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As malaria transmission declines, the need to monitor the heterogeneity of malaria risk at finer 
scales becomes critical to guide community‑based targeted interventions. Although routine health 
facility (HF) data can provide epidemiological evidence at high spatial and temporal resolution, 
its incomplete nature of information can result in lower administrative units without empirical 
data. To overcome geographic sparsity of data and its representativeness, geo‑spatial models can 
leverage routine information to predict risk in un‑represented areas as well as estimate uncertainty 
of predictions. Here, a Bayesian spatio‑temporal model was applied on malaria test positivity rate 
(TPR) data for the period 2017–2019 to predict risks at the ward level, the lowest decision‑making 
unit in mainland Tanzania. To quantify the associated uncertainty, the probability of malaria TPR 
exceeding programmatic threshold was estimated. Results showed a marked spatial heterogeneity 
in malaria TPR across wards. 17.7 million people resided in areas where malaria TPR was high (≥ 30; 
90% certainty) in the North‑West and South‑East parts of Tanzania. Approximately 11.7 million people 
lived in areas where malaria TPR was very low (< 5%; 90% certainty). HF data can be used to identify 
different epidemiological strata and guide malaria interventions at micro‑planning units in Tanzania. 
These data, however, are imperfect in many settings in Africa and often require application of geo‑
spatial modelling techniques for estimation.
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The importance of targeting interventions through adequate malaria planning and informed decision making 
has been emphasized by the recently launched World Health Organization (WHO) High Burden High Impact 
initiative (HBHI)1. This initiative encourages national malaria control programs (NMCPs) across Africa to use 
local, routine and survey data to stratify malaria risk at the national and sub-national levels and accordingly 
define appropriate targets for their malaria strategic  plans1. To date, national stratification using available rou-
tine data from health information systems has been conducted in several African countries including Burkina 
 Faso2,  Eritrea3,  Ghana4,5,  Kenya6,7,  Madagascar8–10,  Malawi11,  Mali12,  Namibia13,14,  Rwanda15, South  Africa16, 
 Swaziland17,  Tanzania18,19,  Uganda20,  Zambia21,22 and  Zimbabwe23 with most utilizing incidence as a metric of 
malaria measure. The sources of data used by NMCPs for national stratification vary between countries and is 
dependent on the availability, access and quality of  information24,25.

In recent years, the launch of the WHO test and treat  policy26 along with investments to digitize the health 
management information system (HMIS) under the electronic district health information software (DHIS2) has 
resulted in gradual improvements in the quality and completeness of routine data from health facilities (HFs). 
Routine data offers a source of data that is temporally and spatially much more comprehensive than parasite 
prevalence from periodic household surveys. They provide real-time and spatially granular information which 
is essential for effective monitoring and timely planning of interventions.

Most NMCPs in many countries have some form of stratified maps of malaria risk based on aggregating 
routine data, climatic stratification, or parasite  prevalence27,28. These stratification maps are usually produced 
at the higher administrative levels (macro)—or lower administrative levels (micro). Recent malaria guidelines 
advocate for the use of routine data for monitoring and evaluation at country levels and demonstrate its utility 
as part of donor requests for monitoring  progress29. However, at the micro-planning units, limitations of routine 
HF data including its availability and geographic and temporal representativeness, can limit its utility. These fac-
tors contribute to uncertainty in estimates generated from these data and has over the years hindered its direct 
use for decision making. For example, at the micro-levels, not all areas have HFs resulting in long commuting 
distance for communities to reach the nearest HF. Thus, the estimation of disease indicators for these communi-
ties is not straight forward without application of appropriate spatial modelling techniques. Routine data from 
communities in areas with HFs may have additional deficiencies such as reporting  completeness30. Conducting 
disease specific micro-stratification is important for understanding heterogeneity of disease risk. The ability 
to stratify malaria risk at a finer level will lead to even better spatially targeted responses aligned to the HBHI 
concept. This becomes increasingly beneficial in areas moving towards lower transmission risk to quantify the 
levels of heterogeneity and support elimination efforts.

For empirical routine data to provide accurate malaria estimates, all community fever cases should ideally 
reach HFs, be tested and accurately captured within the  DHIS224. However, this is often not the case. Routine 
data do not account for factors such as treatment seeking rates, health utilization behaviors, the underlying 
heterogeneous distribution of the population and the differing testing rates between transmission settings. All 
of these, can potentially under/over-estimate malaria  risk16,24. In the absence of complete and perfect empirical 
data, statistical modelling techniques represents a practical way to close these gaps and obtain best estimates for 
all settings. Spatio-temporal models have been extensively used for various  diseases24,31–33 and are based on the 
principles that data are spatially correlated and observations in adjacent areas will be more similar than observa-
tions that are farther away, thereby smoothing risk in space and time according to a neighborhood  structure34. 
The models allow to efficiently handle incomplete or missing data, account for potential  biases21,24,35 and are also 
useful for understanding the associated levels of uncertainty in the data.

Mainland Tanzania has formally adopted macro-stratification as part of its National Malaria Strategic Plan 
(NMSP) 2021–202536 aimed at providing tailored combinations of interventions according to council level 
epidemiological  risk18,19,36. Multiple metrics have been previously used to provide a simplified risk-strata per 
council based on survey data from school  children38 and routine data from  DHIS218. To further account for the 
intra-council heterogeneity and support decentralized planning, the stratification was extended to the ward level 
to develop a micro-stratification risk map using aggregated routine data as highlighted in previously published 
 work36,37. The routine metrics utilized in this micro-stratification  approach37 included annual parasite incidence 
(API), test positivity rate (TPR) confirmed with malaria Rapid Diagnostic Test (mRDT), and test positivity rates 
from antenatal care clinics (ANC TPR). Furthermore, inclusion of data was limited to HFs with a minimum of 
50% completeness of reporting. The use of empirical routine data in this micro-stratification approach however, 
did not adjust for the existing spatial and temporal gaps nor the related uncertainties, thereby resulting in an 
incomplete ward-level stratification where 5% of all the wards had no HFs and thus no stratification could be 
conducted  here37.

Here, we used Bayesian conditional auto-regressive (CAR) spatio-temporal modelling techniques to leverage 
all the available routine data collected over 36 months from all reporting HFs across wards in mainland Tanzania. 
The aim was to improve previous micro-stratification efforts in mainland  Tanzania37. In this study, we focused 
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on the mRDT TPR, a widely used malaria metric reported by routine health  systems6,39–49. Malaria TPR has been 
shown to be significantly associated with malaria incidence and a strong predictor of malaria  transmission43–45. 
It offers a more consistent and acceptable case definition since it provides a clearer denominator and does not 
require information on HF catchment population that remains largely  undefined44,50.

Results
Routine data coverage and description. A total of 7878 HFs offering laboratory services and perform-
ing testing with mRDTs were included in the analysis for the reporting period 2017–2019 (Table 1). During 
this period, a total of 228,717 facility monthly reports were received resulting in an overall reporting rate of 
80.7% across 93.7% wards. Dispensary, laboratories and clinics represented most of all the HFs (85.7%), followed 
by health centers (10.8%) and hospitals (3.5%) (Supplementary Fig. S1). Of the total malaria tests performed 
by mRDT (n = 56,546,468) in the period of analysis, 15,454,915 (27.3%) were positive for malaria, showing a 
marked variation in the crude malaria TPR from 0.0 to 82.5% across all wards. The number of HFs per ward 
widely ranged with higher number of HFs found in urban wards compared to rural wards. A large number of 
wards consisted of only one (27.9%) or two (29.4%) HFs. On the whole, 6.3% of wards had no HFs or non-
reporting HFs, corresponding to 4% of the total population.

Model selection. Assessment of the coefficients of the predictors selected from the covariates selection 
procedure (Supplementary Fig. S3) showed that Enhanced Vegetation Index (EVI) (Coefficient: 0.078; Standard 
Error: 0.002), Night Time Lights (NTL) (− 0.043; 0.002) and Temperature Suitability Index (TSI) (0.150; 0.004) 
were significant predictors of malaria TPR and were therefore included in the analysis.

Comparison of the Deviance Information Criteria (DIC) values between the three model specifications 
showed that model C had the lowest DIC value (304,069.5) when compared to model A (306,978.1) and model 
B (307,065.9) (Supplementary Table S1). Improving the model complexity improved the model goodness of fit 
and thereby Model C was selected and implemented. Model validation statistics were computed to validate the 
model performance and are summarized in Supplementary Table S1. The MAE of the selected Model C was 
computed to be 0.04 suggesting good model precision, the RMSE was 0.06 suggesting low bias and the R2 was 
0.91 suggesting a good predictive performance of the model.

Table 2 presents the posterior parameters for the selected model C. EVI (Posterior mean; confidence inter-
val—0.236; 0.231–0.241) and TSI (0.579; 0.511–0.647) were positively associated with malaria TPR indicating 
that vegetation index and temperatures are favorable for increasing the risk of transmission. As expected, NTL 
(− 0.300; − 0.371 to − 0.229) showed a negative correlation to the malaria risk implying areas in rural settings 
are more prone to malaria risk. All the model parameters were significant at the 95% credible interval.

Table 1.  The coverage and completeness of malaria Test Positivity Rates (TPR) across wards in mainland 
Tanzania from 2017 to 2019.

# of Health Facilities 
Performing mRDT 
Testing # of Wards

% of Wards
Population Residing 
(%)

Facility Reporting 
Rates (%)

mRDT Confirmed 
Malaria Cases

Total Tested with 
mRDT

Average TPR (%) 
(Min–Max)Urban Mixed Rural

0 208 35.1 12.0 52.9 2,094,992 (4%) - - - -

1 924 12.2 7.7 80.1 10,887,759 (20%) 86.1 2,906,562 9,019,681 32.2 (0.0–82.5)

2 974 7.5 7.8 84.7 13,249,794 (25%) 84.9 4,997,646 14,366,228 34.8 (0.0–79.9)

3 594 11.8 14.0 74.2 9,534,633 (18%) 83.2 3,379,948 10,604,367 31.9 (0.3–81.3)

4 287 15.7 17.8 66.6 5,987,459 (11%) 80.1 2,057,873 7,126,957 28.9 (0.6–71.1)

5 155 28.4 21.9 49.7 3,730,785 (7%) 76.7 1,005,588 4,925,657 20.4 (0.7–63.6)

6 64 31.3 18.8 50.0 1,797,811 (3%) 73.6 433,992 2,280,514 19.0 (0.8–69.9)

7 40 65.0 20.0 15.0 2,094,947 (4%) 70.2 165,987 2,206,765 7.5 (0.7–52.1)

8 27 66.7 18.5 14.8 1,426,109 (3%) 71.1 178,763 1,838,587 9.7 (0.6–43.3)

9 12 66.7 25.0 8.3 614,121 (1%) 64.1 163,956 979,849 16.7 (3.7–51.5)

10 + 26 92.3 7.7 0.0 2,301,807 (4%) 65.7 164,600 3,197,863 5.1 (0.7–28.2)

7878 3311 15.5 11.2 73.3 53,720,216 80.6 15,454,915 56,546,468 27.3 (0.0–82.5)

Table 2.  Posterior model parameter estimates.

Parameter Posterior Mean (95% CI) (Log odds scale)

Intercept –1.594 (–1.692 to –1.495)

EVI 0.236 (0.231–0.241)

NTL –0.300 (–0.371 to –0.229)

TSI 0.579 (0.511–0.647)
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Heterogeneity of predicted malaria TPR at ward level. The heterogeneity in the final modelled 
malaria TPR risk (Fig. 1) is evident across the country with higher transmission levels seen in the North-West 
and South-East parts of the country, whilst lower transmission levels are seen in the central corridor running 
from the North-East to South-West parts of the country. At the national level, the predicted mean malaria TPR 
for the period of analysis was 25.6% (95% credible interval 23.9–27.6) with heterogeneity across the wards rang-
ing from 0.2% (0.1–0.4) to 81.4% (80.9–81.9%).

Following classification of the estimated malaria TPR values into risk strata using the NMCP defined thresh-
olds (Supplementary Table S2), 1348 (40.7%) wards were assigned to high transmission risk strata, 583 (17.6%) 
wards to moderate transmission, 633 (19.1%) wards to low transmission, whilst 747 (22.6%) wards to the very low 
transmission strata. The average estimated malaria TPR distribution per risk stratum is summarized in Table 3.

Interpreting uncertainty in malaria TPR at the ward level. The model exceedance and non-exceed-
ance probabilities provided some level of confidence in the assigned risk strata to allow NMCPs and the coun-
cil health teams to efficiently plan targeted interventions at the micro levels. This is particularly useful in the 
extreme high and very low transmission risk areas where the largest transition in intervention packages from 
control to elimination strategies are  observed36.

A malaria TPR of ≥ 30% is the threshold set by the NMCP to denote areas with high transmission and that 
qualify for the most intensive control interventions to reduce transmission. Approximately 17.7 million people 

Figure 1.  Predicted malaria Test Positivity Rates (TPR) in mainland Tanzania.

Table 3.  Distribution of wards by transmission strata.

Malaria TPR Risk Strata # of Wards (%) # of Population Residing (%) Average Predicted Malaria TPR (Credible Interval %)

Very Low (< 5%) 747 (22.6%) 13,795,566 (25.7%) 2.5 (1.9–3.3)

Low (5- < 15%) 633 (19.1%) 11,967,597 (22.3%) 9.1 (8.0–10.7)

Moderate (15- < 30%) 583 (17.6%) 8,894,349 (16.6%) 22.2 (20.5–24.5)

High (≥ 30%) 1348 (40.7%) 19,062,704 (35.5%) 47.5 (44.9–50.4)

3311 (100%) 53,720,216 (100%) 25.6 (23.9–27.6)
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(33%) were estimated to reside in 1227 wards with a probability of ≥ 90% which shows a high transmission risk. 
The majority of this population was located predominantly in the North-West and South-East of the country. 
Another 11.7 million people (22%) resided in 662 wards with very low transmission risk of < 5% and were found 
largely in the North-East councils (Fig. 2a). These indicate areas where elimination strategies such as strengthen-
ing surveillance systems should be  considered36. Approximatively 1.2 million people resided in 104 wards where 
the assigned risk strata had large levels of uncertainty (probability < 70%) (Fig. 2b).

Comparison of the risk strata estimated from the model with the empirical estimates of malaria TPR (which 
did not account for uncertainty) showed 7.4% of the total wards to be misclassified. Amongst these, 68 wards 
(2.2%) in the low strata were found to be misclassified to the very low risk strata by the empirical malaria TPR. 
Another 32 wards (1.0%) in the high risk strata were found to be misclassified to the moderate risk strata. These 

Figure 2.  Exceedance and non-exceedance probability of predicted malaria Test Positivity Rates (TPR).
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represent areas where the largest impact of misclassification would likely be observed due to the significant dif-
ferences in the intervention strategies in these strata.

Discussion
In this work, a Bayesian spatio-temporal modelling framework was used to leverage routine information from 
HFs and provide robust estimates of malaria risk at ward level. The model allowed to smoothen the risk and fill 
the spatial and temporal gaps in routine data, handle the associated uncertainty in a robust manner and account 
for any spatial and temporal dependencies in the data. The analysis highlighted the sub-council level spatial het-
erogeneities in malaria TPR with higher transmission particularly seen in the North-West and South-East parts 
of the country. These areas have traditionally been shown to have similar patterns of higher  prevalence18,38,51–53. 
Factors potentially contributing to resilience in changes to the risk could be due to the geographic location, 
climatic factors and socio-economic factors amongst many.

As countries begin to transition towards lower malaria transmission, the need to monitor the increasing 
heterogeneities at finer scales and inform appropriate tailored strategies becomes critical. HF data represents an 
essential source of local information describing the dynamics of the malaria situation with a high level of resolu-
tion in time and space. Understanding their structure and representativeness can be useful to replace modelled 
prevalence estimates derived from sparse cross-sectional surveys that is widely considered as the current gold 
standard. Nevertheless, at the local administrative levels, incomplete HF reporting or non-reporting HFs create 
varying degrees of spatial and temporal data gaps. Moreover, as observed in this analysis, about 57.3% wards 
had only 1 or 2 reporting HFs, thereby contributing to a higher level of uncertainty.

The modelling framework used here allowed for a more robust estimation of malaria TPRs by borrowing 
information from neighboring wards, rather than relying only on limited information from one single ward. 
In addition to adjusting for the missing information, the approach provides measures of uncertainty that are 
required to make relevant policy decisions. Previous work done in mainland  Tanzania36,37 used combinations 
of empirical routine data to develop a micro-stratification risk map, but that approach did not consider the 
uncertainty in transmission risk for the population at risk. This is important to allow NMCPs to understand 
the fidelity of estimates, understand progress made towards achieved targets and more confidently transition 
malaria strategies. The current paper builds on this by providing a more robust estimate of risk. By presenting 
the risk in terms of exceedance and non-exceedance probabilities, the developed model allows programs to also 
identify areas with high uncertainty in their assigned risk (Probability < 70%). These areas are likely within wards 
in which there is a natural level of heterogeneity such as major altitudinal changes, natural swamps or man-made 
agricultural areas. Importantly, these would need to be differentiated from wards with poor HF reporting perfor-
mances, or those with small numbers of patients tested at a HF resulting in larger uncertainty in actual estimates.

The current approach taken in this paper may be applied to other sub-Saharan African (SSA) countries that 
are facing challenges with incomplete and missing routine information at the higher spatial scales. In such places, 
particularly those moving towards lower transmission of risk, the use of real-time routine information becomes 
important to allow continuous analysis of the existing local heterogeneity. Using statistical models can be valu-
able to address some of these existing data issues. Nevertheless, continued efforts to strengthen routine surveil-
lance systems must remain a country priority to help guide local evidence-based planning and implementation.

This study has some limitations. The approach uses routine data that are only representative of the popula-
tion who seeks care and are laboratory tested. It therefore does not capture the variations in testing rates, infec-
tions within the communities that do not reach the facility, or those that are asymptomatic. The unavailability 
of treatment seeking information at ward level limited the analysis to account for this important factor. Using 
a combination of metrics from both routine and survey sources could further improve the estimates. Future 
work may look into leveraging information from both sources to better understand the relationship between 
the data sources and how well they reflect the different components of the transmission system. Establishing 
this relationship would also be important to better develop thresholds used for defining risk categories. To date, 
cut-offs used for defining malaria risk are mainly based on pragmatic, plausible criteria but not linked to likely 
biological/ epidemiological impacts of specific interventions. There is also a need to consider other layers of 
malaria-related information to further increase the value of malaria TPR for decision making and provide a 
more holistic approach to inform malaria policies sub-nationally.

The CAR modelling approach used aggregated estimates per ward and thereby assumed the ward administra-
tive boundaries to represent the catchment population for HFs within wards. This can have several implications. 
Firstly, it did not account for differing facility utilization behaviors and population movements across neighboring 
ward borders. Many factors can drive patient choices such as the size of HFs, distance, perceptions and  costs24. 
Using geo-statistical methods to account for the geo-spatial location of HFs as well as incorporating information 
on behaviors driving facility usage can better inform the risk estimates. Secondly, the use of aggregated data can 
mask underlying data quality issues thereby limiting the understanding of the true nature of  data54,55. Finally, 
the use of aggregated data poses the challenge of the modifiable areal unit problem (MAUP) which is a common 
geographical statistical problem. This occurs when results are affected by variability introduced through aggregat-
ing data or due to changes in the polygon shape used in the  analysis56. In this work, data were aggregated to the 
ward level for providing estimates at a resolution that is programmatically meaningful for micro-stratification.

The use of the complex analytical methodologies for dealing with incomplete data demands analytical skills 
largely beyond the capacity of most NMCPs. Hence, it is important that such methods remain within local 
research institutions with the required know-how for annual monitoring. Increased usage of maps for local 
decision making by NMCPs was recently shown to be associated with factors such as knowledge and understand-
ing of the data sources and their limitations, and also trust and perceived ownership of the  data28. Therefore, 
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capacitating NMCPs to establish a high-quality surveillance system and to interpret the data after an appropriate 
analytical process represents a sustainable way of promoting data use for decision  making24.

Conclusion
This work demonstrated the potential of routine HF data to identify different epidemiological strata and thereby 
providing the malaria program with an evidence base to guide malaria interventions at micro-planning units 
in Tanzania. These data, however, are imperfect in many settings in Africa and often require application of geo-
spatial modelling techniques for estimation. These techniques allow for filling the existing spatial and temporal 
data gaps, accounting for statistical uncertainty, and leveraging this rich source of information for optimizing 
micro-planning of interventions.

Methods
Geographical scope and context. Mainland Tanzania is organized into multiple administrative levels. 
The country has 26 administrative regions, divided into 184 councils. The councils represent the main adminis-
trative level responsible for resource allocation and tailoring interventions as per the national guidelines. Coun-
cils are further divided into wards, which serve as the lowest resources allocation and disease reporting unit. A 
total of 3311 wards have been defined according to the 2012 national census for mainland Tanzania (Supplemen-
tary Fig. S6). There is a range from 2 to 43 wards per council, depending on the size of the council, altitudinal 
variation and population density.

Routine health facility data processing. Data from 7878 (93%) reporting HFs across 3103 (93.7%) 
wards in mainland Tanzania were used to assemble malaria TPR data (Supplementary Fig. S1). The remaining 
wards (6.3%) did not have reporting HFs. Aggregated routine data (see data aggregation description below) 
from the laboratory register representing all ages were obtained from HMIS/DHIS2 for 36 months (2017–2019). 
DHIS2 is an open source, web-based software platform for reporting, analysis, and dissemination of health data. 
It captures information from both the private (26%) and public (74%) HFs, and can be accessed by officials 
working in the health sector through registered credentials. Each month, HFs provide paper-based monthly 
summary reports with data that are entered into DHIS2.

Monthly laboratory testing reporting tools were introduced in HFs in October 2015 to capture: (1) the 
total number of malaria tests performed by blood slides and mRDT across all age groups, and (2) the number 
of positive malaria cases. The reporting rates have gradually improved from 49.6% in 2016 to 87.7% in 2019. 
mRDTs were introduced in mainland Tanzania in 2009 in several rolled-out phases before country wide scale 
up was achieved in  201357. Currently, mRDTs are the most widely-used diagnostic method for malaria (88% of 
total tests performed), with only a small proportion of facilities, mainly private facilities, still using microscopy.

The indicators extracted were used to compute the mRDT TPR, defined as the proportion of the number of 
malaria laboratory confirmed cases (numerator) amongst the total number of mRDTs performed (denominator)..

Data cleaning and geocoding. In this analysis, the HMIS data consisted of monthly laboratory reports of all 
patients tested with mRDT and reported by all public and private HFs with available geo-coordinates. These 
facilities represented 92.7% (N = 7878) of all HFs offering laboratory testing and those captured in the DHIS2. 
The remaining 7.3% HFs did not submit any monthly laboratory reports across the entire period of analysis and 
were therefore excluded. No information was available on whether they simply did not report, or whether they 
did not test. In Tanzania, only HFs offering laboratory testing services are expected to submit the monthly labo-
ratory reports. However, this information is not clearly demarcated in the current master HF list and therefore 
understanding the exact proportion of HFs that were missing in the DHIS2 was not possible.

All reports were first checked for duplicate submissions for the same month by the same HF and duplicates 
were removed. As the DHIS2 database in Tanzania is unable to record zero values, these are marked blank. Hence, 
to distinguish zero values from missing values, it was assumed that missing values of otherwise complete reports 
were true zeros. To ensure the correct allocation of HFs to their respective wards, the geographical coordinates 
of the reporting HFs were obtained from the master registry HF list of  Tanzania58 and linked to the DHIS2 
data using the unique HF identifier code. The national ward shapefile was then used to allocate the HFs to their 
respective wards (Supplementary Fig. S1).

Data aggregation and classification. The HMIS monthly data were aggregated for the whole year in order to 
align with the NMSP development which has cycles of three years, and we therefore provided average risk esti-
mates for the period 2017–2019. This resulted in a total of 9214 space–time data points that were included in 
the analysis.

The classification of routine metrics into malaria risk categories has been previously defined in the country 
using prevalence survey data from school children as a gold standard. This classification was guided by a set of 
criteria ensuring the minimization of misallocation of councils belonging to the higher strata to the lower strata, 
which would have led to the largest changes in the optimal intervention  packages36 (Supplementary Table S2). 
We classified the estimated malaria TPR values into risk strata using the national criteria of risk as follows: < 5% 
as very low transmission; 5– < 15% as low transmission, 15– < 30% as moderate transmission and ≥ 30% as high 
transmission (Supplementary Table S2).

Environmental and ecological covariates. A set of biologically plausible covariates known to affect 
malaria risks were considered for the geo-spatial  modelling34,59. The data were extracted from open source 
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remote sensing platforms. The covariates included  precipitation60,  EVI61,  TSI62,  NTL63 water  vapor64 and the 
average HF reporting rates within a ward (Supplementary Text S1). The covariates were standardized using the 
observed mean and standard deviation.

A covariate selection procedure was performed in order to select a parsimonious minimal set of  covariates59,65. 
The malaria TPR data series were matched to the covariates and a non-spatial generalized linear regression 
model was applied using the bestglm package in  R66. This approach selected the best combination of the covari-
ates based on the lowest value of the Bayesian Information Criteria (BIC). TSI, NTL and EVI were among the 
selected covariates as predictors (Supplementary Text S1).

Model specification. A Bayesian Besag-York-Mollié 2 Model (BYM2)67 was used to model the spatial and 
temporal distribution of malaria TPR at the ward level adjusting for the selected covariates. The model combined 
the data and prior knowledge to produce posterior probability distributions and predict smoothed malaria TPR 
estimates thereby filling the missing values for wards with no facility data. The model was used to estimate 
malaria TPR at the administrative level of the ward and accounted for prediction uncertainty across wards with 
incomplete data or no reporting facilities (Supplementary Text S2).

Let y(j, k) represent total number of positive malaria cases at the ward j , 
(

j = 1, . . . , n
)

 in year (k = 1, . . . ,K) , 
and N(j, k) the total people tested for malaria at ward j in year k. The malaria test positivity rate (TPR) given the 
selected covariates was modelled using a binomial likelihood:

where the link with the chosen environmental and ecological covariates is made through a regression model 
based on a linear predictor defined as:

with β0 the intercept, X(j, k) is a set of selected covariates; β are the corresponding regression parameters; uj cor-
responds to the CAR structured spatial random effect that smoothens the data according to a neighbourhood 
structure. The CAR model was applied to a symmetric spatial neighborhood matrix structure W , developed at 
the ward level. W = {w(h,i)} defines a neighborhood structure across all the wards of the country (Supplementary 
Fig. S4), where each element whi connects the wards h and i , i.e.,  whi = 1 if wards share a common boundary 
and whi = 0 otherwise; vj corresponds to the unstructured exchangeable component using independent and 
identically distributed (i.i.d) random effect and γk is the temporal random effect specified using i.i.d zero-mean 
normally distributed random effect.

In order to test the goodness of fit, CAR models with different specifications of the spatio-temporal struc-
tures were implemented (Supplementary Table S1). Model A did not have a spatial random effect component, 
model B had a spatial random effect component and model C was run with a spatial and temporal random 
effect structure (Supplementary Table S1). The model goodness of fit was evaluated using the DIC and the best 
model was selected and used for subsequent analyses. The model was estimated using Integrated Nested Laplace 
Approximation (INLA)68–70 (Supplementary Text S2).

Exceedance probability (EP) and non-exceedance probabilities (NEP) calculated using the fitted spatio-
temporal model (Supplementary Text S2) were used to quantify the likelihood of the malaria TPR estimates to 
be above the high (≥ 30%) or below the very low (< 5%) malaria risk thresholds. These thresholds represent the 
pre-defined, policy-relevant thresholds defined by the NMCP in Tanzania. Estimates obtained from the result-
ing model are only programmatically useful when NMCPs are able to interpret it with its underlying level of 
 uncertainty6,71.

Model validation. To evaluate the predictive performance of the model, a subset of 10% of the dataset was 
held out randomly. The predictive performance of the model was estimated by computing validation statistics 
on the hold out data set. The mean absolute error (MAE) was computed as a measure of the absolute differences 
between the observed and predicted values. The root mean square error (RMSE) was computed to provide a 
measure of the accuracy of the individual predictions whilst the R-squared  (R2) was computed to provide a 
measure of the proportion of variation accounted for by the model (Supplementary information Text S2).

Estimating population at risk by strata. The population for each ward was obtained from the publicly 
available 2012 population and housing census in Tanzania conducted by the National Bureau of  Statistics72. 
Annual growth rates at the council  level73 were applied to the ward population data to project each ward popula-
tion to the period of analysis (2017–2019). These were then used to estimate the total populations residing in 
each of the identified malaria risk strata.

R  Studio74 was used for performing analysis of the data downloaded from DHIS2. All maps were produced 
using the QGIS software version 3.4.1475.

Ethics approval and consent to participate. This work utilizes secondary aggregated data for analysis 
for which no ethics approval was required.
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Data availability
Data from routine HMIS/DHIS2 are not publicly available and were obtained by request from the NMCP of 
mainland Tanzania. Restrictions apply to the availability of these data and permission can be obtained with 
reasonable request from the Ministry of Health of mainland Tanzania.
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