98 0.98 0.98 0.98

υel 0.01 0.01 0.01 0.01

nbks 100 100 100 100

N 5× 105 5× 105 5.88× 105 5.88× 105

M 0.1nbksN 0.1nbksN 0.15nbksN 0.15nbksN

p 6 6 7 7

q 4 4 4 4

α 7 7 7 7

itermax 200 200 100 100

ǫPE,s,h,corr 2−32 2−32 2−32 2−32

µA Variable 46 60 60

µB Variable 46 50 50

Figure 2.   Composable secret key rate R (bits/use) versus Alice’s and Bob’s excess noise values ξ = ξA = ξB . 
Every point represents the average value of R, which is obtained after 5 simulations. Here we use N = 5× 105 
and nbks = 100 . All simulations have achieved pEC ≥ 0.95 . The signal variances used by Alice and Bob are 
constant and equal ( µA = µB = 46 ). The values of the reconciliation efficiency ζ are shown on the top axis. 
Other parameters are taken as in Table 2.
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This library allows us to calibrate and optimize all the relevant parameters with direct benefits for experimental 
implementations.

Data availability
The datasets and the Python library used and/or analyzed during the current study are available from the cor-
responding author upon reasonable request.
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