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Micro‑architecture design 
exploration template for AutoML 
case study on SqueezeSEMAuto
Chantana Chantrapornchai *, Supasit Kajkamhaeng  & Phattharaphon Romphet 

Convolutional Neural Network (CNN) models have been commonly used primarily in image 
recognition tasks in the deep learning area. Finding the right architecture needs a lot of hand‑tune 
experiments which are time‑consuming. In this paper, we exploit an AutoML framework that adds to 
the exploration of the micro‑architecture block and the multi‑input option. The proposed adaption 
has been applied to SqueezeNet with SE blocks combined with the residual block combinations. The 
experiments assume three search strategies: Random, Hyperband, and Bayesian algorithms. Such 
combinations can lead to solutions with superior accuracy while the model size can be monitored. 
We demonstrate the application of the approach against benchmarks: CIFAR‑10 and Tsinghua Facial 
Expression datasets. The searches allow the designer to find the architectures with better accuracy 
than the traditional architectures without hand‑tune efforts. For example, CIFAR‑10, leads to the 
SqueezeNet architecture using only 4 fire modules with 59% accuracy. When exploring SE block 
insertion, the model with good insertion points can lead to an accuracy of 78% while the traditional 
SqueezeNet can achieve an accuracy of around 50%. For other tasks, such as facial expression 
recognition, the proposed approach can lead up to an accuracy of 71% with the proper insertion of SE 
blocks, the appropriate number of fire modules, and adequate input merging, while the traditional 
model can achieve the accuracy under 20%.

Designing convolutional neural network (CNN) models require a lot of extensive experiments. Besides exploring 
the machine learning parameters such as learning rates, and momentum, also, for each layer, different hyper-
parameters should be considered. For example, for the convolution layer, one needs to explore the convolution 
filter sizes, the number of strides, an initialization approach, etc., for the dropout layers, a dropout rate can be 
varied, and for the pooling layers, the pooling sizes and pooling operations, e.g., max, average, global average 
are considered. The explorations of these parameters are time consuming and need to be done systematically to 
alleviate the model construction process.

Beside the exploration in each layer design, one needs to find the right structure for the specific recognition 
task. Searching for all possible structures is very computational-intensive and consumes resources. If the specific 
forms of the architectures are allowed, searching for the right connections may be possible within acceptable 
accuracy and time.

In this research, we study the methodology for automatic exploration of the micro-architecture types. If we 
are given the baseline architecture, our approach enables the search for model modification automatically to 
obtain good accuracy. We demonstrate the approach using the vanilla  SqueezeNet1 since it is a small architecture 
and it can still be expanded. The proposed approach will enable the neural network designer to explore models 
to answer typical design questions such as:

• What is the number of convolutions blocks that are needed?
• The number of features that should be used and how they are merged?
• Should the skip connection be applied and where to apply?
• What if some optimization block is inserted and where to inserted properly?

The flexible design of SqueezeNet as a prototype, called SqueezeNetSEMAuto is presented. It is the traditional 
SqueezeNet with a flexible length, the selected SE block insertion and skip connection, and the selected merging 

OPEN

Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand. *email: 
fengcnc@ku.ac.th

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-37682-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10642  | https://doi.org/10.1038/s41598-023-37682-0

www.nature.com/scientificreports/

operation for more than one input. It also can be integrated with the hyperparameter exploration for each layer. 
The source of the prototype models is available at github https:// github. com/ cchan ra/ Squee zeNet SEMAu to.

The structure of the paper is as follows. Next, we introduce the background and literature review. In Sec-
tion “Design methodology”, the methodology of flexible design is described. Section “Experiments” presents 
the experimental methods and results. Finally, Section “Other applications” concludes the work and explains 
future work.

Background
In this section, we introduce the convolution neural network and some previous models. Next, the complexity 
in various levels of model exploration is explained. At last, we present the literature review of model exploration.

Convolutional neural networks. Convolutional Neural Networks (CNN)2 are designed based on convo-
lution operations. It has been applied to many high-impact image processing tasks such as medical  imaging3,4, 
self-driving  car5,6, etc. They have convolutional layers connected in some manners. The layer utilizes the con-
volution operation with using the fixed-size filter to perform such operation with the matrices or tensors. The 
operations involved are multiplications and additions.

The typical CNN model consists of the following layers: convolution, pooling, dropout, activation, fully-
connected, etc. These layers are connected in certain manners. Convolution layers have important parameters 
such as the filter, stride, padding sizes. The filter and stride sizes imply the output feature map sizes and the 
number of consecutive convolution layers implies the size of receptive fields.

Pooling layers are used to reduce the feature size. They also can help select outstanding features. They have 
the typical parameters which are such as the pooling and stride sizes. Pooling operations are e.g. max, average, 
and global average pooling. The various combinations of the convolutions and pooling cause the different feature 
map output values and sizes.

The dropout layer is used for the purpose of overfitting elimination. Its typical parameter is the dropout rate 
ranging between 0 and 1. The dropout rate needs to be examined as well.

The activation function is applied to change the output values. Activation functions are selected depending 
on the tasks, e.g., ReLU, LeakyReLu, Sigmoid, Tanh, and many others. The fully connected layers (FC) are usually 
attached at last for classification outputs. The number of fully connected layers can be more than one depending 
on the design and the number of classification outputs.

Besides the above-mentioned aspects which are called hyperparameters of CNN, the learning rate, and opti-
mization function can also affect the high accuracy. The common learning rate values are 0.1, 0.01, 0.001, or 
0.0001. The very small learning rate leads to a slow convergence and may get stuck in local minima while using a 
large learning rate can skip the global optimal values. Sometimes, the learning rate is also described as a function. 
The optimization functions can be Adam, RMSProp, Stochastic Gradient Descent (SGD), Adagrad, etc. Different 
optimization yields different gradients and directions leading to the optimal weights.

State‑of‑the‑arts architectures. Various designed modules for CNN are proposed to lengthen the net-
work to increase accuracy. Some modules can reduce the computation and the model size while maintaining 
accuracy.

One of the popular pre-trained models such as  AlexNet7 was developed by Krizhevsky et.al. It was trained 
by ImageNet dataset in ILSVRC-2010 and ILSVRC-2012, with 1.2 million images in 1000 categories. The archi-
tecture contains eight learnable layers five convolutional and three fully connected (called fc6, fc7, fc8). The first 
five layers are convolutional and the remaining three are fully connected.

The reference  CaffeNet8 is a similar version of AlexNet, except that the max pooling layer precedes the local 
response normalization (LRN) to reduce memory usage.  GoogLeNet9 is a deep convolutional neural network 
structure. It was used as a classification and detection tool in ILSVRC14 with the goal to work with small data sets 
and use small computing power and memory. It employs an inception module that simultaneously computes 1×1, 
3×3, and 5×5 convolutions, enabling the selection of proper filter sizes automatically. It was trained in ILSVRC 
2014 challenge to classify the image into one of 1000 leaf-node categories. ImageNet dataset consists of over 1.2 
million training images, 50,000 validation and 100,000 testing images.

SqueezeNet1 aims to improve AlexNet efficiency while holding the same level of accuracy. The minimized 
CNN has advantages: saving communication time between the server and the clients for over-the-air updates, 
and feasibility for embedded-device deployment. SqueezeNet utilizes the methods such as reducing filter sizes, 
reducing the number of input channels, and delaying downsampling. SqueezeNet was trained on ILSVRC2012 
ImageNet. The design focuses on achieving a smaller model size while keeping the same accuracy as AlexNet.

VGG net improved the accuracy by adding more convolutional layers and removing LRN layers. It was trained 
on ImageNet ILSVRC-201410. The model has various numbers of layers: 11, 13, 16, and 19 layers, making the 
model parameters vary between 133 and 144 million. It was trained on ILSVRC2012 ImageNet (1.3 million 
images, with 50K validation images, and 100K testing images).

ResNet was one of the very first models that contain many layers. Particularly, it consists of many convo-
lutional blocks consecutively. The convolutional block forms a residual block designed to solve the gradient 
vanishing or exploding problem. The network won the ILSVRC competition in 2015. It has variations such as 
ResNet50, ResNet101, ResNet152. It may be combined with modules in GoogLeNet, known as GoogleResNet etc.

SENet was  proposed11, based on two subsequence modules, Squeeze and Excitation. It has the squeeze and 
excite operations. The squeeze operation performs the combining of feature maps across the dimension H ×W 
to obtain a channel descriptor. The excitation operation captures the channel dependency and learns the relation-
ships between channels. It performs the activation of the excitation on each channel.

https://github.com/cchanra/SqueezeNetSEMAuto
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To utilize these above-pre-trained models, transfer learning is a common approach that transfers the knowl-
edge from the source model to the target  model12. For image applications, image features such as edges, and 
shapes are learned in the early layers. They are used in the later fully connected layers which are supposed to 
be fine-tuned for specific tasks. It is useful when the target data set size is smaller than the source data set and 
when the nature of target images is similar to the source images. The closer they are, the fewer tune layers there 
should be. With pre-trained models, a small learning rate should be used for pre-trained models so as not to 
skip unlearned features.

CNN architecture design. The above typical CNN architectures need to be adjusted when they are applied 
to a new dataset. At a small scale, one needs to fine-tune the hyperparameters of each layer. At the medium scale, 
the architecture needs to be adjusted. For example, adding the connection to merge the features from different 
scales. Some convolutional blocks may be added to reduce the feature map size. At a large scale, the whole archi-
tecture can be changed, for example, by changing to use the transformer or sequence-to-sequence.

In this paper, the change in the small scale is called hyperparameter tuning. In the medium scale, the connec-
tion structures are called micro-architecture. From the previous  work13, using transfer learning to fine-tune to 
the new task while adopting conventional different architecture does not lead to a significant change in model 
accuracy. Thus, we are interested in the changes in the micro-architecture level. The adjustment in this level can 
lead to accuracy improvement and optimal parameters suitable for a specific classification task. The hyperpa-
rameter is possible to explore during the micro-architecture search. This sometimes is called, CNN optimization.

At the micro-architecture level, the choices of using different kinds of layers (e.g. convolutional layers, pooling 
layers, classification layers) are explored. These layers may be combined into the module for certain purposes. 
In the module, the convolutional layers certainly play the dominant role in hierarchically extracting meaningful 
features. As a result, the effective optimization of micro-architecture primarily relates to utilizing the different 
types of modules to contribute the accuracy while maintaining the network size.

Inception module It is based on  GoogLeNet9. The purpose of the module is to increase the model depth and 
make the network wider to allow parallel computation and increase accuracy. The module factorizes the large 
convolution into smaller ones to reduce the total number of computations and model size. For example, Incep-
tion-V1 contains 1x1, 3x3, and 5x5 convolutions, 3x3 max pooling computing simultaneously, and concatenates 
the results from them together. Figure 1 is an example of the first version of the Inception module. The simultane-
ous computation of these convolutions can speed up the training time significantly although the network is very 
deep. The use of various filter sizes enables the selection of proper filter sizes automatically. In Inception-V2, the 
module is made wider with several small filters, 3x3, 1x3, 3x1, etc. The filter 1x1’s are used to reshape the feature 
maps and change the dimensionality. The variation of the modules depends on how to factor convolutions to 
increase the depth and accuracy. GoogLeNet’s training time is faster than other previous networks.

Residual block used in  ResNet14, proposed as shown in Fig. 2 to make the network deeper. In particular, the 
mapping F(x)+ x , called identity mapping is created and the feature output from previous layers can be trans-
ferred. F(x) is called residual learning operation which may be some convolution layers. During the learning, 
F(x)+ x is approximate as well as F(x). The idea is to solve the problem of accuracy degrading when increasing 
the depth of the network. This is depicted by the shortcut edge shown in Fig. 2.

Making it deeper this way helps prevent overfitting and exposes more opportunities to improve accuracy by 
gradually tweaking the model into the underlying function instead of only skipping unneeded layers. The depth 
of the model is maintained by doing the exact identity mapping for the following layers by adjusting their weights 

Figure 1.  Inception module  example9.
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of the residual function to zero. On the other hand, the residual function alleviates a little remaining error of 
prediction by finding the optimal function which is closer to the identity mapping.

Skip connection Highway  networks15 enables the flow of intermediate data on the previous layers by using 
the skip connections across the sequence of following layers instead of only the layer-by-layer forwarding. The 
research motivated by recurrent neural networks uses the learned gating units to control the rate of information 
flow which gives the benefit of individually better responding on each of different input data.

Fire module  SqueezeNet1 introduces Fire module shown in Fig. 3 which splits a regular convolution layer into 
two sub-layers called squeeze and expand layers. The squeeze layer demonstrates the usage of 1x1 convolution 
filters to decrease several input channels into each convolutional layer. The expand layer minimizes the number 
of model parameters while preserving a level of accuracy via a given ratio of using 1x1 and 3x3 convolution 
filters instead of using the whole of 3x3 filters in order to extract features from the input transformed by the 
squeeze layer. Both results are concatenated as an output of the module. According to the empirical results, 
SqueezeNet reveals a capability of prediction at the same level of accuracy as AlexNet (citeAlex whereas using 
50x fewer parameters.

SE block Squeeze-and-Excitation Network (SENet)11 proposed the SE block which can be attached to a con-
volutional layer as shown in Fig. 4. The SE block is used to investigate the importance and relationship of each 
feature of output channels. It applies global average pooling on each feature map to derive the channel descriptor 
(squeeze operation) which is then fed into two fully-connected layers to further learn the feature importance 
(excitation operation). Thus, the block has a role to rescale the original feature maps, strengthening the significant 
ones, and suppressing the less impact ones.

Figure 2.  Residual  block14.

Figure 3.  Fire  module1.

Figure 4.  Squeeze and excitation operations in the SE  block11.
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Using the attached SE blocks requires additional parameters compared to the original model. Our work 
exposes the worthiness of enhancing considerably the level of accuracy with the minimal additional cost of 
memory size and computation. In other words, the SE block attachment, rather than adding convolution layers, 
can help to improve accuracy on the deep model with a small increment of parameters.

Related works. The concept of neural architecture search (NAS) has been established years ago. The goal is 
to automatically discover the optimal architecture for specific tasks. The area has recently become active in deep 
learning research. Various techniques have been applied to NAS and demonstrated great success on a variety of 
deep learning tasks, such as image recognition, natural language processing etc.16

In earlier years, reinforcement learning (RL)-based NAS methods have been used to search for the archi-
tecture. It has a controller to generate the potential neural networks being trained to acquire their performance 
as a reward for evolving the controller with a reinforcement learning algorithm. The earlier example  is17 where 
the whole networks are searched.  NASNet18, proposed a design of search space to discover only an architectural 
building block, instead of the entire network architecture, on a proxy dataset and then the learned block, i.e. 
scaling a number of the learned block, is transferred to the targeted dataset. It can save computational time and 
resources for searching and enable transferability to the related tasks.

ENAS19 improved the efficiency of searching by sharing weights of all possible architectures of the search 
space via creating a large computational graph gathering all possible models, and then every subgraph, i.e. 
any sampled architecture, utilizes their corresponding weights together instead of retraining the new sampled 
architecture from scratch.

While the algorithm of the NAS style performs an automatic search on the whole architecture, searching 
the micro-architecture types is also possible. For some classification tasks, the need to adjust the portion of 
the network can lead to better performance. Exhaustively searching for possible architectures consumes time 
resources and effort.

With the rise of AutoML framework, it becomes possible to implement the micro-architecture search easily. 
 AutoKeras20 is one of the tools for AutoML which can automate the model finding. The tool relies on the NAS 
algorithm and it has three steps: Update, Generate, and Observation. In the update phase, it trains the Gauss-
ian process model from existing architectures. and During the generation phase, it creates the training model 
based on the acquisition function (UCB)21. Also, several optimizations are considered to limit the search space 
such as editing distance and tree optimization. In the observation step, the generated model is trained and the 
accuracy is observed. Keras  Tunner22 is a hyperparameter optimization framework for the hyperparamter search. 
It contains a built-in search algorithm such as Bayesian optimization. The algorithm has a behavior based on 
randomness, but its search time and results are acceptable. Furthermore, the framework also provides other 
recent search algorithms such as  Hyperband23, and the traditional random search. The framework also allows 
the new implementation of the search algorithm.

In the recent  work24, the Autopytorch framework utilized the multi-fidelity approach to optimize the 
 hyperparameters25 The approach utilizes less cost and uses a meta-learning approach.

Squeeze-and-Excite block (SE block)11 is a kind of attention mechanism used previously in Seq2Seq net-
works. The concept is to concentrate on more useful feature channels than the less useful ones. Figure 4 focuses 
on the channel attention. Such a mechanism is increasingly popular among many researchers who study at the 
micro-architecture level.

To learn the channel importance of a given immediate result from any module of CNN, SE block used on 
SENet learns and performs feature re-calibration to highlight the informative feature channels. It aggregates the 
spatial information of each channel by using global average pooling (GAP) operation and then these channel 
representations are learned their importance through a bottleneck with two fully connected (FC) layers.

While SENet uses only GAP operation for embedding information of each channel, there are other variations. 
 CBAM26 uses additional information via max-pooling operation. Global information embedding is utilized by 
the shared two FC layers to compute and combine both results, i.e. channel importance, using the element-wise 
summation. Not only the channel attention module but also CBAM presents a spatial attention module to refine 
the feature map along a spatial dimension.

The above-mentioned channel attention modules moderately increase the model complexity. Although the 
bottleneck with two FC layers proposed can reduce a fewer number of parameters when compared to the non-
bottleneck version, it causes a channel dimensionality reduction during learning. ECA-Net27 selected 1D convolu-
tion operation instead of the two FC layers to perform local cross-channel interaction for calculating the channel 
importance. The local cross-channel interaction strategy helps avoid the problem of channel dimensionality 
reduction and still preserves the performance while significantly decreasing model complexity.

In this paper, we demonstrate the proper use of SE blocks: by exploring the block attachment positions and 
variations. The idea can be adapted to explore more options like in CBAM and ECA-Net.

Design methodology
In this section, we explain how we add flexibility to the models to facilitate the exploration process. The variability 
is divided into two levels. The first is the machine learning parameters and the hyper-parameters of the layers. 
Both are handled directly by AutoKeras hyperparameter packages.

Secondly, at the micro-architecture level, the user may explore the possible use of e.g, residual blocks, the 
number of inserted blocks and the location of insertion, etc.
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Baseline architecture. In Fig.  5, we present the baseline architecture used in the methodology. The 
SqueezeNet architecture consists of 7 fire modules (fire2-fire9). The fire module is depicted in Fig. 5. The 
input size is 224× 224. The implementation is adopted  from28.

In Fig. 5a, the original SqueezeNet contains 3 fire modules followed by a max pooling layer, then 4 fire mod-
ules, and a max pooling layer again. The two final layers are the 9th fire module (fire9) and the 10th convolu-
tion (conv10) for classification (instead of the fully connected layer). In Fig. 5, max-pooling layers are inserted 
differently. In particular, it is inserted in every two modules. Both have (fire2–fire9) and 1 convolution layers.

In reality, the number of fire modules can be varied as demonstrated in the original work. Thus, we add on 
the first flexibility by introducing how to create a network with a flexible length.

Adding variable length and bypass. In the original paper of SqueezeNet, the authors proposed to have 
bypass connections. The bypass connections skip only the odd fire modules due to the compatibility of dimen-
sion sizes on the combined layer. Figure 6a shows the bypass configuration. In the first modification, we propose 
to put the flag on the bypass connection. In Fig. 6, the bypass connection is shown in a dashed line i.e., the 
connection can either be inserted or not inserted. After the last fire module, the dropout layer is added. It has a 
dropout rate as a hyperparameter whose possible values are in [ 0, 0.5, 0.8].

Since the fire modules are used in pair, we propose to use the flexible number of fire modules in pairs. Fig-
ure 6b shows the two dashed rectangles which highlight the groups of two fire modules. In each group, the second 
fire module can still be coupled with the skip connection. The first group has a flexible length, either 1 or 2 since 
it is required to have at least one fire module. In the second group, the possible number of fire modules is 0, 1, 
2. This leads to the total possibility of up to 4 groups, or equivalently up to 8 fire modules. There are choices of 
pooling operations, either average or max pooling, as well.

Module insertions. Adding SE block may yield accuracy  improvement11. It is a channel-based attention 
module and can be easily attached to the baseline network, in a similar way as the residual operation. However, 
there are many possible insertion points for a deep network. Considering one by one each is time-consuming29. 
Figure 7 presents SqueezeNet with SE block insertions. It is seen that there are many possible points of insertion 
after the fire modules.

Figure 5.  (a) SqueezeNet and (b) SqueezeNet V1.1. baselines.
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In Fig. 8, we can attach the blocks in various positions in SqueezeNet. Adding more flexibility, we take the 
network from Fig. 6b and add the possible connection of SE block after each fire module. The group in the dashed 
rectangle now contains the SE insertion. The hyperparameter for SE block is the squeeze ratio valued in [ 8, 16, 
32]. Also, the variable skip connection is added to, perhaps, bypass the SE block.

Multiple input merging. At last, due to the concept of the neural network, if some domain knowledge is 
added, the network can yield higher accuracy. Thus, adding input features can improve the accuracy. However, 
adding too many features can lead to over-fitting or high computation without the improvement of accuracy.

Figure 9 shows the typical approach to merge the two inputs, using the addition operation. In some networks, 
such as Siamese  network30, the use of two models was proposed. Each input is fed into each model and then the 
merging of outputs is done at the last stage. In our methodology, we consider the addition of inputs at different 
layers. Thus, this implies the combining of multiple features at the flexible merging layer. Figure 9 is improved 
from Fig. 8 by merging after the first layer. Finally, Fig. 10 shows the variable merging points. Note that there 
exists only one merge point. After the two paths are merged, only one path remains.

In Fig. 11, the selected architecture contains a first block of two fire modules, and then the two outputs are 
merged. After that, there are a pooling layer and two consecutive pairs of fire modules. For each layer, the hyper-
parameters are selected. The concept can be expanded to merge any number of inputs.

The proposed methodology presents the concept of adding varieties for architecture exploration in the three 
aspects. In the next section, we conduct experiments using the methodology to find the model architectures with 
high accuracy. The framework will facilitate the model architecture exploration process.

Experiments
The experiments compare the results of 4 types of micro-architecture explorations based on the previous section. 

(1) The variable number of fire modules,
(2) The addition of skip connections,
(3) The insertion of the SE blocks in various places, and
(4) The multiple-input merge points.

The two data sets: CIFAR-1031 and Tsinghua Facial Expression  datasets32 is used for the experiments. Three 
search strategies are executed to perform model searching and the validation accuracy is reported. We measure 
the top-10 model sizes of the best solutions found. Some of the found solutions yield better accuracy than the 
baselines with the smaller model size.

Figure 6.  (a) SqueezeNet with auto-bypass (b) SqueezeNet with auto-length and more hyperparameters.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10642  | https://doi.org/10.1038/s41598-023-37682-0

www.nature.com/scientificreports/

We divide the section as follows. First, we report the results on CIFAR-10 benchmark. The goal is to find a 
suitable architecture by varying the micro-architecture connection and hyperparameters. Second, the results for 
the recent facial expression dataset are reported. For this data set, we also extract the landmark feature from the 
dataset. The feature is combined with the default inputs where the merging locations are explored. The main goal 
is to find out, whether adding input features yield a model with better accuracy. This demonstrates the need for 
combining inputs to the model with possible merging layers.

Hypothesis. In the experiments, the assumptions have been set up for training. Table 1 presents the machine 
learning and hyperparameters.

From Table 1, the variable learning rates are 0.001 and 0.0001. The two optimizations are considered: SGD, 
and RMSprop. We fix the batch size to 32. The variable hyperparameters are assumed for the dropout layer. 
The dropout rate is ranging between: 0 and 0.8 and the default value is 0.4. For the pooling layers, there are two 
choices of operations: max pooling and average pooling.

For SqueezeNet, there is another parameter, compression ratio. We set the compression ratio to 1. For SE 
block, the squeeze ratio parameter we choose is among values: 8, 16 and 32. The maximum epoch is 100. The 
early stopped method is used if the accuracy is changed for more than 5 iterations.

Figure 7.  SqueezeNetSE29.
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The three search algorithms are tested: Random, Hyperband, and Bayesian from Keras  Tuner22. For Hyper-
band, the algorithm takes the maximum epoch instead. We set it to 100. For the Bayesian search algorithm, the 
alpha value is 0.001, the beta is 2.6, the number of initial points is 2 and the number of trials is 100. For Random 
and Bayesian, the number of trials is also 100. With these search schemes, the parameters are sampled and the 
model is built with such parameters. Then, the input dataset is fed in a batch for training. The training is done for 
the whole number of epochs and then validation is performed. If resources are permitted, the large scaled dataset 
can be used since it will be split into batches and utilize distributed training which Keras Tuner also supports.

CIFAR‑10 dataset. For CIFAR-10, the total data set is 60,000 and each image size is 32×32. It has 10 classes 
with 1000 images per class. The data set is pre-divided into 50,000 training images and 10,000 testing images.

Table 2 shows the accuracy of each model for the three search algorithms. The parameters in Table 1 are 
used. The first two models are SqueezeNet and SqueezeNet11 presented in Section “Baseline architecture”. Then, 
SqueezeNetAuto is the model in Section “Adding variable length and bypass”. SqueezeNetSEAuto is the model in 
Section “Module insertions”. We vary the sample size of the data set for training and testing to see the effect on 
the accuracy. The sampling sizes are 10%, 40%, and 100%. The purpose is to see how the sampling size affects the 
maximum accuracy obtained while minimizing the training time. SqueezeNetSEAuto-0.1 is SqueezeNetSEAuto 
trained with only 10% of the training and testing dataset. Similarly, SqueezeNetSEAuto-0.4 and SqueezeN-
etSEAuto-1 utilize 40% and 100% of the whole data set respectively. The searching strategy does not affect the 
solutions much. Random search performs well enough compared to Baysian and Hyperband. It runs a little faster 
than the two. We use the early stopped approach. Then, all of the experiments may not train until the maximum 
number of epochs.

From Table 2, using SqueezeNetAuto mostly yields models with better accuracy compared to the baseline. 
When adding SE blocks, the accuracy is improved further. The model architectures are reported in Table 3 for 
SqueezeNetAuto for the three search algorithms.

In a row, “# fire module blocks in (1)” presents the number of repeated blocks used in the first dashed block 
in Fig. 8 while “# fire module blocks in (2)” is the number of repeated blocks of the second one. Each dashed 
block contains two fire modules. Row “use bypass”, shows whether the skip connection in the red dashed line 
in Fig. 8 is needed.

The results show that the selected three models have similar architecture. In the table, only 1 fire module block 
is needed for each part of the three algorithms. Thus, all models use only fire2, fire3, fire4, fire5. The 
small difference is the use of a bypass for each section. For example, Random and Bayesian algorithms select 

Figure 8.  SqueezeNetSEAuto.
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Figure 9.  SqueezeNetSE1Auto.

Figure 10.  SqueezeNetAutoSEM.
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Figure 11.  SqueezeNetSEMAuto (Example).

Table 1.  Machine learning and Hyper parameters.

Parameters Possible values

Learning rate 0.001, 0.0001

Optimizer RMSprop, SGD

Pooling Average, Max

Dropout [0, 0.8] (default=0.4)

Squeeze ratio 8,16,32

Table 2.  Accuracy results for CIFAR-10. Significant values are in [bold].

Models Random Hyperband Baysian

SqueezeNet 0.507 0.235 0.52

SqueezeNet11 0.538 0.264 0.556

SqueezeNetAuto 0.556 0.579 0.592

SqueezeNetSEAuto-0.1 0.572 0.570 0.558

SqueezeNetSEAuto-0.4 0.697 0.706 0.693

SqueezeNetSEAuto-1 0.760 0.763 0.746
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no bypass connection for fire3 and Hyperband algorithm selects a bypass connection for fire3. For fire5, 
Random and Bayesian algorithms select the bypass connection while Hyperband algorithm does not pick the 
bypass connection. All use average pooling after fire3 and use max pooling after fire5. Random and Bayesian 
algorithms select the SGD optimizer while RMSprop is chosen for the optimizer. Thus, the size of the three is 
about the same, compared to the baseline where all fire2-fire9 are used, to achieve similar accuracy.

Consider the solution obtained by SqueezeNetSEAuto-0.4 in Table 4. Row “use SE” means whether the SE 
block (in yellow) in Fig. 8 is needed. Note that the dashed block of fire modules has two SE blocks inside. Each 
SE block may have a skip connection inside. This is shown in Boolean in row “SE Skip”.

All the selected models contain the same number of fire modules. In Table 4, the selected models from Ran-
dom and Hyperband algorithms, only 1 block is needed for each part and from Bayesian algorithm two blocks are 
selected for the first part and zero block is used for the second part. Thus, totally 4 fires modules: fire2, fire3, 
fire4, fire5 are used. Random selects 2 SE blocks at fire2, fire3, fire4, and fire5.

Table 5 shows the results when using all data to train the model. For Random and Bayesian algorithms, the 
selected models contain the three fire blocks while, for Hyperband algorithm, the model contains the two fire 
blocks. The number of SE blocks used is 5 inserted at fire3–fire7 for the Random algorithm (Fig. 12), 1 at fire5 
for the Hyperband algorithm (Fig. 13) and 3 at fire2, fire5 and fire7 for Bayesian algorithm (Fig. 14) respectively. 
Thus, the Hyperband algorithm selects better models than others since it uses only 4 fire modules and 1 SE block 
while achieving the accuracy the same as the model obtained by the Random algorithm. The results imply that 
we can achieve a less complicated model with the same accuracy level.

Tsinghua facial expressions. The data set contains 110 subjects, and each subject has 8 classes of expres-
sions: sad, neutral, surprise, anger, disgust, happy, content. Each image size is 2,000×1,500. The data set is pub-
licly available  at32. The example images are shown in Fig. 15. The data set is divided into 80:20 for training and 
testing sets respectively.

To utilize SqueezeNet, the input image is resized to 224x224. We first experiment on model searching. Table 6 
reports the numerical results. This data set size is not as large as CIFAR-10 while the image size is large. We have 
to reduce the size to speed up the time to feed the input to the network.

Table 3.  Models obtained by various searches.

Parameters Random Hyperband Bayesian

Learning rate 0.001 0.001 0.001

# fire module blocks (1) 1 1 1

Use bypass (1) FALSE TRUE FALSE

Pooling avg avg avg

# fire module blocks (2) 1 1 1

Use bypass (2) TRUE FALSE TRUE

Dropout rate 0.48 0.43 0.48

Optimizer SGD RMSprop SGD

Accuracy 0.556 0.578 0.592

Table 4.  SqueezeNetSEAuto (0.4) for three algorithms.

Parameters Random Hyperband Bayesian

Learning rate 0.001 0.001 0.001

# fire module blocks (1) 1 1 2

Use bypass (1) FALSE FALSE FALSE,FALSE

Use SE TRUE,FALSE FALSE,FALSE TRUE,FALSE, FALSE,TRUE

SE Skip TRUE,TRUE FALSE,TRUE TRUE,FALSE, FALSE,TRUE

Squeeze ratio (1) 16 32 32,8

Pooling avg avg max,avg

# fire module blocks (2) 1 1 0

Use bypass (2) FALSE TRUE –

Use SE (2) TRUE,TRUE TRUE,FALSE –

SE Skip (2) TRUE,TRUE TRUE, TRUE –

Squeeze ratio (2) 32 32 –

Dropout rate 0.16 0.67 0.49

optimizer SGD RMSProp SGD

Accuracy 0.697 0.705 0.693
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Table 5.  SqueezeNetSEAuto (1.0) for three algorithms.

Parameters Random Hyperband Bayesian

Learning rate 0.0001 0.0001 0.001

# fire module blocks (1) 2 2 1

Use bypass (1) FALSE,TRUE FALSE,TRUE TRUE

Use SE FALSE, TRUE, TRUE,TRUE FALSE, FALSE,FALSE, TRUE TRUE,FALSE

SE Skip –,FALSE, FALSE,FALSE FALSE,FALSE, –,TRUE TRUE,–

Squeeze ratio (1) 32,8 32,16 8

Pooling avg,max avg,avg avg

# fire module in blocks (2) 1 0 2

Use bypass (2) TRUE – TRUE, TRUE

Use SE TRUE, TRUE – FALSE, TRUE, FALSE, TRUE

SE skip TRUE, FALSE – –, FALSE, –, FALSE

Squeeze ratio (1) 32 – 32,32

Dropout rate 0.12 0.31 0.57

Optimizer RMSProp RMSProp SGD

Accuracy 0.76 0.76 0.74

Figure 12.  Model from SqueezeNetAuto (Random).
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The auxiliary feature used is the 3D landmarks extracted by  Mediapipe33. The face detector is based on 
 BlazeFace34. The landmarks contain 468 points as shown in Fig. 16 Each point has coordinates as x, y, z. x,y val-
ues are normalized to [0,1] with respect to the width and height of the image respectively. The z is the landmark 
depth reference with the depth of the head center treated as the origin. The small value means the position is 
close to the camera. z uses the same scale as x.

Figure 17a presents the landmarks plotted in the 3D space. From the figure, we draw a depth map image in 
Fig. 17b. This is used as another input for SqueezeNetSEM experiments.

Table 6 presents the validation accuracy for the baseline models and for the models proposed by our algo-
rithm. In the table, SqueezeNet and SqueezeNet11 are the same one as in Table 3 where the hyperparameters 
are selected from Table 1.

MLPAuto is a multi-layer perceptron. We use the 468 landmark points of x, y, z from Mediapipe to create 
the classic MLP model. The number of dense layers is varied from [4, 10] and the number of hidden nodes is 
selected among [16, 32, . . . , 512]. At the last two rows, SqueezeNetSE1Auto takes two inputs: image input and 
depth image input and merges them using the add operation after the first convolution and pooling layers. 
SqueezeNetSEMAuto takes the same two inputs but the merge point is also a parameter as in Fig. 10.

For the first three networks, the low accuracy is achieved through the varied hyperparameter. Thus, such a 
fixed structure obstacles the search exploration. When augmented with SE blocks, the accuracy can be signifi-
cantly improved. This is the benefit by the SE block with the channel normalization.

Next, the question is how to insert the SE blocks and how many blocks are needed. We explore the SE block 
insertion by the algorithm SqueezeNetSEAuto presented in Section “Module insertions”. The algorithm leads to 
the superior architecture found by Random, Hyperband, and Bayesian algorithms respectively.

Tables 7, 8, 9 and 10 show the model sizes (in bytes) obtained from the three algorithms. Table 7 shows the 
model size in bytes of the top-5 models from SqueezeNetAuto. It is seen that the model size is quite small and the 
accuracy is low. Table 8 shows the model size in bytes of the top-5 model of SqueezeNetSEAuto. For the Random 
algorithm, it is seen that the model size is three times larger than that of SqueezeNetAuto, while the accuracy is 
about 4 times higher and similar to the solutions from the Hyperband algorithm. However, it is interesting that 
the solution offered by the Bayesian algorithm has the highest accuracy (0.674) while the model size (145,032) 
is a little higher than that of SqueezeNetAuto (123,880). This model architecture is depicted in Fig. 19.

Table 9 presents the model size in bytes of the top 5 models obtained by SqueezeNetSE1Auto. At the first rank, 
Random algorithm yields the model that has higher accuracy (0.691) with the model size, 182,936 compared to 
the model from SqueezeNetAuto (123,880).

In Table 10, there is a solution found by Random algorithm achieving accuracy 0.691 with the model size 
182,936. The highest accuracy, 0.714, is obtained by the model selected by Bayesian algorithm. The model size 
is about 7 times larger (884,688) that that is obtained by SqueezeNetAuto (123,880).

Figure 13.  Model from SqueezeNetAuto (Hyperband).
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Figure 14.  Model from SqueezeNetAuto (Bayes).

Figure 15.  (a) Anger (b) Disgust (c) Fear (d) Happy (e) Neutral (f) Sad (g) Surprise (h) Content.
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Figure 16.  Facial landmarks extracted.

Figure 17.  (a) Landmarks in 3D space (b) Depth interpolation.
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Figure 18 shows the comparison for sizes and accuracy among all cases in Tables 7, 8, 9 and 10. The highlight 
boxes show the best accuracy cases for the small model size. The cases are derived from SqueezeNetSEAuto 
(Bayesian), SqueezeNetSE1Auto (Random), SqueezeNetSEMAuto (Hyperband), and SqueezeNetSEMAuto (Ran-
dom). Figures 19, 20 and 21 present the selected top three models from Tables 8, 9 and 10.

The experiments demonstrate that the proposed framework yields the exploration of models effectively. It can 
help the designer explore the possible micro-architectures at the same time as exploring the hyperparameters of 
the layers. In the future, we will customize the search algorithm suitable for the specific micro-architecture types.

Table 6.  Accuracy results for Tsinghua facial expression data set. Significant values are in [bold].

Model Random Hyper Baysian

SqueezeNet 0.137 0.125 0.114

SqueezeNet11 0.125 0.114 0.137

MLPAuto 0.165 0.2 0.154

SqueezeNetAuto 0.159 0.182 0.314

SqueezeNetSEAuto 0.622 0.502 0.674

SqueezeNetSE1Auto 0.697 0.691 0.617

SqueezeNetSEMAuto 0.691 0.708 0.714

Table 7.  Model size and accuracy for SqueezeNetAuto.

Rank

SqueezeNetAuto

Random Hyperband Baysian

Model size Acc Model size Acc Model size Acc

1 123,880 0.159 28,072 0.182 28,072 0.314

2 28,072 0.154 28,072 0.177 28,072 0.154

3 123,880 0.142 123,880 0.159 28,072 0.142

4 123,880 0.137 123,880 0.154 28,072 0.142

5 28,072 0.137 28,072 0.154 28,072 0.137

Table 8.  Model size and accuracy for SqueezeNetSEAuto.

Rank

SqueezeNetSEAuto

Random Hyperband Baysian

Model size Acc Model size Acc Model size Acc

1 362,208 0.622 381,940 0.502 145,032 0.674

2 473,316 0.605 985,288 0.417 175,604 0.605

3 432,552 0.565 1,085,028 0.394 145,032 0.571

4 171,052 0.531 1,085,028 0.382 145,032 0.560

5 388,244 0.502 1,085,028 0.360 145,032 0.537

Table 9.  Model size and accuracy for SqueezeNetSE1Auto.

Rank

SqueezeNetSE1Auto

Random Hyperband Baysian

Model size Acc Model size Acc Model size Acc

1 143,608 0.691 487,168 0.691 402,064 0.617

2 787,336 0.634 1,156,272 0.622 402,064 0.577

3 160,152 0.634 882,020 0.542 410,376 0.571

4 383,864 0.628 1,156,272 0.479 410,376 0.565

5 148,860 0.605 416,832 0.400 410,376 0.560
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Table 10.  Model size and accuracy for SqueezeNetSEMAuto.

Rank

SqueezeNetSEMAuto

Random Hyperband Baysian

Model size Acc Model size Acc Model size Acc

1 182,936 0.691 445,664 0.708 884,688 0.714

2 453,568 0.685 176,664 0.668 884,688 0.714

3 280,552 0.611 176,920 0.577 894,300 0.708

4 429,376 0.605 573,792 0.548 884,688 0.702

5 1,159,592 0.605 505,656 0.502 884,688 0.697

Figure 18.  Comparing model sizes and accuracy for all tests.

Figure 19.  Model obtained by SqueezeNetSEAuto for Tsinghua data set (Bayesian), acc=0.67, size=14M.
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Other applications
The proposed approach can be applied to explore the micro-architecture change in the baseline architecture that 
requires similar tuning. In this section, we demonstrate the application to other tasks such as image segmentation 
and object detection tasks with the backbone architectures that have a similar micro-architecture style.

Image segmentation. For the image segmentation task, the popular architecture is UNet which was origi-
nally used in biomedical image  segmentation35. The architecture contains a collection of convolution blocks for 
downsampling and upsampling layers where each downsampling and corresponding upsampling layer are con-
nected by the skipped connections (the grey line) in Fig. 22.

From the original architecture, the micro-architecture can be customized as follows (Fig. 23). 1) the start-
ing depth of the convolutional layers 2) the number of convolutional blocks to/from the bottom (the number 
of the purple/green dashed boxes) 3) the number of layers in each down-block 4) the number of layers in each 
up-block which is divided into 4.1) the number of layers in each up-block (part 1) 4.2) the number of layers in 
each up-block (part 2) 5) the number of convolutional layers in the bottom block.

The hyperparameters explored are dropout rate, optimization method, learning rate, etc. Table 11 presents the 
hyperparameters and micro-architecture parameters along with machine learning parameters that are integrated 
into our template design for Fig. 23. The default values are chosen in the same manner as the original architecture.

The segmentation task was applied to weed  dataset37 (https:// github. com/ cwfid/ datas et/ archi ve/ v1.0. tar. gz). 
The dataset contains 59 images with annotation and masking as in Fig. 24.

Table 12 presents the top 5 ranks of the discovered models for each algorithm based on the validation accu-
racy. The training was done for 150 epochs and 100 trials. Compared to the traditional model in Fig. 22 which 
achieves 0.964 accuracies, UNet-Auto can achieve higher accuracy (0.977, 0.973, 0.974) for all search algorithms. 
The model sizes vary due to the number of convolutional blocks and the number of convolutional layers inside 
each block. From the exploration, one can choose the proper model configuration with acceptable accuracy. This 
shows the effectiveness of finding the proper configuration from the baseline network.

Table 13 presents the configurations of top-3 solutions (r1, r2, r3) for each search algorithm. Among all these, 
the best model achieves more parameters than those of the baseline. However, if one prefers the small model, 
the model from the Bayesian algorithm (r1) yields the equivalent solution with more accuracy. The minimum 
convolutional depth (8) can be used to achieve the equivalent or better accuracy while lengthening the number 
of convolutional blocks. All results show that RMSprop is a proper optimization for this task. Such a template 
can help designers explore micro-architecture options along with hyperparameter choices effectively.

Object detection. The code  from38 deploys  MobileNetV239 with Single Shot Detector (SSD)40 as a back-
bone is adopted. We implement the variation on the micro-architecture on it. The original MobileNetV2 archi-

Figure 20.  Model obtained by SqueezeNetSE1Auto for Tsinghua data set (Random), acc=0.69, size=14M.

https://github.com/cwfid/dataset/archive/v1.0.tar.gz
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Figure 21.  Model obtained by SqueezeNetSEMAuto for Tsinghua data set (Bayesian), acc=0.71, size=88M.

Figure 22.  UNet  architecture36.
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tecture composes of 7 bottleneck layers (B1_1 to B7_1) where a total number of parameters is 2.2M as shown 
in Table 14. The backbone  SSD40 consists of 4 convolutional layers and utilizes MobileNetV2 to extract features.

We duplicate the convolutional layers for bottleneck blocks in MobileNetV2, e.g., B3_3,B4_3,B5_3, 
and B6_3. Note that the bottleneck block is based on depthwise separable  convolution39, duplicating the con-
volutional layers can lead to a deeper network without enlarging the number of  parameters41. The template 
architecture is shown in Fig. 25. The cycles in the four layers represent the replications. The number of possible 

Figure 23.  UNet-Auto Template architecture modified  from36.

Table 11.  Hyperparameters and micro-architecture parameters for UNet-Auto.

Parameters Possible values

Learning rate 0.001, 0.0001, 0.0001 (default=0.001)

Optimizer RMSprop, SGD

Dropout [0.1,0.5,0.8] (default=0.5)

# Convolution starting depth 8,16,32 (default=16)

# Convolution layers in each down block [1–5] (default=3)

# Convolution layers in each upblock (1) [1–5] (default=1)

# Convolution layers in each upblock (2) [1–5] (default=2)

# Convolutional blocks 3,4,5,6 (default=4)

# Convolution layers in the bottom block 2,3,4,5,6 (default=2)

Loss function Categorical_crossentropy, dice_coef_loss

Figure 24.  Weed dataset.
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Table 12.  Model size and accuracy for UNet-Auto.

Rank

UNet-Auto

Random Hyperband Baysian

Model size Acc Model size Acc Model size Acc

1 6,082,307 0.977 2,334,467 0.973 3,878,019 0.974

2 2,924,547 0.975 3,500,291 0.973 39,121,347 0.972

3 6,094,595 0.971 3,500,291 0.962 39,121,347 0.972

4 37,351,107 0.967 2,334,467 0.962 6,687,651 0.967

5 6,687,651 0.933 3,514,627 0.959 4,327,331 0.959

Table 13.  Model configuration for UNet-Auto (various search algorithms). Significant values are in [bold].

Parameters Orig

Random Hyperband Baysian

r1 r2 r3 r1 r2 r3 r1 r2 r3

Learning rate 0.001 0.0001 0.001 0.01 0.01 0.001 0.001 0.01 0.0001 0.0001

#conv_depth 16 32 32 32 32 16 16 8 32 32

#conv_block 4 4 4 5 3 3 3 3 6 6

#conv_layer (down) 3 4 4 4 5 2 2 5 5 5

#conv_layer (up1) 1 1 2 1 1 3 3 1 1 1

#conv_layer (up2) 2 1 5 2 3 3 3 1 2 5

#num_conv_bottom 3 5 3 5 2 5 5 6 6 6

Optimization RMS RMS RMS RMS RMS RMS RMS RMS RMS RMS

Dropout 0.5 0.8 0.5 0.5 0.8 0.5 0.5 0.8 0.8 0.8

Loss cat cat cat cat cat cat cat cat cat cat

#parameters 2.3M 6.0M 2.9M 6.0M 2.3M 3.5M 3.5M 2.3M 3.5M 3.5M

#accuracy 0.964 0.977 0.975 0.971 0.973 0.973 0.962  0.974 0.972 0.972

Table 14.  MobileNetV2  architecture38.

Layers size

InputLayer ( 224, 224, 3)

Conv2D ( 111, 111, 32)

BatchNormalization ( 111, 111, 32)

ReLU ( 111, 111, 32)

Bottleneck_B1_1 ( 111, 111, 16)

Bottleneck_B2_1 ( 56, 56, 24)

Bottleneck_B2_2 ( 56, 56, 24)

Bottleneck_B3_1 ( 28, 28, 32)

Bottleneck_B3_2 ( 28, 28, 32)

Bottleneck_B3_3 (28, 28, 32)

Bottleneck_B4_1 (14, 14, 64)

Bottleneck_B4_2 ( 14, 14, 64)

Bottleneck_B4_3 ( 14, 14, 64)

Bottleneck_B4_4 (14, 14, 64)

Bottleneck_B5_1 ( 14, 14, 96)

Bottleneck_B5_2 ( 14, 14, 96)

Bottleneck_B5_3 ( 14, 14, 96)

Bottleneck_B6_1 ( 7, 7, 160)

Bottleneck_B6_2 ( 7, 7, 160)

Bottleneck_B6_3 ( 7, 7, 160)

Bottleneck_B7_1 (7, 7, 320)

Conv2D ( 7, 7, 1280)

AveragePooling2D ( 1, 1, 1280)

Conv2D ( 1, 1, 11)
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replications is set within [1, 2, 3] where the default value is 1. Other than that, we vary the learning rate param-
eters in the same way as in the previous experiment.

The MNIST dataset with object detection bounding box is generated as in the example in Fig. 26. Confidence 
loss and SmoothL1 loss are used as a metric. As in the original code, the training data size was 600 and the test-
ing data size is 100.

Figure 25.  MobileNetV2-Auto.
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Table 15 shows the validation loss for each found model for the different search algorithms. We show only 
the validation loss since all model sizes are the same as the original one. The original model yields a loss value 
0.01 while all our cases can lead to a smaller loss.

Table 16 lists the replication (rep) configuration found for the cases of the top three loss values. Varying the 
number of convolutional layers can lead to more accuracy while not increasing the model size. Thus, utilizing 
such a template model enables the exploration of micro-architecture choices which can improve the model’s 
effectiveness.

Conclusion and future work
In this paper, we propose a framework for exploring model choices based on AutoModel. The baseline model 
can possibly be attached with modules such as SE block, skip connection, etc. The proper number of components 
is selected while the model hyperparameters can be searched at the same time. Better model architectures are 
possible to be found with smaller network sizes. First, we demonstrate the approach based on the SqueezeNet 
model attaching the SE block with skip connections at variable positions. Such a model is recognized as a template 
model. The variable lengths and attachment points can be explored with the standard search algorithms: Random, 
Hyperband, and Bayesian. The models with higher accuracy are obtained when attaching a small number of SE 
blocks and skip connections automatically.

Figure 26.  MNIST dataset with bounding box.

Table 15.  Validation loss for various MobileNetV2-SSD-Auto.

Rank

MobileNetV2-SSD- Auto Loss

Random Hyperband Bayesian

1 0.0073 0.0072 0.0070

2 0.0075 0.0074 0.0075

3 0.0078 0.0081 0.0076

4 0.0080 0.0083 0.0083

5 0.0083 0.0083 0.0084

Table 16.  Model configuration for MobileNetV2-SSD-Auto (various search algorithms). Significant values are 
in [bold].

Parameters Orig

Random Hyperband Baysian

r1 r2 r3 r1 r2 r3 r1 r2 r3

learning rate 0.01 0.0001 0.0001 0.01 0.01 0.0001 0.01 0.0001 0.0001 0.0001

B3_1 rep 1 2 3 2 3 2 3 3 3 3

B4_1 rep 1 1 2 3 2 3 1 3 1 3

B5_1 rep 1 2 1 1 2 3 3 1 3 1

B6_1 rep 1 2 1 2 1 1 2 2 3 2

Loss 0.01 0.0073 0.0075 0.0078 0.0072 0.0074 0.0081 0.0070 0.0075 0.0076
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We also present the alternatives of applying micro-architecture variation for the other models for different 
tasks such as image segmentation and object detection. For the segmentation task, the UNet-Auto template can 
vary many parts such as the number of convolutional blocks and number of convolution layers and depth, etc. For 
object detection, the MobileNetV2-SSD-Auto template can vary the number of convolutional layers for each bot-
tleneck. With such a template, the model structure with the best accuracy and size can be obtained conveniently.

The future work will include the mechanism of considering customized search schemes.

Data availability
The source code is available at the author Github https:// github. com/ cchan tra/ Squee zeNet SEMAu to.
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