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Radially varying viscosity 
and entropy generation effect 
on the Newtonian nanofluid 
flow between two co‑axial tubes 
with peristalsis
H. A. Sayed 1* & M. Y. Abouzeid 2

To examine the peristaltic motion of a Newtonian fluid through an axisymmetric tube, many writers 
assume that viscosity is either a constant or a radius exponential function in Stokes’ equations. In this 
study, viscosity is predicated on both the radius and the axial coordinate. The peristaltic transport 
of a Newtonian nanofluid with radially varying viscosity and entropy generation has been studied. 
Under the long-wavelength assumption, fluid flows through a porous media between co-axial tubes, 
with heat transfer. The inner tube is uniform, while the outer tube is flexible and has a sinusoidal wave 
travelling down its wall. The momentum equation is solved exactly, and the energy and nanoparticle 
concentration equations are solved using the homotopy perturbation technique. Furthermore, 
entropy generation is obtained. The numerical results for the behaviours of velocity, temperature, 
and nanoparticle concentration, as well as the Nusselt number and Sherwood number with physical 
problem parameters, are obtained and graphically depicted. It is discovered that as the values of the 
viscosity parameter and the Prandtl number rise, so does the value of the axial velocity. Temperature 
values decrease as the wave amplitude and radiation parameter increase. Furthermore, at high values 
of the dependent viscosity parameter, the fluid nanoparticle gains more active energy and can move 
more freely, which is the main idea behind crude oil refinement. This physical modelling is essential for 
some physiological flows, such as the flow of stomach juice during the insertion of an endoscope.

List of symbols
a	� The radius of inner tube (L)
B	� The magnetic field = (B0, 0, 0)
b	� The dimensional wave amplitude
c	� The propagation velocity along z direction
cp	� The specific heat at constant pressure
C	� The fluid nanoparticles concentration (M)
C1	� Nanoparticles concentration at  r = r1 (M)
C2	� Nanoparticles concentration at  r = r2 (M)
d	� The radius of outer tube (L)
Da	� Darcy number = K

d2
DB	� Brownian diffusion coefficient
DT	� Thermophoretic diffusion coefficient
Ec	� Eckert number = c2

cP(T1−T2)

k	� Coefficient of thermal conductivity
K	� The permeability parameter
M	� Magnetic field parameter = σB20d

2

µ0
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Nb	� Brownian motion parameter = DB (C1−C2) (ρc)p
(ρc)f c d

Nt	� The thermophoresis parameter = DT (T1−T2) (ρc)p
T1 (ρc)f c d

P	� The fluid pressure
Pr	� Prandtl number = µ0 cP

k
qr	� The radiative heat flux
r	� Radial coordinate (L)
R	� Radiation parameter = 4σ ∗T3

w
k kR

Re	� Reynolds number = ρ c d
µ0t	� The time (t)

T	� The fluid temperature
T1	� Temperature at r = r1
T2	� Temperature at r = r2
u	� Radial velocity (L t−1)
w	� Axial velocity (L t−1)
z	� Axial coordinate (L)

Greek symbols
α	� The viscosity parameter
σ	� The electrical conductivity
ε	� The dimensionless wave amplitude
λ	� The wavelength
µ	� The viscosity of the fluid
µ0	� The fluid viscosity at r = r1
ρ	� The fluid density
(ρc)p	� Effective heat capacity of the nanoparticle material

Newtonian or non-Newtonian fluids are used by researchers, modellers, and physiologists at the early age as 
they do in many technical and medical sectors. By examining the behaviour of non-Newtonian distributions, 
they can apply engineering for oil reservoirs, material processing, and food production. A single relationship 
cannot be used to categorise all Newtonian liquids because to their disparate characteristics. Researchers have 
recently concentrated their attention on understanding how Newtonian or non-Newtonian fluids are utilised in 
the presence of nanoparticles. Implementations in the biomedical field, rheumatoid arthritis, digestive system, 
and oil refinement are a few examples1–4. The peristaltic transport of a Carreau fluid in a compliant rectangular 
duct was investigated by Riaz et al.5. Akram et al.6 demonstrate the effects of MHD hybrids on the thermal 
convection of Prandtl nanofluid flow. Other researchers investigate and discuss Newtonian and non-Newtonian 
nanofluid applications7–19.

Due to the importance of calculation in most phases, petrochemical chemicals and ink are two examples of 
fluids with variable viscosity. We agreed that fluid characteristics can alter in a suggestive way because of tem-
perature variations. Investigational facts demonstrate, as an example, that the viscosity of water as represented 
in Table 1. The issue of peristaltic flow of a fluid with varying viscosity via a tube was examined by Eldabe et al.20. 
They also investigated the tube’s centerline trapping phenomenon. By Nadeem et al.21, the effect of heat transfer in 
peristalsis with a viscosity of non-constant temperature is discussed. The peristaltic flow of non-constant viscosity 
in the presence of a chemical reaction was researched by Asghar et al.22. Eldabe et al.23 explore how a chemical 
reaction, nonconstant viscosity, and Ohmic dissipation affect the peristaltic motion of a pseudoplastic nanofluid.

Nanoparticles and a carrier liquid are combined to form nanofluid. In addition, the fluid with nanoparticles 
has numerous engineering and technological applications, such as vehicle thermal management, vehicle cool-
ing, heat exchangers, nuclear reactors, electronic device cooling, etc. In addition, the base fluid is typically a 
conductive fluid like oil, water, or ethylene glycol, and the nanoparticles are typically comprised of metals or 
non-metals. Thermal conductivity is higher for solid metals than for primary liquids. Suspended nanoparticles 
can thereby enhance thermal conductivity and heat transfer efficiency. Choi24 is credited with introducing the 
idea of nanofluids. Using a nanoparticle solution above a stretchable shape, Shafiq et al.25 investigated the issue 
of chemically reacting bioconvective of second-grade liquid. There are more studies26–35 that support further 
investigation in this area.

As a result of the investigations indicated above, the primary goal of this study is to present a new generalisa-
tion model for entropy generation and the impacts of changing viscosity parameters on the MHD peristaltic flow 
of biofluids. The peristaltic flow of Newtonian fluid is thought to be modelled by the blood flow through arterial 
catheterization. We made the long-wavelength and low-Reynolds number assumptions. Analytically approxi-
mating solutions to the momentum, energy, and nanoparticle concentration equations have been found using 

Table 1.   Values of water dynamical viscosity with temperature.

Temp. (°C) 2 3 4

Dyn. viscosity (mm2 g/ cm3 s) 1.6735 1.6190 1.5673
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the homotopy analysis technique. Findings are graphically displayed and explained for various flow parameter 
problems. The gastric juice flow in the small intestine when an endoscope is placed is one physiological flow 
where this physical modelling is crucial.

Problem formulation
Between two coaxial tubes and a porous media, we investigated the flow of Newtonian fluid. The transverse 
magnetic field B0 in the fluid is meant to be constant. While the outer tube’s wall is being waved by a sinusoidal 
wave, the inner tube is rigid and homogenous. We employ the cylindrical coordinate system (r, θ, z). The inner 
and outer tube equations are as follows:

The equations that govern the flow are the balance of mass

the equation of momentum

the equation of energy

the equation of concentration

Maxwell’s equations

and Ohm’s law

The governing equations for an incompressible flow in the fixed wave are given as36–38

The boundary conditions are given by:

By using the Rosseland approximation39,40, the radiative heat flux is given by:
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The temperature differences within the flow are small, such that T4 may be expressed as a linear function 
of temperature. This is accomplished by expanding T4 in a Taylor series about T2 and neglecting higher-order 
terms, one gets:

The appropriate non-dimensional variables for the flow are defined as

In terms of these variables, dropping the star mark for simplicity and considering long wavelength and low-
Reynolds number approximation, Eqs. (8–12) become:

Thus, the boundary conditions (13) and (14) in their dimensionless form are transformed into:

The following formula, Eldabe et al.20 and Lachiheb41, considers the fluid viscosity based on both radial and 
axial components:

This choice is induced by the following physiological phenomena42:

(1)	 The chyme viscosity is affected by a excretion of liquids plenty. The latter consists mainly of water and acids 
and is injected into the intestine lumen from the wall.

(2)	 During the blood transport in the arteries and blood-vessels, the white blood cells and plasma are precipi-
tated in the center while the red blood cells are piled in the boundaries of the wall, resulting in a decrease 
in the value of the viscosity at the points more closer to the wall.

For α ≪ 1, the formula (19) will tend to the following relation

Morever, the viscosity in the variable case is the viscosity of the base fluid, there are also micro-organism 
particles present inside the fluid called nanoparticles which are known as the fluid mixture or nanofluid. So, 
the variable viscosity presented in the current paper of the base fluid depends on the place only, and not the 
temperature, which means that the thermal physical properties in this study will not change in the presence of 
both Brownian and the thermophoresis effect. This is because the Brownian motion and the thermophoresis 
coefficient are not defined by the variable viscosity parameter.

In other side, there are many papers which take the variable viscosity case without considering variable 
thermophysical properties of the model21–23,41.

Equations (14), (15) and (16) are highly non-linear ordinary differential equations. If Da = M = 0 and in the 
absence of heat and mass transfer, this study tends to the work of Eldabe et al. 20.
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Entropy generation analysis
The dimensionless entropy generation can be written as follows33:

The ratio between heat transfer entropy to total entropy is defined by Bejan number Bn.

Method of solution
Exact solution.  The exact solutions of Eq. (20) with boundary conditions (23) and (24), can be written as

where Lin(z) is the polylogarithm function, which is defined by

Homotopy perturbation method.  The homotopy perturbation technique is a useful method, which can 
treat many kinds of differential equations systems because it requires only a few steps to obtain semi-analytical 
solutions for these systems. In addition, it is a combination of the perturbation method and the homotopy analy-
sis method. One of the most important steps in the homotopy perturbation method is to guess an initial solution. 
Following43–47, Eqs. (21) and (22) can be rewritten as follows:

With the linear operator. The initial approximations T10 and C10 can be written as

Now, we assume that:

Substituting from (33) into (30) and (31), we get the solutions of these equations as:

Convergence of homotopy perturbation method.  Assume that the solution of Eqs. (21) and (22) can 
be written as a power series as follows
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where n is one of the physical quantities T and C. Setting P = 1 we obtain the semi-analytical solution of Eqs. (21) 
and (22) as follows:

The series of Eqs. (21) and (22) are convergent for most of all cases.
The dimensionless volume flow rate, in the fixed frame, is given by

Now, Nusselt number Nu and Sherwood number Sh are defined, respectively, by

The expressions for Nu and Sh have been calculated by substituting from Eqs. (34) and (35) into Eq. (39) 
respectively, and they have been evaluated numerically for several values of the parameters of the problem, using 
the software Mathematica package. The obtained results will be discussed in the next section.

Results and discussion
In our study, we assumed that the viscosity coefficient varies with both radial coordinate r and axial coordinate z; 
moreover, long wavelength and small Reynolds number assumptions restricted our work, while the wave number 
is neglected. The default values of problem-related parameters are taken as:

The following values of human small intestine parameters are used48

In Fig. 1, a three-dimensional graph is drawn to illustrate the effects of radial coordinate r and axial coordi-
nate z on the axial velocity w. We observed from this figure that the axial velocity w increases with increasing z, 
while it decreases as r increases. The parameter of viscosity α is affected by the combination of some materials 
such as crude oil, the temperature, dissolved gas content, and pressure. The viscosity parameter will decrease, 
when temperature increases, as a result, viscosity measurements are always reported with the temperature at 
which the measurement is made. The effects of the viscosity parameter α and Darcy number Da on the axial 
velocity w which is a function of the radial coordinate r are shown in Figs. 2 and 3, and it is shown that the axial 
velocity w increases by increasing α , and the axial velocity increases with r, with a relationship that seems like a 
parabola. While the axial velocity w decreases as Da increases as given in Fig. 3. The following clarifies the result 
in Fig. 2; due to the relation in Eq. (19), it is found that the increment of the viscosity parameter will help the 
fluid to move easier. Similarly, if we draw the variation of w with r for different values of the radiation parameter 
R, we will obtain a figure in which the behavior of the curves is the same as that obtained in Fig. 3, except that 
the obtained curves are very close to those obtained in Fig. 3, but this figure will not be given there to save space.

Thermophoresis or thermo-migration is an original sin that occurs in a blend of transported particles, where 
the different particle types display different echoes to the temperature gradient force. The effects of the ther-
mophoresis parameter Nt and radiation parameter R on the temperature distribution T which is a function of r 
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.
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rw dr,

(39)Nu =
∂θ

∂r

∣

∣

∣

∣
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∣

∣

r=h

.

Pz = 0.1,α = 0.3,M = 15, Da = 0.1,R = 1, Ec = 0.2, Pr = 4.5,Nt = 3.5,

Nb = 1.5, r1 = 0.3, z = 0.8, ε = 0.1.

d = 1.2cm, c = 2cm/min, � = 8.1cm.

Figure 1.   Three-dimensional axial velocity is plotted versus r and z.
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are shown in Figs. 4 and 5, respectively. It is clear from these figures that the temperature distribution is always 
negative, and it increases by increasing Nt, while it decreases as R increases. It is also noted that for each value of 
both Nt and R, there exists a maximum value of T, which its value increases by increasing Nt and decreases by 
increasing R, and all maximum values occur at. Similar results can be obtained, as in Fig. 4, by drawing T versus 

 0.03, 0.06, 0.08

0.3 0.4 0.5 0.6 0.7

0

2

4

6

r

w

Figure 2.   The axial velocity w is plotted with r, for different values of α.
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Figure 3.   The axial velocity w is plotted with r, for different values of Da.
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Figure 4.   The temperature distribution T is plotted with r, for different values of Nt.
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r for various values of Brownian motion parameter Nb, but the figure is not given here to save space. the result in 
Fig. 5 agrees with the physical expectation and previous definition and agrees with those which are presented by49.

Equation (29) evaluates how the nanoparticles concentration distribution C changes with the radial coor-
dinate r. The effects of axial coordinate z and the dimensionless wave amplitude ε on the nanoparticles concen-
tration distribution C are given in Figs. 6 and 7, respectively. It is found that the nanoparticles concentration 

R  0.1, 0.5, 1

0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

r

T

Figure 5.   The temperature distribution T is plotted with r, for different values of R.
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Figure 6.   The nanoparticles concentration C is plotted with r, for different values of z.
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Figure 7.   The nanoparticles concentration C is plotted with r, for different values of ε.
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increases by increasing z, but it decreases as ε increases. Furthermore, the nanoparticles concentration is always 
positive and for large values of  ε  and small values of z, the relation between C and r is a straight line. The effects 
of other parameters are similar to those obtained in Figs. 6 and 7.

Figure 8 and 9 give the influence of Eckert number Ec, and radiation parameter R on entropy generation Eg, 
respectively. Therefore, in these figures the Eq. (27) is evaluated by setting z = 0.8 and entropy generation is plotted 
versus the radial coordinate r. It is noted from these figures that entropy generation increases with the increase 
of Ec, whereas it decreases as R increases. It is also noted that the entropy generation for different values of Ec 
and R becomes lower with increasing r and reaches a minimum value (at a finite value of r : r = r0) after which it 
increases. The following clarifies the viscous dissipation effect on entropy generation, namely, the result in Fig. 8. 
Moreover, all curves for different values of Ec and R intersect at this minimum value. It is well known that the 
influence of dissipation produces heat due to traction between the particles of fluid, this supplementary heat 
is a reason for the increase of initial entropy of fluid. This increase in entropy generation causes an additional 
increment of the force of buoyant. As the buoyant force increases, the fluid velocity increases. So, the bigger 
traction between the particles of fluid and consequently bigger viscous heating of the fluid. Figure 10 shows the 
variation of the entropy generation Eg with r for various values of viscosity parameter α . It is seen from Fig. 10, 
that the entropy generation increases with the increase near the outer tube, namely, in the interval r ∈ [0.62, 0.7]; 
otherwise, it decreases by increasing α . Therefore, the behavior of Eg in the interval r ∈ [0.62, 0.7] is opposite to 
its behavior in the interval r ∈ [0, 0.62]. The effect of the dimensionless wave amplitude ε on entropy generation 
is illustrated in Fig. 11. It is found that the effect of ε on Eg is opposite to the effect of α on Eg given in Fig. 10, 
with the only difference that, the curves in Fig. 10 are very close to those to each other in the second interval 
than those obtained in Fig. 11 The other figures are excluded here to save space.

Table 2 presents numerical results for Nusselt number Nu and Sherwood number Sh for various values of the 
dimensionless wave amplitude and Brownian motion parameter Nb. It is found from Table 2 that an increase in 
ε decreases the values of both Nu and Sh. While an increase in Nb gives an opposite behavior to ε in the case of 
Sh. Moreover, the results in a Table 2 are in agreement with those obtained by 20.
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Figure 8.   The entropy generation Eg is plotted with r, for different values of Ec.
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Figure 9.   The entropy generation Eg is plotted with r, for different values of R.
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Conclusion
In this paper, the influences of both variable viscosity and wave amplitude on MHD peristaltic flow of Newtonian 
fluid between two co-axial cylinders under the consideration of long wavelength and the law-Reynolds number 
have been studied. In our analysis, we are taking into account the effects of both porous medium, Ohmic dis-
sipation, and radiation. The analytical expressions are constructed for the velocity, temperature and nanopar-
ticles concentration distributions. The present analysis can avail as a model which may help in understanding 
the mechanics of physiological flows50–52. The effects of various pertinent parameters on the flow are discussed 
through numerical computations. The main findings can be summarized as follows:

(1)	 The axial velocity w decreases with the increase in each of ε , R and Da, whereas it increases as α , Pr and M 
increase.

(2)	 All curves of the axial velocity w for different values of α , R, Da, ε , Pr and M don’t intersect at the boundary 
of the inner tube, then decrease with increasing r and they intersect at the boundary of the outer tube.
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Figure 10.   The entropy generation Eg is plotted with r, for different values of α.
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Figure 11.   The entropy generation Eg is plotted with r, for different values of ε.

Table 2.   Values of Nu and Sh for various values of ε and Nb.

ε Nb Nu Sh

0.0 1.5 − 1.7308 − 0.83058

0.1 1.5 − 2.0814 − 1.00097

0.2 1.5 − 2.5814 − 1.24361

0.3 1.5 − 2.7414 − 1.61190

0.3 2.5 − 2.8434 − 1.58901

0.3 3.5 − 2.8809 − 1.50012

0.3 4.5 − 2.9012 − 1.38897
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(3)	 The temperature increases with the increase each of Pr, Nt, Nb and Ec whereas it decreases as both R and 
ε increase.

(4)	 By increasing the radial coordinate r, the temperature T for different values of problem physical parameters 
becomes greater and ends up at a maximum value in the middle of the tubes.

(5)	 The nanoparticles concentration C has an opposite behavior compared to the temperature behavior.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to [All the required 
data are only with the corresponding author] but are available from the corresponding author on reasonable 
request.
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