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Gene‑specific machine learning 
for pathogenicity prediction of rare 
BRCA1 and BRCA2 missense 
variants
Moonjong Kang 1, Seonhwa Kim 1, Da‑Bin Lee 2, Changbum Hong 1* & Kyu‑Baek Hwang 2*

Machine learning‑based pathogenicity prediction helps interpret rare missense variants of BRCA1 
and BRCA2, which are associated with hereditary cancers. Recent studies have shown that classifiers 
trained using variants of a specific gene or a set of genes related to a particular disease perform better 
than those trained using all variants, due to their higher specificity, despite the smaller training 
dataset size. In this study, we further investigated the advantages of “gene‑specific” machine learning 
compared to “disease‑specific” machine learning. We used 1068 rare (gnomAD minor allele frequency 
(MAF) < 0.005) missense variants of 28 genes associated with hereditary cancers for our investigation. 
Popular machine learning classifiers were employed: regularized logistic regression, extreme gradient 
boosting, random forests, support vector machines, and deep neural networks. As features, we 
used MAFs from multiple populations, functional prediction and conservation scores, and positions 
of variants. The disease‑specific training dataset included the gene‑specific training dataset and 
was > 7 × larger. However, we observed that gene‑specific training variants were sufficient to produce 
the optimal pathogenicity predictor if a suitable machine learning classifier was employed. Therefore, 
we recommend gene‑specific over disease‑specific machine learning as an efficient and effective 
method for predicting the pathogenicity of rare BRCA1 and BRCA2 missense variants.

BRCA1 and BRCA2 (BRCA1/2) genes are associated with an elevated risk of developing breast and ovarian 
 cancers1,2. Small germline variants of BRCA1/2 are one of the primary sources of such  risk3–5. Meanwhile, next-
generation sequencing technologies are rapidly being integrated into clinical practice, identifying vast amounts 
of small germline BRCA1/2  variants6–8. Accurate interpretation of the identified variants is one of the critical 
elements of clinical practice. Unlike synonymous and common missense variants, which are usually benign, 
and nonsense and frameshift variants, which are often  pathogenic9, rare missense variants of BRCA1/2 are hard 
to  interpret10. In this regard, computational prediction of the pathogenicity of rare BRCA1/2 missense variants 
can help the interpretation  process11,12.

Supervised machine learning has been widely adopted to develop computational tools for the pathogenicity 
prediction of variants, including rare missense  ones13–25. A prediction tool based on supervised machine learning 
takes a set of features, such as minor allele frequencies (MAFs), predicted functional impacts of a variant, and 
the degree of conservation across multiple species at its genomic position, as input. A training dataset containing 
known pathogenic and benign variants is used to build a pathogenicity predictor in supervised machine learn-
ing. According to the composition of training variants, supervised machine learning for variant pathogenicity 
prediction is divided into genome-wide, disease-specific, and gene-specific.

Genome-wide supervised machine learning approaches use variants from across the whole genome to develop 
pathogenicity predictors. Popular examples include  REVEL19,  BayesDel17, and  ClinPred13. One advantage of 
the genome-wide approach is that it involves a larger number of training variants, which can improve the per-
formance of the learned model by reducing  variance26. However, this approach does not account for disease-
specific patterns in variant pathogenicity. For example, the pathogenicity of a variant could be different between 
a hereditary cancer syndrome and a hereditary cardiovascular disease. Disease-specific supervised machine 
learning addresses this issue by using only disease-specific variants, i.e., variants of a set of genes related to 
a specific disease or a group of similar disorders. Evans et al. developed pathogenicity predictors specific to 
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each of cardiomyopathy, epilepsy, and RASopathies using disease-specific supervised machine  learning16. These 
disease-specific predictors were found to outperform genome-wide pathogenicity predictors. Lai et al. showed 
that hereditary cancer-specific and cardiovascular disorder-specific predictors worked better than genome-wide 
 predictors20. Zhang et al. also showed that the disease-specific approach is better than the genome-wide method 
for inherited cardiomyopathies and  arrhythmias21.

Compared to the disease-specific approach, gene-specific supervised machine learning is even more specific 
as it builds pathogenicity predictors using variants from only a particular disease gene, e.g., BRCA1 or BRCA2. 
This method has the potential to perform best due to its highest specificity; however, its training variants are most 
limited. In this sense, it is likely to perform poorly due to high variance. Crockett et al.22, Padilla et al.25, Hart 
et al.18, Aljarf et al.14, Khandakji and  Mifsud24, and Karalidou et al.23 have developed gene-specific variant patho-
genicity predictors for disease-associated genes, including BRCA1 and BRCA2. Most of these studies showed 
that gene-specific predictors performed better than or comparable to genome-wide predictors. However, none 
of them have compared their gene-specific approach with the disease-specific approach, which is less specific 
but expected to have less variance.

In this study, we investigated the efficacy of gene-specific supervised machine learning in predicting the 
pathogenicity of rare BRCA1/2 missense variants, compared to the disease-specific approach. Our work differs 
from the previous studies that focused on gene-specific machine learning to predict the pathogenicity of variants. 
First, they did not compare the gene-specific and disease-specific approaches. They compared the gene-specific 
approach with the genome-wide  approach14,18,22,24,25 or did not make any  comparison23. The comparison between 
gene-specific and disease-specific approaches is meaningful because there is a trade-off between specificity and 
training sample size. In addition, the previous works focused only on BRCA224, used a single machine learning 
 algorithm24, or did not optimize the hyperparameters of the machine learning  algorithm14,24,25. Furthermore, 
none of the previous works, except one  study18, used the performance measure known to be more informative 
than others in imbalanced classification: the area under the precision-recall curve (AUPRC)27–29. For the inves-
tigation, we used rare missense variants of 28 genes associated with hereditary cancers, including BRCA1/2. 
We employed a set of widely used linear and non-linear machine learning methods: the lasso, ridge, elastic net, 
extreme gradient boosting (XGBoost), random forests (RFs), support vector machines (SVMs), and deep neural 
networks (DNNs) to build the pathogenicity predictor. We evaluated and compared the performance of each 
machine learning classifier when combined with either the gene-specific or disease-specific approach. These 
comparisons will provide insight into which of the two methods in which trade-off exists is better suited for the 
variant pathogenicity prediction.

Methods
Variant annotation and filtering. We downloaded a variant file in GRCh37 (clinvar_20200817.vcf.gz) from 
the  ClinVar30 website (https:// www. ncbi. nlm. nih. gov/ clinv ar/). The downloaded VCF file was normalized using vt 
(version 0.5772)31 and in-house scripts. Then the normalized VCF file was annotated using SnpEff (version 4.3 s 
(build 2017-10-25 10:05))32, SnpSift (version 4.3 s (build 2017-10-25 10:05))33, and Ensembl Variant Effect Predic-
tor (VEP) (version 86)34. The databases used for annotation were dbSNP (build 151)35, dbscSNV (version 1.1)36, 
gnomAD (release 2.1.1)37, Korean Variant Archive (KOVA)38, Korean Reference Genome Database (KRGDB) 
(phase 2)39, and dbNSFP (version 4.1a)40. In total, 769,966 variants were annotated. The annotated variants were 
filtered as follows. First, only the variants of which clinical significance in ClinVar is Benign, Benign/Likely_benign, 
Likely_benign, Pathogenic, Pathogenic/Likely_pathogenic, or Likely_pathogenic were retained. Then, variants 
were filtered by the ClinVar review status. Only the variants of which review status is practice_guideline, reviewed_
by_expert_panel, or criteria_provided_multiple_submitters,_no_conflicts were included in the experiments. Then, 
variants were filtered by type (single_nucleotide_variant in ClinVar’s annotation), MAF (gnomAD all popula-
tions < 0.005), and consequence (VEP consequence is missense_variant or missense_variant&splice_region_vari-
ant). Finally, only the variants of 31 reportable transcripts of 30 genes associated with hereditary cancer syndromes 
compiled by Barrett et al.41 were used. Consequently, we used 1068 rare missense variants of 28 genes, including 
BRCA1 and BRCA2. Among the 1068 variants, the numbers of BRCA1 and BRCA2 variants were 225 and 179, 
respectively. Supplementary Table S1 shows the number of variants per gene.

Test variant sets. After the filtering, we grouped variants into two categories of clinical significance: P/
LP (including Pathogenic, Pathogenic/Likely_pathogenic, and Likely_pathogenic) and B/LB (including Benign, 
Benign/Likely_benign, and Likely_benign). We determined the ratio of P/LP to B/LB variants in a test variant 
set in line with previous studies on the pathogenicity prediction of rare BRCA1/2 missense variants since the 
class distribution of test examples influences the performance of a machine learning  classifier42. In previous 
studies, the ratio of P/LP to B/LB test variants was 0.0811, 0.2020, and 0.2212 for BRCA1 and 0.0311, 0.0720, and 
0.0712 for BRCA2. From the 225 BRCA1 variants, 86 were randomly selected and constituted a test variant set. 
The 86 variants of the test set included 14 P/LP variants (i.e., P/LP to B/LB ratio 0.19). Among the 79 variants of 
a test set chosen from the 179 BRCA2 variants, the number of P/LP variants was six, making P/LP to B/LB ratio 
0.08. We created ten test variant sets for each of BRCA1 and BRCA2 by repeated random subsampling.

Training variant sets. We constructed gene-specific and disease-specific training variant sets for each of 
the ten test variant sets of BRCA1 and BRCA2. For a test variant set of BRCA1 (BRCA2) with 86 (79) variants, 
we used the remaining 139 BRCA1 (100 BRCA2) variants as gene-specific training variants. The disease-specific 
training variants for a test variant set of BRCA1 (BRCA2) consisted of the remaining 982 (989) variants from 
28 genes, including BRCA1 and BRCA2, associated with hereditary cancer syndromes. The entire workflow for 
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constructing the test and training variant sets is shown in Fig. 1. Notably, the disease-specific training variant set 
for a BRCA1 or BRCA2 test variant set included the corresponding gene-specific training variant set.

Features for variant pathogenicity prediction. We used five feature categories to predict the patho-
genicity of rare BRCA1/2 missense variants: MAF, site conservation score, predicted functional-impact score, 
position, and others. The features used in our study are listed in Supplementary Table S2. MAFs for 16 popula-
tions obtained from gnomAD, KOVA, KRGDB, and UK10K (from dbNSFP) were used as features. Missing 
values for the MAF features were replaced by zero. We created an additional feature indicating that MAF values 
were missing for each of the four MAF databases to discriminate between the missing and zero MAF values.

Furthermore, we used nine site conservation scores from dbNSFP as features. To minimize the risk of overfit-
ting, we did not use functional impact scores, predicted by supervised machine learning models trained using 
variants labelled as pathogenic or benign, such as PolyPhen-243 and Combined Annotation Dependent Depletion 
(CADD)44 scores. Consequently, only five predicted functional-impact scores from dbNSFP were used as features. 
 LRT45,  MutationAssessor46,  SIFT47, and SIFT  4G48 had missing values among the five predicted functional-impact 
scores. Missing values of these four features were imputed by median over the training variant set. In addition, we 
created a missing status indicator for each of the LRT, MutationAssessor, and SIFT (including SIFT 4G) scores.

We also used four position features for a variant, i.e., the relative position of the exon in which it exists and 
its relative position in each of the cDNA, coding, and protein sequences. Finally, we used 12 “others” category 
features from gnomAD, dbNSFP, dbscSNV, and dbSNP. Among the 12 features, six had missing values. Two of 
them—dbNSFP_APPRIS and dbNSFP_codon_degeneracy—were categorical features, having “not annotated” as 
their values. Missing values of the four numerical features—gnomAD2_InbreedingCoeff, dbNSFP_LRT_Omega, 
dbscSNV_ADA_SCORE, and dbscSNV_RF_SCORE—were imputed by zero or median over the training variant 
set (see Supplementary Table S2 for details). Furthermore, we created two features respectively representing that 
the values of dbscSNV_ADA_SCORE and dbscSNV_RF_SCORE were missing. The two missing value indicators 
created for gnomAD MAF and LRT features were respectively used for indicating that gnomAD2_Inbreeding-
Coeff and dbNSFP_LRT_Omega values were missing. In total, 55 features were used for variant pathogenicity 
prediction.

Supervised machine learning methods. Before training, we centred and scaled each numeric or integer 
feature using its mean and standard deviation over the training variant set (the type of each feature is shown 
in Supplementary Table S2). We evaluated and compared eight supervised machine learning methods: three 
regularized logistic regression methods (the lasso, ridge, and elastic net), XGBoost, RFs, SVMs with the linear 
and radial basis function (RBF) kernels (Linear-SVMs and RBF-SVMs, respectively), and DNNs. We used the 
R caret package (version 6.0.-90) for training and testing the regularized logistic regression (method = ‘glm-

Figure 1.  The workflow for constructing test and training variant sets for evaluating and comparing disease-
specific and gene-specific machine learning.
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net’), XGBoost (method = ‘xgbTree’), RF (method = ‘rf ’), Linear-SVM (method = ‘svmLinear’), and RBF-SVM 
(method = ‘svmRadial’) models. We used the R keras package (version 2.9.0) for DNNs. We employed fully-
connected feedforward DNNs with three hidden layers. The leaky rectified linear unit (ReLU) was used as an 
activation function for each node of the three hidden layers. We set the slope of leaky ReLU as 0.2. The activation 
function for the output layer was sigmoid. Since DNNs are known to perform worse on small datasets compared 
to other machine learning methods, we used the dropout technique to regularize them. The hyperparameter val-
ues of each method were optimized using five-fold cross-validation (CV) over the training variant set. The search 
range for each hyperparameter is shown in Tables 1 and 2. The AUPRC was used as the objective function for 
hyperparameter optimization. The AUPRC values were calculated using the R PRROC package (version 1.3.1).

Results and discussion
Prediction performance comparison of gene‑specific and disease‑specific machine learn-
ing. The ratio of pathogenic to benign BRCA1/2 variants in the test variant set of our study is not balanced 
because it reflects the actual class distribution (see Methods). Therefore, we used AUPRC to evaluate the perfor-
mance of pathogenicity predictors. The AUPRC is more informative for imbalanced classification datasets than 
other measures, such as accuracy and the area under the receiver operating characteristics curve (AUROC)27–29. 
Eight machine learning methods—ridge, lasso, elastic net, RFs, XGBoost, Linear- and RBF-SVMs, and DNNs—
were employed for the performance comparison. Furthermore, we compared four popular genome-wide patho-

Table 1.  Optimized hyperparameters of the eight machine learning methods for gene-specific training. 
Hyperparameter names and search ranges are shown in R codes. XGBoost: extreme gradient boosting. RFs: 
random forests. Linear-SVMs: support vector machines with the linear kernel. RBF-SVMs: support vector 
machines with the radial basis function kernel. DNNs: deep neural networks.

Machine learning methods Hyperparameters and search ranges

Lasso, ridge, and elastic net lambda: c(seq(500, 200, by =  − 100), seq(100, 10, by =  − 10), 9:2, seq(1, 0.05, by =  − 0.05), 0.01)

XGBoost

eta: c(0.05, 0.1, 0.15, 0.2) for BRCA1; c(0.05, 0.1, 0.15, 0.2, 0.25) for BRCA2
nrounds: seq(50, 250, by = 10) for BRCA1; seq(50, 150, by = 10) for BRCA2
gamma: c(0, 0.05)
max_depth: 3:5
min_child_weight: 1:2

RFs ntree: c(100, 300, 500, 1000, 3000)
mtry: 1:15

Linear-SVMs C: c(1, 10, 50)

RBF-SVMs sigma: 2^seq(− 9, − 1, by =  − 2)
C: c(1, 10, 50)

DNNs

epochs: c(40, 80)
lr: c(5e-5, 1e-5)
dropout: c(0.4, 0.6) # dropout rate for hidden layers
batch_size: c(40, 80)
in_dropout: c(0.1, 0.2) # dropout rate for input layer
hidden: c(1000, 3000) # number of units in a hidden layer

Table 2.  Optimized hyperparameters of the eight machine learning methods for disease-specific training. 
Hyperparameter names and search ranges are shown in R codes. XGBoost: extreme gradient boosting. RFs: 
random forests. Linear-SVMs: support vector machines with the linear kernel. RBF-SVMs: support vector 
machines with the radial basis function kernel. DNNs: deep neural networks.

Machine learning methods Hyperparameters and search ranges

Lasso, ridge, and elastic net lambda: c(seq(100, 10, by =  − 10), 9:2, seq(1, 0.05, by =  − 0.05), 0.01)

XGBoost

eta: c(0.05, 0.1, 0.2, 0.3)
nrounds: seq(100, 1000, by = 100) for BRCA1; seq(100, 500, by = 50) for BRCA2
gamma: c(0, 0.05)
max_depth: 3:5
min_child_weight: 1:3

RFs ntree: c(100, 300, 500, 1000, 3000)
mtry: 1:15

Linear-SVMs C: c(1, 10, 50)

RBF-SVMs sigma: 2^seq(− 9, − 1, by =  − 2)
C: c(1, 10, 50)

DNNs

epochs: c(40, 80)
lr: c(5e-5, 1e-5)
dropout: c(0.4, 0.6) # dropout rate for hidden layers
batch_size: c(40, 80)
in_dropout: c(0.1, 0.2) # dropout rate for input layer
hidden: c(1000, 3000) # number of units in a hidden layer
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genicity predictors:  REVEL19,  BayesDel17 with and without maximum allele frequency (MaxAF), and  ClinPred13. 
In a recent study, REVEL and BayesDel performed better than other in-silico  predictors49. ClinPred is a recently 
developed tool trained using ClinVar variants.

Figure 2 compares the performance of each method on BRCA1. We did not observe a remarkable difference in 
prediction performance between gene-specific and disease-specific machine learning. Disease-specific learning 
performed better than gene-specific learning when used with the lasso, XGBoost, Linear- and RBF-SVMs. For the 
other four methods, gene-specific learning was better than disease-specific learning. However, the performance 
difference between gene-specific and disease-specific learning was statistically significant (paired t-test P < 0.05) 
only for one machine learning model: RFs (see Supplementary Table S3). This result is noteworthy because the 
disease-specific training variant set was more than seven (= 982/139; see Methods) times larger than the gene-
specific one. Moreover, the disease-specific training variant set includes all the gene-specific variants. It means 
that the variants from disease-associated genes other than BRCA1 generally did not improve the pathogenicity 
prediction performance for BRCA1. Instead, the machine learning model substantially influenced pathogenic-
ity prediction performance more than the training variant type. For BRCA1, the gene-specific RF achieved the 
highest AUPRC (0.9835 ± 0.0156). Two other models, i.e., XGBoost trained using the disease-specific and the 
gene-specific variant sets, were the second (AUPRC 0.9783 ± 0.0187) and the third (AUPRC 0.9727 ± 0.0176), 
respectively, showing comparable performance to the best method (paired t-test P = 0.1062 and 0.0801, respec-
tively). All the others were statistically significantly worse than the gene-specific RF model (see Supplementary 
Table S4). The popular pathogenicity predictors trained using all genes, i.e., REVEL, BayesDel with and without 
MaxAF, and ClinPred, demonstrated poorer performance than the gene- and disease-specific machine learning 
approaches except for the Linear-SVM model, which performed worse than ClinPred and BayesDel with MaxAF.
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Figure 2.  Prediction performance (in the area under the precision-recall curve (AUPRC)) of gene-specific 
(GS), disease-specific (DS), and genome-wide machine learning methods for rare BRCA1 missense variants. All 
the methods are sorted by the average AUPRC on the ten test variant sets. The results of the best method and 
those not significantly outperformed by the best one (paired t-test P ≥ 0.05) are coloured in blue.
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We show the comparison results for BRCA2 in Fig. 3. Unlike the case of BRCA1, disease-specific learning gen-
erally performed better than gene-specific learning for BRCA2. Except for XGBoost and RFs, disease-specifically 
trained models showed higher AUPRC values than gene-specific ones. Moreover, the performance difference 
was statistically significant (paired t-test P < 0.05) for all machine learning models but RFs and RBF-SVMs (see 
Supplementary Table S5). However, gene-specific RFs achieved the best AUPRC (0.9467 ± 0.0483). Four other 
methods which obtained comparable performance (paired t-test P = 0.1436, 0.1693, 0.1575, 0.1035) to this were 
disease-specific RFs (AUPRC 0.9398 ± 0.0515), disease-specific DNNs (AUPRC 0.9331 ± 0.0413), disease-specific 
Linear-SVMs (AUPRC 0.9209 ± 0.0676), and gene-specific XGBoost (AUPRC 0.9167 ± 0.0581). All the other 
methods were statistically significantly worse than the gene-specific RF model (Supplementary Table S6). This 
result suggests that gene-specific learning is sufficient to obtain the optimal pathogenicity predictor for BRCA2 
if we use an appropriate machine learning algorithm. The popular pathogenicity predictors were not enough 
to attain high performances. Unlike the case of BRCA1, however, ClinPred and BayesDel with MaxAF showed 
higher AUPRC values than many gene-specific and disease-specific machine learning approaches (see Fig. 3).

We also compared the variance of ten trials between gene-specific and disease-specific machine learning. 
Because the gene-specific training variant set is much smaller than that of the disease-specific variant set (see 
Methods), the variance of gene-specific models is expected to be larger than that of disease-specific models. 
We show the comparison results for BRCA1 and BRCA2 in Supplementary Tables S3 and S5. For BRCA1, gene-
specific learning showed statistically significantly higher variances (Pitman-Morgan test P < 0.05) than disease-
specific learning for the lasso, elastic net, Linear- and RBF-SVMs among the eight machine learning models. 
However, the difference in variance was not statistically significant for the other four models, including RFs, 
which achieved the highest AUPRC. We observed a different result for BRCA2. The difference in variance was 
statistically significant (Pitman-Morgan test P < 0.05) for all but one machine learning method, meaning that 
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Figure 3.  Prediction performance (in the area under the precision-recall curve (AUPRC)) of gene-specific 
(GS), disease-specific (DS), and genome-wide machine learning methods for rare BRCA2 missense variants. All 
the methods are sorted by the average AUPRC on the ten test variant sets. The results of the best method and 
those not significantly outperformed by the best one (paired t-test P ≥ 0.05) are coloured in blue.
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BRCA2-specific training datasets were likely to produce more inconsistent results than much larger disease-
specific training datasets. Interestingly, the variance of RFs, the best-performing predictor on BRCA2, was not 
statistically significantly different between gene-specific and disease-specific learning (Pitman-Morgan test 
P = 0.6321).

For reference, we also compared the gene-specific and disease-specific machine learning methods using the 
following performance measures: accuracy, sensitivity (i.e., recall), specificity, positive predictive value (PPV) 
(i.e., precision), F1 score, and AUROC. Comparative results for BRCA1 and BRCA2 are shown in Supplemen-
tary Tables 7 and 8, respectively. For BRCA1, both the gene-specific and disease-specific models were able to 
achieve optimal results for all of these performance measures when an appropriate machine learning algorithm 
was used. For accuracy, sensitivity, specificity, PPV, and F1 score, the gene-specific RF and the gene-specific and 
disease-specific XGBoost models performed optimally. For AUROC, the gene-specific and disease-specific DNN 
models performed best. For BRCA2, both the gene-specific and disease-specific methods achieved optimal results 
for accuracy, sensitivity, specificity, PPV, and F1 score when combined with an appropriate machine learning 
algorithm. However, for AUROC, only the disease-specific DNN model achieved optimal results. Interestingly, 
the DNN models outperformed the others in terms of AUROC for both BRCA1 (gene- and disease-specific) and 
BRCA2 (disease-specific only) genes, suggesting that DNNs may be more suitable than other machine learning 
models for obtaining optimal AUROC values. However, AUROC is known to be less informative and even mis-
leading when evaluating the performance of a classifier on imbalanced datasets due to its misinterpretation of 
 specificity27 and overly optimistic  view28,29. The above results suggest that gene-specific variants are sufficient to 
obtain the optimal pathogenicity predictor for rare BRCA1 and BRCA2 missense variants when an appropriate 
machine learning algorithm is employed.

Comparison of important features identified by gene‑specific and disease‑specific machine 
learning. As demonstrated in the preceding subsection, the selection of machine learning algorithms plays 
a more significant role than the type of training variants in achieving optimal pathogenicity predictions for 
rare BRCA1/2 missense variants. Specifically, among the three predictors exhibiting optimal performance for 
BRCA1, two were trained on gene-specific variants, while one was trained on disease-specific variants. For 
BRCA2, two of the top five performing predictors employed gene-specific training variants (see Figs. 2 and 3). 
It is noteworthy that the top-performing model group for BRCA1 comprised both gene-specific and disease-
specific XGBoost models. As for BRCA2, the RF algorithm demonstrated the best performance regardless of the 
type of training variants used. We compared the significant features identified by these top-performing models 
obtained using the same machine learning algorithm but different types of training variants.

Figure 4 shows the top ten important features identified by gene-specific and disease-specific learning of 
XGBoost for BRCA1. The XGBoost feature importance values of all features in the ten trials are shown in Supple-
mentary Tables S9 and S10, respectively, for gene-specific and disease-specific learning. In the gene-specific and 
disease-specific XGBoost models for BRCA1, the top ten important features had 93.3% and 88.9% of the feature 
importance values, respectively. In addition, we observed that variance across the ten trials was much higher 
for gene-specific learning than disease-specific learning, possibly due to the smaller size of the gene-specific 
training dataset (see Methods). The most important feature learned from BRCA1-specific training variants was 
dbNSFP_phyloP100way_vertebrate (a site conservation score; feature importance 35.03 ± 19.24%). The second 
and third were dbNSFP_SIFT4G_score (a predicted functional-impact score; feature importance 20.69 ± 9.66%) 
and gnomAD2_AF (a MAF; feature importance 13.64 ± 6.80%). Compared to this, the most critical feature 
learned from disease-specific variants was gnomAD2_AF_male (a MAF; feature importance 29.46 ± 2.18%). The 
second was gnomAD2_AF (a MAF; feature importance 23.80 ± 3.34%). The third was dbNSFP_LRT_score (a 
predicted functional-impact score; feature importance 8.41 ± 1.09%). The two most important features learned 
by gene-specific learning for BRCA1 were site conservation and predicted functional-impact scores. In contrast, 
the first and second important features in the disease-specific XGBoost models for BRCA1 were MAF features, 
i.e., gnomAD2_AF_male and gnomAD2_AF.

We observed similar trends when comparing the top ten important feature groups. The top ten important 
feature groups of the BRCA1-specific and disease-specific XGBoost models shared six features. Differences 
between the two important feature groups were as follows (see Fig. 4). Ranks of MAF features were higher (first, 
second, and fourth) in disease-specific learning compared to BRCA1-specific learning (third, fifth, and seventh). 
It seems that BRCA1-specific training variants were insufficient to learn a reliable pattern of MAFs for discrimi-
nating between pathogenic and benign variants compared to disease-specific training variants. Two genomic 
position features, i.e., EXON and cDNA_position, were among the top ten crucial features in gene-specific 
learning. However, the feature importance values of these features in disease-specific learning for BRCA1 were 
much lower (ranked 27th and 24th, respectively; see Supplementary Table S10). The position features exhibit 
relatively high importance values in gene-specific learning, likely due to the fact that positional information is 
only meaningful within a specific gene and not applicable across a group of genes, even if they are linked to the 
same or similar diseases.

Figure 5 shows the most critical twenty features learned from gene-specific and disease-specific RF learning 
for BRCA2. We offer all features’ normalized variable importance values in Supplementary Tables S11 and S12 
for BRCA2-specific and disease-specific learning, respectively. Variable importance values of RF were normal-
ized so that their sum over all features equals 100%. The top twenty features had 76.9% and 82.4% of the variable 
importance values for gene-specific and disease-specific RF learning for BRCA2, respectively. Similar to the result 
for BRCA1, we observed that variance across the ten trials was generally higher for gene-specific RF learning than 
disease-specific RF learning, possibly due to the smaller training dataset size of gene-specific learning. The three 
most important features for disease-specific RF learning for BRCA2 were gnomAD2_AF (a MAF; normalized 
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variable importance 7.98 ± 0.95%), gnomAD2_AF_male (a MAF; normalized variable importance 7.77 ± 0.58%), 
and gnomAD2_AF_female (a MAF; normalized variable importance 6.89 ± 0.66%). Among these three MAF 
features, only gnomAD2_AF was among the top three critical features for BRCA2-specific RF learning (ranked 
third; normalized variable importance 4.78 ± 0.90%). The first and second essential features for BRCA2-specific 
RF learning were dbNSFP_phyloP100way_vertebrate (a site conservation score; normalized variable importance 
5.38 ± 0.50%) and dbNSFP_LRT_score (a predicted functional-impact score; normalized variable importance 
4.93 ± 0.93%), respectively. We note that dbNSFP_phyloP100way_vertebrate was also the most crucial feature 
learned from BRCA1-specific XGBoost training (see Fig. 4a). It suggests the site conservation score is a critical 
gene-specific information source for discriminating between pathogenic and benign variants.

The comparison results of the top twenty feature groups between BRCA2-specific and disease-specific RF 
learning are as follows. Fourteen features were common among the top twenty gene-specific and disease-specific 
feature groups obtained from RF learning for BRCA2. However, each feature’s rank differed, meaning that differ-
ent optimal RF models were learned from BRCA2-specific and disease-specific variants, respectively. We observed 
that MAF features were more influential in disease-specific learning (ranked first (gnomAD2_AF), second 
(gnomAD2_AF_male), third (gnomAD2_AF_female), 11th (gnomAD2_AF_nfe), 15th (gnomAD2_AF_oth), 
and 17th (gnomAD2_AF_amr)) than in BRCA2-specific learning. Ranks of the same MAF features were lower 

Figure 4.  Top ten important features of extreme gradient boosting models for BRCA1 trained using (a) gene-
specific and (b) disease-specific variants. The categories of features are shown using different colours. Feature 
importance values averaged over the ten trials (see Methods) are shown with error bars.
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in BRCA2-specific RF learning: 3rd, 6th, 7th, 19th, 22nd, and 29th, respectively (see Supplementary Table S11). 
This result is similar to that from XGBoost learning for BRCA1 (see Fig. 4). Another similar result is that posi-
tion features were more critical in BRCA2-specific learning than disease-specific learning. In BRCA2-specific RF 
models, ranks of the four position features, i.e., EXON, cDNA_position, CDS_position, and protein_position, 
were 16th, 17th, 14th, and 15th, respectively. On the contrary, the same features were ranked 26th, 27th, 29th, 
and 28th in disease-specific RF models for BRCA2 (see Supplementary Table S12).

To summarize, we observed common properties in important features identified by gene-specific and disease-
specific learning for the pathogenicity prediction of rare BRCA1/2 missense variants. First, MAF features were 
more critical in disease-specific learning than gene-specific learning. It means that MAF is a major discriminat-
ing factor between pathogenic and benign variants, having similar patterns regardless of genes, at least if they 
are associated with the same disease. However, gene-specific training variants seem insufficient to capture the 
discriminating pattern reliably. Instead of MAF features, we can use predicted functional-impact and site con-
servation scores as significant elements for distinguishing between pathogenic and benign variants, as shown by 
the optimal performance of gene-specific learning. Additionally, the position of a variant could play an essential 
role only in gene-specific learning because the meaning of position could be different by genes. Figure 6 shows 
the position of each variant of BRCA1/2 used in our experiments. It can be seen that the region enriched for 
pathogenic variants differs between the two genes.

Figure 5.  Top twenty important features of random forest models for BRCA2 trained using (a) gene-specific 
and (b) disease-specific variants. The categories of features are shown using different colours. Normalized 
variable importance values averaged over the ten trials (see Methods) are shown with error bars.
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Conclusions
Machine learning has shown promise in tackling the challenge of interpreting rare missense variants in disease-
associated genes, such as BRCA1 and BRCA2. Choosing the appropriate set of training variants is crucial for 
developing an accurate pathogenicity predictor using machine learning. Studies have found that gene-specific and 
disease-specific approaches are more effective than genome-wide approaches. We conducted a study comparing 
gene-specific and disease-specific machine learning methods for predicting the pathogenicity of rare missense 
variants in BRCA1/2. Our findings suggest that gene-specific machine learning can achieve optimal pathogenicity 
prediction with an appropriate algorithm, without the need to include disease-specific variants in the training set.

We acknowledge that aspects other than the composition of the training variant datasets, such as feature 
selection and data balancing, have an impact on the efficiency and effectiveness of pathogenicity prediction. In 
particular, data balancing could be a good option considering the fact that the pathogenic and benign variant 
datasets are usually imbalanced. In the present work, we did not apply the data balancing technique because 
there is a controversy about its effectiveness. For example, Kim and Hwang have shown that most over- and 
undersampling methods for data balancing were ineffective or even reduced the performance of a  classifier50. Of 
course, it would be a promising further research direction to investigate the effect of data balancing methods on 
pathogenicity prediction of rare BRCA1/2 missense variants. Another direction of research is to include more 
gene-level features, such as mutational signatures and biological pathway/signaling network information. There 
has been a study demonstrating the effectiveness of expression quantitative trait loci in predicting the disease 
relevance of non-coding  variants51. These features could also improve the performance of pathogenicity predic-
tion of rare BRCA1/2 missense variants.

Some machine learning algorithms produced the best predictor regardless of the type of training variant set. 
MAF features were more important in disease-specific predictors, while position features played a significant role 
in gene-specific predictors. These results indicate that gene-specific machine learning, utilizing gene-specific vari-
ant characteristics, can produce the optimal pathogenicity predictor for BRCA1 and BRCA2, despite the limited 
size of the training dataset. Therefore, we recommend using gene-specific machine learning over disease-specific 
learning for predicting the pathogenicity of rare missense variants in BRCA1/2 because it is efficient and effec-
tive, with the caveat that gene-specific approaches may not be applicable for genes with extremely low numbers 
of variants, in which case disease-specific approaches may be more appropriate.

Data availability
The ClinVar variant file (clinvar_20200817.vcf.gz) was downloaded from https:// ftp. ncbi. nlm. nih. gov/ pub/ clinv 
ar/ vcf_ GRCh37/ archi ve_2. 0/ 2020/. The dbSNP (build 151) variant file (All_20180423.vcf.gz) was downloaded 
from https:// ftp. ncbi. nih. gov/ snp/ organ isms/ human_ 9606_ b151_ GRCh3 7p13/ VCF/. The dbscSNV (version 
1.1) variant file (dbscSNV1.1.zip) was downloaded from http:// www. liulab. scien ce/ dbscs nv. html. The gnomAD 
(release 2.1.1) variant file (gnomad.exomes.r2.1.1.sites.vcf.bgz) was downloaded from https:// stora ge. googl eapis. 
com/ gcp- public- data-- gnomad/ relea se/2. 1.1/ vcf/ exomes/ gnomad. exomes. r2.1. 1. sites. vcf. bgz. The KOVA variant 
file (K1055E_allele_frequency.txt.zip) was downloaded from http:// kobic. re. kr/ kova/ downl oads. The KRGDB 
(phase 2) variant files (KRG1100_rare_variants.zip and KRG1100_common_variants.zip) were downloaded 
from http:// coda. nih. go. kr/ coda/ KRGDB/ index. jsp. The dbNSFP (version 4.1a) data file (dbNSFP4.1a.zip) was 
downloaded from https:// drive. google. com/ file/d/ 17kdX 1Fqi_ ZW8PX aHm2v QuJLH uoMDw ZmB/ view.

Figure 6.  Location of (a) BRCA1 and (b) BRCA2 variants in the amino acid sequences. Pathogenic (including 
Pathogenic, Pathogenic/Likely_pathogenic, and Likely_pathogenic) and benign (including Benign, Benign/
Likely_benign, and Likely_benign) variants are shown in different colours.

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_2.0/2020/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_2.0/2020/
https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/
http://www.liulab.science/dbscsnv.html
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
http://kobic.re.kr/kova/downloads
http://coda.nih.go.kr/coda/KRGDB/index.jsp
https://drive.google.com/file/d/17kdX1Fqi_ZW8PXaHm2vQuJLHuoMDwZmB/view
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