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Multi‑objective pathfinder 
algorithm for multi‑objective 
optimal power flow problem 
with random renewable energy 
sources: wind, photovoltaic 
and tidal
Ning Li 1,5,6, Guo Zhou 2*, Yongquan Zhou 1,3,5*, Wu Deng 4 & Qifang Luo 1,5

In this paper, the multi-objective optimal power flow (MOOPF) problem optimization objectives focus 
on four optimization objectives: generation cost, emission, real power loss and voltage deviation (VD). 
Three renewable energy sources with successful industrial applications, including wind energy, solar 
energy, and tidal energy are introduced. Renewable energy supply is uncertain, so Weibull distribution 
probability, lognormal probability and Gumbel probability are used to calculate the instability and 
intermittency of wind energy, solar energy and tidal energy, respectively. The inclusion of four 
energy supplies on the IEEE-30 test system and the consideration of renewable energy reserves and 
penalty cost calculation improve the realism of the model. In order to obtain the control parameters 
that minimize the four optimization objectives, a named multi-objective pathfinder algorithm 
(MOPFA) based on elite dominance and crowding distance was proposed to solve this multi-objective 
optimization problem. Simulation results show the feasibility of the model, and MOPFA can get 
more evenly distributed Pareto front and provide more diverse solutions. A compromise solution 
was selected by the fuzzy decision system. Comparison with the recently published literature also 
shows that the proposed model can effectively reduce emissions and other indicators. In addition, 
the statistical test results show that MOPFA’s multi-objective optimization performance ranks first. 
In solving this complex optimization problem, results show the MOPFA is superior to other multi-
objective algorithms in optimization accuracy and speed.

The stability of the electric power system, which serves people’s production and lives, is an important problem. 
It is well worth studying how to optimize the parameters in electric control system. Optimal Power Flow (OPF) 
is an important tool for optimizing the power system, which is important for the reliable operation and cost 
reduction of the power system1. The OPF problem is characterized by nonlinearity and multiple constraints, 
these constraints include generator capability, line capacity, bus voltage and power flow balance2. The OPF 
problem belongs to the NP-hard problem, which adds to the difficulty of searching for the solution3. The goal 
of optimization is to find the optimal solution that minimizes the objective in the solution set of many control 
variables to be selected. Researchers usually consider the optimization of a single objective, such as the total fuel 
cost of generators, power loss, emissions and other objectives. However, reducing power loss should also reduce 
generator costs or other cost targets, therefore, multiple optimization objectives should be considered in the OPF 
problem, but unfortunately these goals are in conflict. The OPF problem of using thermal generators for power 
output has long been considered. On the other hands, with the widespread application of renewable energy, the 
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share of renewable energy (e.g., wind power, solar power and tidal power) in the power system is increasing. It 
becomes necessary to study the multi-objective OPF problem with the grid connection and uncertainty char-
acteristics of renewable energy sources4.

In this study, we focus on the MOOPF problem with integrating renewable energy supply. This research 
considers the grid connection with wind, solar and tidal energy, Weibull distribution, Lognormal and Gumbel 
probability density functions are used to calculate the uncertainty of wind, solar and tidal energy, respectively5. 
The objective of optimization is to obtain the minimum values of fuel costs, emissions, real power loss and voltage 
deviation at the same time. However, the MOOPF problem itself has to deal with multiple conflicting objective 
functions, coupled with many nonlinear constraints, which greatly increases the complexity and difficulty of 
solving the MOOPF problem. To better solve this problem, a named multi-objective pathfinder optimization 
algorithm (MOPFA) is proposed, MOPFA is a multi-objective metaheuristic algorithm based on non-dominated 
sorting, crowded distance and elite archiving components. Elites correspond to pathfinder individuals in PFA 
groups, which can better lead followers to search. MOPFA is applied to solve a multi-objective OPF problem 
with wind and solar energy. The IEEE 30-bus system6 was modified to integrate multiple renewable energies. 
Experiments are carried out on a modified IEEE 30-bus system. The experimental results obtained by MOPFA 
were compared with those of powerful multi-objective optimizers, and MOPFA ranked first in performance 
metrics. Compared with the models proposed in recent published literature, this paper proposed a MOOPF 
problem model for hybrid wind, solar and tidal energy that can effectively reduce emissions and achieve other 
optimization objectives.

The main contributions of this study can be summarized as follows:

•	 A novel multi-objective pathfinder optimization algorithm (MOPFA) is proposed based on non-dominated 
sorting, crowded distance and elite archiving components.

•	 The multi-objective OPF problem with wind, solar and tidal energy was studied, while the uncertainties of 
renewable energy were studied. The widely known IEEE 30-bus was modified to include renewable energy 
systems, and MOPFA used it as a test system to solve the MOOPF problem.

•	 Experiments show MOPFA obtains a more uniform Pareto front to provide more diverse solutions, while 
MOPFA’s compromise solution can reduce pollution emissions while reducing costs and other indicators.

The rest of this study is organized as follows. Section "Related work" summarizes related studies. Section 
"Mathematical models" introduces the MOOPF problem with wind, solar and tidal energy to formulate a MOOPF 
problem model with renewable source. Section "Uncertainty and power models for renewable energy" explains 
the uncertainty of a renewable source. In section "Multi objective pathfinder optimization algorithm (MOPFA)", 
the proposed multi-objective pathfinder algorithm (MOPFA) is introduced and applied to solve the MOOPF 
problem with renewable sources. Section "Experimental results and analysis" presents the results of the experi-
mental cases, which are then analyzed and discussed in depth. Finally, Section "Conclusion and future work" 
summarizes and discusses future work.

Related work
Traditional algorithms for solving the OPF problem.  Since the OPF problem was raised7, many 
researchers have studied the OPF problem, and traditional methods for solving it include the Newton method8, 
quadratic programming9, linear programming10, and interior point method11. These methods mentioned in the 
previous question were used to solve the Optimal Power Flow problem in the early days, but these methods can 
only be solved for linear objective functions, which in turn can lead to an increase in error. In considering non-
convex fuel costs with threshold effects, these methods will not be solved efficiently.

Metaheuristic algorithms methods for solving the OPF problem.  Researchers now have new solu-
tion ideas thanks to the emergence of metaheuristic algorithms, which have the benefit of not requiring them 
to concentrate on the objective function and constraints. Metaheuristic algorithms are widely used in solving 
OPF problems. In12 a new genetic algorithm for coding systems was applied to the OPF problem, the objec-
tive was to minimize fuel costs. The particle swarm optimization (PSO)13 algorithm was used to solve the OPF 
problem and test it on the IEEE 30-bus. In14, three new particle swarm optimization algorithms were used to 
find the optimal steady-state performance of power systems. Reference15 provided a new initialization method 
for the problem of genetic algorithms that may be ineffective if starting values of voltage angles are selected 
quite randomly. Mahadevan et al.16 applied a method named comprehensive learning particle swarm optimiza-
tion (CLPSO) to the OPF problem with active power losses as objective functions. A new hybrid algorithm is 
proposed in17 optimal reactive power dispatch problem with discrete and continuous control variables. In18, a 
Gaussian bare-bones water cycle algorithm (NGBWCA) was proposed to minimize resistive losses and voltage 
deviations. In19, authors solved the Optimal Power Flow problem using a modified Sine–Cosine algorithm, this 
algorithm obtains a lower value of fuel cost and power losses. In20, Wei and Zhou et al. employed an improved 
slime mold algorithm (ISMA) to find optimal control parameters in power systems, and its effectiveness and 
robustness were also demonstrated. Recent literature1 proposed a high performance crisscross search based grey 
wolf optimizer (CS-GWO) to solve the OPF problem, fuel cost with valve-point effects and basic fuel cost are 
considered separately. Although the above study achieved the expected economic benefits, many researchers are 
not satisfied with achieving one optimization objective, and many researchers have also investigated the OPF 
problem with multiple optimization objectives. In21, multi-objective adaptive immune algorithm (MOAIA) was 
proposed for optimal reactive power flow incorporating static voltage stability. Reference22 provided a new vari-
ant of the differential evolutionary algorithm, ensures high convergence speed and diversity of Pareto solutions, 
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and extracts the best compromise based on fuzzy set theory. Pulluri et al.23 proposed ESDE-MC methods to 
solve multi-objective OPF problem, non-dominated sorting and crowding distance was used in this method, the 
objectives to be optimized for the conflict include fuel costs, emissions, L-index and power losses. An improved 
NSGA-III (I-NSGA-III) was developed in24 to solve multi-objective OPF problems, the optimization goal is to 
simultaneously minimize total fuel cost, total emissions, voltage magnitude deviation and power loss. Although 
many classical meta-heuristic algorithms have been applied to solve this problem, many excellent algorithms 
have been proposed in recent years, such as the cheetah optimizer25, etc. Therefore, the use of novel algo-
rithms to effectively improve the accuracy of problem solving is still worth investigating. In recently published 
literature26,27, the improved heap optimization algorithm and multi-objective Manta Ray Foraging Optimization 
were developed separately based on the Pareto concept, these two algorithms aim to simultaneously optimize 
four metrics: fuel cost, emissions, power loss and voltage deviation.

A summary of past research shows that many researchers have conducted exhaustive studies on single-
objective and multi-objective problems for the OPF problem, and have obtained good results, but power systems 
are becoming more complex with the grid integration of renewable energy sources. Renewable energy sources 
have an element of uncertainty, yet the non-polluting nature of these sources compels us to use them, therefore, 
it is increasingly important to study the OPF problem with renewable energy. In28, the authors used the Weibull 
distribution to simulate the variability of wind, and then proposed a modified bacterial foraging algorithm to 
solve the OPF problem. On the basis of integrating wind power into the power grid29, also adding solar energy 
to the power grid, Lognormal probability distribution functions were used for forecasting solar photovoltaic 
power output. Reference30 considers the OPF problem with or without wind power and tested it on IEEE 30-bus, 
IEEE 57-bus and IEEE 118-bus respectively. In31, a novel hybrid modified imperialist competitive algorithm and 
sequential quadratic programming were proposed to solve the OPF problem, which studied the uncertainties of 
solar power and wind energy. Li and Gong32 proposed an enhanced adaptive different evolution and then applied 
it to the OPF problem on a modified IEEE 30-bus system, in which wind power and photovoltaic power are also 
being considered as energy supplies. A new version of the JAYA algorithm was proposed33 to solve the problem 
of OPF incorporating renewable energy sources, using a linear weighting method to integrating a multi objective 
OPF problem with four different objective functions into a single objective optimization OPF problem. In the 
most recent literature34, Li and Gong formulate the optimal power flow with stochastic wind and solar energy as 
a multi-objective optimization problem and a multi-objective evolutionary algorithm based on non-dominated 
sorting with constraint handling technique is presented to solve it. In4, tidal energy is also added as a new renew-
able energy source in the optimization of multi objective OPF problems. In35,36, novel heuristic algorithms Slime 
Mould Algorithm and Hunger Games Algorithm were used to solve single and multi-objective optimal power 
flow problems. The summary of related studies is listed in Table 1. Although this literature has studied OPF 
problems, including renewable energy, it is only the initial stage of research on OPF including renewable energy. 
This is because most studies in the literature only study the OPF problem with a single optimization objective 
in the grid with renewable energy supply, or use the linear weighting method to integrate multiple objectives 
into one optimization objective. It’s important to reduce emissions and other indicators while reducing costs 
to the economy. Therefore, it can be concluded that the multi-objective OPF problem with renewable energy is 
worthy of further study37,38.

Mathematical models
The OPF problem can be regarded as an optimization problem, classical OPF problems are single-objective. In 
contrast, the multi-objective OPF problem has many advantages in its solution. It can achieve the optimization 
of multiple optimization goals in one solution, such as fuel cost emission, power loss and voltage deviation. 
Multi-objective is not only a solution, it is a solution set, which can give decision-makers more opportunities 
to choose a compromise solution. The mathematical model of the multi-objective OPF problem can be defined 
by the following:

where N is the number of objective functions, fi is the objective function to be optimized in a multi-objective 
OPF problem, i = 1,2,…,N; a and b are the control and state variable vectors, respectively. Multiple constraints 
need to be satisfied in the MOOPF problem, g (a, b) and h (a, b) represent the equality constraint and inequality 
constraint in the multi-objective OPF problem. The goal of solving the MOOPF problem is to find an optimal 
control variable a, which minimizes fuel cost, emission, power loss and voltage deviation. The Control variable 
vector is given in (3).

where PTG is the active power of the thermal generators; VTG is the voltage value of all generator unit buses; QSH 
is described as the shunt VAR compensation. NG is identified as the number of thermal generator buses in the 
test network, and NC is identified as the number of shunt compensators in the test network.

The state variable vector is given in (4)

(1)Minimize: f (a, b) =
{

f1(a, b), f2(a, b), . . . , fN (a, b)
}

(2)s.t. g(a, b) ≤ 0
h(a, b) = 0

(3)a = [PTG2 , . . . ,PTGNG ,VTG1 , . . . ,VTGNG ,QSH1 , . . . ,QSHNC ]

(4)b = [PTG1 ,Vm1 , . . . ,VmNL ,QTG1 , . . . ,QTGNG ,DL1 , . . . ,DLnl ]
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where PTG1 represents the swing slack generating unit, Vmr indicates the voltage magnitude at the r-th load bus, 
NL is the number’s value of load buses; QTGi is regarded as the reactive power outputs at the i-th generator bus, 
DL is the apparent power of the transmission lines, nl is the number’s value of the transmission lines.

Constraints.  The power system in the MOOPF problem needs to satisfy many power flow constraints, 
including equality constraints and inequality constraints.

Equality constraints.  The equality constraint stems primarily from the reality that the generator’s active power 
must equal the active load demand and active power loss. The equality constraints of MOOPF problem can be 
defined as:

Table 1.   Comparative review of different optimization algorithms in OPF problems.

References Methodology Test systems Minimization Goals Existence of renewable energy
12 Improved Genetic Algorithm (IGA) IEEE 30-bus Single objective: fuel costs No
13 Particle swarm optimization IEEE 30-bus Single objective: fuel costs No

14 Enhanced particle swarm optimization IEEE 30-bus
IEEE 118-bus Single objective: power loss, voltage deviation No

15 Genetic algorithm (GA) IEEE 30-bus
IEEE 118-bus Single objective: fuel costs No

16 Comprehensive learning particle swarm optimi-
zation (CLPSO)

IEEE 30-bus
IEEE 118-bus Single objective: power loss, voltage deviation No

17 MICA-IWO
IEEE 30-bus
IEEE 57-bus
IEEE 118-bus

Single objective: power loss No

28 Modified bacteria foraging algorithm IEEE 30-bus Single objective: fuel costs, voltage deviation, 
power loss Wind power

18 Gaussian bare-bones water cycle algorithm
IEEE 30-bus
IEEE 57-bus
IEEE 118-bus

Single objective: voltage deviations No

28 SHADE IEEE 30-bus Single objective: fuel costs, voltage deviation, 
power loss Wind power and solar power

19 Sine–Cosine algorithm (SCA) IEEE 30-bus
IEEE 118-bus

Single objective: fuel costs, voltage deviation, 
power loss No

30 Moth Swarm Algorithm (MSA)
IEEE 30-bus
IEEE 57-bus
IEEE 118-bus

Single objective: fuel costs, power loss Wind power

31 Hybrid modified imperialist competitive 
algorithm

IEEE 30-bus
IEEE 57-bus
IEEE 118-bus

Single objective: fuel costs, emission Wind power and solar power

32 Improved adaptive differential evolution (IADE) IEEE 30-bus Single objective: fuel costs, voltage deviation, 
power loss, emission Wind power and solar power

20 Improved slime mold algorithm (ISMA)
IEEE 57-bus
IEEE 118-bus
IEEE 300-bus

Single objective: power loss No

1 CS-GWO IEEE 30-bus
IEEE 118-bus

Single objective: fuel costs, voltage deviation, 
power loss No

21 Differential evolution (DE) IEEE 30-bus Multi objectives: voltage deviation, power loss 
and voltage stability margin No

22 MO-DEA IEEE 30-bus
IEEE 58-bus

Multi objectives: fuel costs, power loss and volt-
age profile improvement No

23 ESDE-MC
IEEE 30-bus
IEEE 58-bus
Algerian 59-bus

Multi objectives: fuel costs, emission and power 
loss No

33 MJAYA​ IEEE 30-bus
IEEE 118-bus

Multi objectives: fuel costs, emission and power 
loss Yes

24 I-NSGA-III
IEEE 30-bus
IEEE 57-bus
IEEE 118-bus

Multi objectives: fuel costs, emission and power 
loss No

26 Heap optimization algorithm IEEE 57-bus
IEEE 118-bus

Multi objectives: fuel costs, emission and power 
loss No

27 IMOMRFO IEEE 30-bus
IEEE 57-bus

Multi objectives: fuel costs, emission and power 
loss No

34 ACNSDE IEEE 30-bus
IEEE 57-bus

Multi objectives: fuel costs, emission and power 
loss Wind power and solar power

4 MO-ACOPF IEEE 30-bus Multi objectives: fuel costs, power loss and volt-
age profile improvement Wind power, solar power and tidal energy
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where PDi and QDi represent the active powers and the reactive load demands of the i-th load buses. θi define the 
i-th bus voltage angle. Gij and Hij are identified as the conductance and susceptance values of the transmission 
line between the i-th and j-th buses. ND is the number of buses, and i belong to bus number 1 to ND.

Inequality constraints.  The inequality constraints of the MOOPF problem are described as:
(a) Generator constraints:

(b) Shunt compensator constraints:

(c) Transformer constraints:

(d) Contingency constraints:

where TK regard as the k-th branch transformer tap. PTGi
 , QTGi , VTGi , QSHj , TK , Vmr and DLn

 must limit between its 
upper ( Pmax

TGi
 , Qmax

TGi
 , Vmax

TGi
 , Qmax

SHj
 , Tmax

K  , Vmax
mr

 , Dmax
Ln

 ) and lower bounds ( Pmin
TGi

 , Qmin
TGi

 , Vmin
TGi

 , Qmin
SHj

 , Tmin
K  , Vmin

mr
 , Dmin

Ln
).

The cost of energy spent in the system.  Part of thermal generator set.  Considering the valve point 
loading effect, the total cost of thermal power units ( CTG ) is calculated as follows:

where CTG regard as the thermal generation cost, ai , bi , ci are the cost calculation coefficients generated by the 
i-th thermal generator set, di , ei are the cost calculation coefficients of the i-th thermal generator set due to the 
valve point loading effect. The specific values of these parameters will be given in the experiment in34.

Part of direct cost of wind, PV and tidal.  Wind, photovoltaic and tidal power generation require the purchase 
and installation of equipment, so operators must pay this cost, which becomes the direct cost of renewable 
energy. These costs are proportional to the power of the equipment and can be calculated from (8), (9)29 and 
(10)39.

where αi , βj and �l represents the purchase and installation cost coefficient of the i-th wind power turbine, the 
j-th Solar photovoltaic panel and the l-th tidal power plant. Pws,i , Ppvs,j and Pts,l regard as the scheduled power of 
the i-th wind power farm, the j-th photovoltaic power plant and the l-th tidal power plant.

(5)PTGi = PDi + Vi

ND
∑

j=1

Vj

[

Gij cos(θi − θj)+Hij sin(θi − θj)
]

(6)QTGi = QDi + Vi

ND
∑

j=1

Vj

[

Gij cos(θi − θj)−Hij sin(θi − θj)
]

Pmin
TGi

≤ PTGi
≤ Pmax

TGi

Qmin
TGi

≤ QTGi
≤ Qmax

TGi
∀i ∈ NG

Vmin
TGi

≤ VTGi
≤ Vmax

TGi

Qmin
SHj

≤ QSHj
≤ Qmax

SHj
∀j ∈ NC

Tmin
K ≤ TK ≤ Tmax

K ∀K ∈ NT

Vmin
mr

≤ Vmr
≤ Vmax

mr
∀r ∈ NL

Dmin
Ln

≤ DLn
≤ Dmax

Ln
∀n ∈ nl

(7)CTG =
NG
∑

i=1

ai + biPTGi + ciP
2
TGi

+
∣

∣di · sin(ei · (Pmin
TGi

− PTGi ))
∣

∣

(8)CWd =
Nw
∑

i=1

αi · Pws,i

(9)CSd =
Ns
∑

j=1

βj · Ppvs,j

(10)CTd =
Nt
∑

l=1

�l · Pts,l
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Part of uncertainty cost of wind, PV and tidal.  Due to the uncertainty and intermittency of wind power, pho-
tovoltaic power generation and tidal energy, there will be two situations in which the demand for electricity is 
greater than the supply of renewable energy and the demand for electricity is less than the supply of renewable 
energy. When the first situation occurs, the power dispatching system needs to raise other thermal generating 
units to supplement the power supply to reach a state of equilibrium, so this situation will generate additional 
supplementary generation costs. In the second case, there will be a surplus of electricity generated from renew-
able sources, so the power dispatch system will have to pay for the extra renewable power29. The expenses paid 
by operators in these two instances are reserve expenses and penalty expenses, respectively. Equation (11) can be 
used to determine the uncertainty cost of wind power29.

where CWc is the total cost of wind energy source unknown. CRw and Cpw denotes the wind turbine’s reserve and 
penalty costs, respectively. KRw,i and KPw,i indicate the i-th wind turbine’s reserve and penalty cost coefficient, 
respectively. Nw denotes the total quantity of wind turbines in the power system. Pwr,i is the rated output capacity 
of the i-th wind farm plant. Pws,i is defined as the planned out power from i-th wind farm plant. Pw,i is the output 
capacity of the i-th wind farm plant.

Uncertainty cost of PV power can be calculated by (12)29.

where CSc is the total cost of solar electricity supply uncertainty. CRs and CPs represents the reserve and penalty 
expenses of the solar energy, respectively. KRs and KPs represent the reserve and penalty cost coefficient of 
solar energy source, respectively.  Ps,i is represent the actual generating capacity of the i-th solar power plant. 
fs(Ps,i > Ppvs,i) and fs(Ps,i < Ppvs,i) are defined as the probability of actual generating capacity more and less 
than the scheduled power, respectively. E(Ps,i > Ppvs,i) and E(Ps,i < Ppvs,i) represent the PV power expectancy 
above and below the scheduled power of the i-th PV power plant, correspondingly.

Uncertainty cost of tide power can be calculated by(13)4,39.

where CTc is the total cost of tidal electricity supply uncertainty.CRt and CPt represents the reserve and penalty 
expenses of the tidal energy. KRt and KPt represent the reserve and penalty cost coefficient of tidal energy source. 
Pt,i represent the actual generating capacity of the i-th tidal power plant. ft(Pt > Pts) and ft(Pt < Pts) are defined 
as the likelihood of actual generating capacity being greater than or less than the planned tidal power plant 
capacity, respectively. (Pt,i > Pts) and E(Pt,i < Pts) are the expectancy of tidal power plant above and below the 
scheduled power of i-th tidal power plant, respectively.

Objective function.  The optimization of the MOOPF problem primarily includes economic and environ-
mental optimization, and this paper employs four objective functions to measure and optimize economic and 
environmental indicators. The four objective functions are total generator cost, emission, power loss and voltage 
deviation. The total generators cost is defined as follows:

In order to promote the use of green energy, regulators need to assess the pollution generated by thermal 
generators. Therefore, the second target to be optimized is the emissions of thermal units in the power grid, 
which can be evaluated by (15). 

where, mi , ni , wi , ti and ri represents some emission coefficients in the i-th thermal generator.
Reducing the active power loss in the line is also an important optimization objective. The third objective to 

be optimized is the active power loss, which can be calculated as follows:

(11)

CWc = CRw + CPw

=
Nw
∑

i=1

KRw,i

∫ Pws,i

0
(Pws,i − Pw,i)fw(Pw,i)dPw,i

+
Nw
∑

i=1

KPw,i

∫ Pwr,i

Pws,i

(Pw,i − Pws,i)fw(Pw,i)dPw,i

(12)

CSc = CRs + CPs

= KRs,i · fs(Ps,i > Ppvs,i) ·
[

E(Ps,i > Ppvs,i)− Ppvs,i
]

+ KPs,i · fs(Ps,i < Ppvs,i) ·
[

Ppvs,i − E(Ps,i < Ppvs,i)
]

(13)

CTc = CRt + CPt

= KRt · ft(Pt,i > Pts) ·
[

E(Pt,i > Pts)− Pts
]

+ KPt · ft(Pt,i < Pts) ·
[

Pts − E(Pt,i < Pts)
]

(14)F1 = CTG + CWd + CSd + CTd + CWc + CSc + CTc

(15)F2 =
NG
∑

i=1

[

(mi + ni · PTGi + wi · P2TGi
) · 10−2 + ti · exp(ri · PTGi )

]
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Voltage deviation has a great influence on the voltage quality in the power system, so voltage deviation will 
be the fourth target to be optimized. Voltage deviation in the MOOPF problem can be calculated as follows:

According to the description of the model, to solve the MOOPF problem, we need to search for a control 
variable vector a, and the make the four objective functions minimized at the same time. In addition, a needs 
to satisfy the constraints. Because solving the MOOPF problem with renewable energy is extremely difficult, 
we suggest a general framework for solving it. The general framework for solving the MOOPF problem using 
metaheuristics is shown in Fig. 1.

Uncertainty and power models for renewable energy
The stochastic modeling of renewable energy in the model will be described in this section.

Wind speed, solar radiation and tidal flow probability.  Wind speed is characterized by intermittent 
and uncertainty. It is well known that probability density functions can be used to calculate the mean output of 
wind turbines28–30. The wind speed (v) m/s follows a Weibull probability distribution function and is calculated 
using the scale parameter ( γ ) and form parameter ( φ ) as shown below. Many researchers have studied the prob-
ability distribution of wind speed, and the Weibull distribution28 is considered to be a probability model that can 
well fit the distribution of wind speed. Wind speed likelihood can be determined using the Weibull probability 
density function as follows:

where v is defined as the wind speed, φ and γ are represents the shape and scale parameters. With the values 
provided in Table 5, φ and γ were carefully selected to ensure both diversity and realistic geographic locations 
for wind farm sites.

(16)F3 = Ploss =
nl
∑

i=1

nl
∑

j �=i

Gij ·
[

V2
i + V2

j − 2ViVj cos(θi − θj)

]

(17)F4 = VD =
NL
∑

r=1

∣

∣Vmr − 1.0
∣

∣

(18)fv(v) =
(

φ

γ

)

·
(

v

γ

)φ−1

· exp

(

−
(

v

γ

)φ
)

Start Create initial population randomly:

Power buses system (IEEE 30-bus)

Calculate the fitness
function(F1):
Sum costs

Is Maximum
iteration reached

Metaheuristic algorithm

Output control
variable vector a End

Iteration=Iteration+1

Yes

No

],...,,,...,,,...,=[
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Figure 1.   A framework for solving MOOPF problem by metaheuristic algorithm.
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The study discovered that where meteorological conditions are more dispersed, the lognormal function 
accurately represents the frequency distribution40. Use the lognormal probability density function to model solar 
irradiance40 for the solar probability, which can be described as follows:

where S represents the solar irradiance, δ and µ are equal to 0.6 and 6, respectively.
In earlier works, Gumbel distribution was typically used to calculate the probability model of flow rate in the 

tidal range4,39. Equation (20) is calculates the likelihood of tidal energy transfer.

From the result reported in33, the IEEE 30-bus system was modified to include the supply of wind energy, 
solar energy and tidal energy. In order to show the comparability of the results, the parameters of the probability 
distribution function from the previous literature are used in this paper. Different parameters can enhance the 
diversity and uncertainty of the renewable energy supply. The PDF parameters of these renewable energy sources 
are detailed in section "Result on the modified IEEE 30-bus with renewable energy".

Wind turbine and solar panel power model.  Wind turbines and solar panels will provide electricity for 
the electrical network. Therefore, their power output needs to be calculated according to the wind speed prob-
ability and solar radiation probability in the previous section. The turbine actual output power is a function of 
wind speed28, the function can be formulated as follows:

where vin = 3 m/s,vout = 25 m/s are defined as the cut-in and cut-out wind speeds, vr = 16 m/s represents the rated 
wind speed, Pwr = 3 MW is the wind turbine rated output power. The turbine has three states in wind speed. In 
the first situation, v < vin or v > vout , the wind turbine will be stationary or locked to protect the speed does not 
exceed the limit rotor speed. In the second situation, vin ≤ v ≤ vr , the wind turbine will output power, according 
to wind speed. In the finally situation, vr < v ≤ vout , the wind turbine will be continuing to produce electricity 
at rated power. According to, the probabilities of three different cases can be calculated as follows:

According to, the solar panel’s electricity output is a function of solar irradiance (S), which is defined as 
follows40:

where, Psr is the rated output power of the solar panel unit. Sstd = 800 W/m2 is the standard environment’s solar 
irradiance.Rc = 120 W/m2 is a certain irradiance point.

Tidal power, which generates electricity, was used by the sea water enters the reservoir at high tide to turn 
turbines, and then retreats from the reservoir back to the sea at low tide to turn turbines. Figure 2 shows the 
process of using tidal energy to generate electricity during high and low tides. The generating capacity of turbines 
in a tidal power plant can be calculated by (26)39.

where ρ is the water density (kg/m3), g is the gravity acceleration (m/s2), Q is the discharge value (m3/s) across 
the turbine set. ε is the turbine efficiency, H is the difference in height between the reservoir and the sea surface. 
These parameters of the tidal system sere set as H = 3.2 m, ρ = 1025 kg/m3, ε = 0.85 and g = 9.81 m/s2.
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Multi objective pathfinder optimization algorithm (MOPFA)
The MOPFA will be suggested first in this part. Single Pathfinder Algorithm was proposed by Yapici and Cetin-
kaya in 2019, PFA has a strong global search capability, but the algorithm only deals with the single objective 
optimization problem. So in this research, we proposed the MOPFA, and then applied it to solve the MOOPF 
problem. Similar to the multi-objective particle swarm optimization algorithm (MOPSO)41. The first component 
is the archive, which is used to store the Pareto optimal solutions found so far. The pathfinder role selection 
process, which chooses the most likely pathfinder from the database and can guide the group to the optimum 
area, is the second component.

Pareto dominance.  When faced with solving a multi objective optimization problem42, x1 and x2 are two 
solutions, fi is the i-th objective function in this problem. If all the values of the objective function calculated by 
x1 have the same or at least one better value than all the values of the objective function calculated by x2 , x1 is 
said to dominate x2. This relationship can be symbolically expressed as x ≻y . If there is no x in feasible solution 
set makes x≻x′ , x′ is defined as Pareto optimal solution. All the Pareto optimal solutions are combined into a set, 
which is Pareto optimal solution set. In addition, the set of values of the multiple objective function correspond-
ing to the Pareto optimal solution set is called the Pareto front42.

PFA population initialization.  The MOPFA’s first stage is to initialize the population so that it is evenly 
dispersed in the search area, which is accomplished using (27):

where, x is the position vector of the individual population, LB and UB are the upper and lower bounds of the 
problem.

External archive initialization and update rules.  The external repository holds the non-dominated 
optimal solutions as well as the collection of non-dominated optimal solutions found prior to the current run. 
The archive’s capacity is fixed, typically half the size of the populace. The non-dominated optimal solutions 
derived from the initialize population were appended to the external archive component when it was started. The 
archive revised criteria can be specified as follows in subsequent iterations:

•	 Situation 1: If a new solution created as a result of a PFA update is dominated by at least one solution in the 
archive, the new solution was unable to join the archive.

•	 Situation 2: If a new solution after the PFA update dominated one or more of the solutions in the archive, the 
dominated solution is deleted and substituted with this new solution.

•	 Situation 3: If neither the new solution, nor archive members dominate each other, the new solution should be 
If neither the new solution nor the archive users outnumber each other, the new solution should be included 
in the archive.

•	 Situation 4: If a new solution after the PFA update dominates all the solutions in the archive, but the external 
cache is filled. In this scenario, according to the crowing distance indicator, a non-dominated answer in the 
archive will be eliminated.

In situation 4, crowding distance is a measure of the distance between one non-dominant solution and other 
adjacent non-dominant solutions in the archive. Equation (28) can be used to compute the crowding distance.

where, Max and Min represent the maximum and minimum values of each objective, respectively. Archive_size 
is the archive’s capacity. According to (28), the crowing distance index dindicator is defined as the number of neigh-
boring solutions that are less than distance d. A roulette technique was used to arbitrarily delete a solution from 
the external archive in order to add a new non-dominated solution to the complete external archive. Assign a 

(27)x = LB+ rand(0, 1) · (UB− LB)

(28)d =
Max −Min

Archive_size

High tide Low tide

The reservior areaSea

Turbine 
set

Figure 2.   Tidal power generation process.
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probability to each non-dominated solution in the archive according to the crowding distance indicator, this 
fitness calculation is completed by (29).

where, Pi is the probability of a non-dominant solution in an external archive is selected to be deleted by roulette 
method.Nsum is the sum of the crowding distance index of each non-dominant solution in the external archive.

Pathfinder individual update rules.  A non-dominant solution set stored in an external archive can be 
regarded as an elite individual, in the pathfinder algorithm, the population was divided into followers and path-
finders, and pathfinders led the population to the most promising region. Because elite archiving and the path-
finder’s leader behavior are both elite leader behaviors, treat the external archive as the pathfinder individual 
in the PFA and update it using the pathfinder’s individual update rules in the PFA and the optimal protection 
strategy. The pathfinder updating position is obtained from (30).

where xi+1
p  indicates the place of the i + 1 generation pathfinder, xip is the location of the i-th pathfinder. xi−1

p  the 
i − 1 generation pathfinder’s position, i represents the number of current iterations, r3 represents a random integer 
from a uniform distribution at [0, 1]. η is derived from (21).

where imax indicates the highest number of iterations,u2 is a random integer evenly spread between [− 1, 1].

Follower individual update rules.  The external archive stores the non-dominant solutions found so far, 
which can be regarded as people in the population’s most hopeful area. The pathfinder individual description in 
Single objective PFA is matches. Different from PFA, in MOPFA treat population individuals as followers and 
external archives as pathfinders. According to the size of follower population, the corresponding pathfinder 
matrix is constructed, follower’s update process as follows:

where i represent the current iteration, xn represents the position of the follower of the population. W1 , W2 are 
two randomly generated vectors calculated used Eqs. (33) and (34), r1 and r2 are a uniformly distributed ran-
dom number generated randomly between [0, 1]. W1,W2 can control the weight of the follower moving to the 
pathfinder and the neighboring individuals in the population. ε is the vibrancy vector, and its calculation can be 
obtained from (35), �ij is the distance between the i-th and the j-th position in population.

The pseudo code of MOPFA is given in Algorithm 1, and the flowchart of the multi-objective pathfinder 
algorithm is shown in Fig. 3.

Algorithm 1. Pseudo code of the multi-objective pathfinder algorithm (MOPFA)

1. Initialize parameters of MOPFA, Npop, Nfobj, dim

2. Randomly generate the location of the search agent using (27)

3. While i < Max_iter

4.     Calculate the fitness of each search agent

5.     Find non-dominated solutions from the population

6.     Check the dominance relationship between the non-dominant solutions in the current
population and solutions in the archived 

7.   If archive is full

8.     According to the crowing distance and roulette method remove solution in the archive

9.     Update the archive

10.   else

11.      Update the archive

12.   End If

13.     Using (30) to update the archive

14.   If new archive solution is better than old

(29)Pi =
dindicator

Nsum

(30)xi+1
p = xip + 2r3 × (xip − xi−1

p )+ η

(31)η = u2 · e
−2i
imax

(32)xi+1
n = xin +W1 · (xin−1 − xin)+W2 · (xip − xin)+ ε

(33)W1 = α · r1

(34)W2 = β · r2

(35)ε =
(

1−
i

imax

)

· u1 ·�ij ,�ij = �xi − xi−1�
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Algorithm 1. Pseudo code of the multi-objective pathfinder algorithm (MOPFA)

15.     Accept new archive solution

16.   End If

17.     Using (32) to update the follower population

18.    If new follower population is better than old

19.     Accept new population

20.   End If

21. End while

22. Output the best optimal solutions

Start

Input parameters of MOPFA
popN archiveNfobjN

Randomly initial the PFA 
population using Eq.(24)

Calculate the objective 
values of the population

Archive set is full

End

Find non-domainated 
solutions and initial the 

archive

Check the dominance 
relationship

Remove the crowded 
solution by roulette 

method

Update the archive 
solutions

Using Eq.(27) to update 
the archive

Using Eq.(29) to update 
the PFA population

Yes

No

Yes
No

T<Max_iteration

T=T+1

Figure 3.   Flowchart of the multi-objective pathfinder algorithm (MOPFA).
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Experimental results and analysis
In this part, MOPFA is used to answer the multi objective optimal power flow issue (MOOPF), and the experi-
mental findings are thoroughly examined. Generation cost, power loss, voltage deviation and emission were 
studied as objective functions in this research. In order to study the emission reduction effect of renewable 
energy in the MOOPF problem, renewable energy is included in the energy source of the power network. The 
experiment was conducted on an adapted IEEE 30-bus. The power flow formulae of the suggested MOOPF 
model with renewable source were calculated using MATPOWER 6.0. Four cases were studied for different 
optimization purposes. Case 1 is to reduce both production costs and emissions at the same time. Case 2 and 
Case 3 are focused on three objectives. The most difficult is Case 4, which aims to optimize all four objective 
functions at the same time. The specific experiments case content is listed in Table 2. The optimization results 
of MOPFA and several other multi-objective optimization algorithms on modified IEEE 30-bus for MOOPF 
problem with four cases are listed in this section. The Hyper-Volume (HV) indicator43 obtained by MOPFA and 
other multi-objective optimization algorithms under four optimization objective cases were compared and also 
the results were also compared using statistical test analysis. Using the well-known fuzzy decision system44 to 
choose a consensus answer from a collection of Pareto optimum solutions. The experimental findings were then 
compared to newly published literature. Finally, the best intermediate solution’s load bus voltage is validated. 
Each objective function for a non-dominant answer will initially be assigned a membership function value by 
the well-known fuzzy judgment system.

Experimental setting.  In order to better test the ability of MOPFA to solve the MOOPF problem, it is 
compared with six other excellent multi objective metaheuristic algorithms with the strong optimization abil-
ity, which are MOPSO41, NASGA-II44, MOSSA45, MOMVO46 and MOAHA47. The population, number of all 
metaheuristic algorithms Npop = 100 and the number of iterations Maxiteration = 200. The outcomes of 30 
runs are examined in the experimental verification to better attempt the algorithm’s optimizing ability. Each 
metaheuristic algorithm’s particular parameter values are consistent with the parameters of the original algo-
rithm. The simulations were performed on the MATLAB 2016b platform and run on a CPU Core i5-7100 v5 
(3.80 GHz) with 16 GB RAM.

HV indicators.  In the multi-objective optimization algorithm, the quality of the algorithm needs to be meas-
ured through a variety of indicators. The HV indicator is a comprehensive evaluation indicator, and can be 
compared without the real Pareto frontier. The higher the HV value is, the better the algorithm effect will be.

Fuzzy decision system.  In this paper, the following fuzzy decision system is used to select the compromise 
solution in the Pareto optimal solution set. The calculation method is as follows44:

where γ k
n  is the membership function value of n-th objective for k-th non-dominated solution; f kn  is the fitness 

value of n-th objective for the k-th non-dominated solution; f min
n  and f max

n  are the minimum and maximum 
fitness values for the n-th objective function among all non-dominated solutions. The normalized membership 
function for each non-dominated solution is defined as:

where, N is the number of objectives, for example N is 3 in Case 2, N is 3 in Case 2 and Case 3, N is 4 in Case 4. 
Nd is the sum of non-dominated solutions. The best compromise solution is a solution in non-dominated solu-
tions set with maximum γ k value.

Result on the modified IEEE 30‑bus with renewable energy.  To integrate renewable energy into 
the grid’s electricity supply, IEEE 30-bus was modified in this study. According to Ref.28, the system consisted 
of 41 transmission lines, 6 generating units, 9 shunt VAR compensators, and 4 transformer tap settings and its 
total active and reactive load demands were 283.4 MW and 126.2 MVAR, respectively. In the modified IEEE 
30-bus the thermal generators at buses 5, 11 were replaced by wind generators respectively, wind generator farm 
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Table 2.   Specific experiments content in different cases.

System No. Generation cost Emission Real power loss Voltage deviation

IEEE
30-bus

Case 1 • •

Case 2 • • •

Case 3 • • •

Case 4 • • • •
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Table 3.   The modified IEEE 30-bus settings.

Items Quantity Description

Bus 30

Branch 41

Thermal generator 3 At buses 1, 2

Wind generator 2 At buses 5 and 11

Solar PV generator 1 At bus 13

Tidal generator 1 At bus 8

Control variable 11 Scheduled real power for 5 generators except bus 1; bus voltage of 6 generator buses

Connected load 283.4 MW 126.2 MVAr

Load bus voltage 24 Allowed range; [0.95–1.05] p.u

Table 4.   Renewable energy cost coefficients.

Wind power farm ($/MW) Wind power farm ($/MW)

Bus no. Direct cost Reserve cost Penalty cost Bus No Direct cost Reserve cost Penalty cost

5 1.60 3 1.5 11 1.75 3 1.5

Solar power plant ($/MW) Tidal power plant ($/MW)

Bus no. Direct cost Reserve cost Penalty cost Bus no. Direct cost Reserve cost Penalty cost

13 1.60 3 1.5 8 3.0 3 1.5

Thermal 
Generator

Wind Generator

PV Generator

Tide Generator

24
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Figure 4.   The Modified IEEE 30-bus.
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at bus 5 has 15 turbines, and bus 11 has 10 turbines. The thermal generators at buses 13 and 8 were replaced by 
solar generator and tidal generators respectively, tidal generator at bus 8 has 4 generating sets. Table 3 describes 
the modified IEEE 30-bus settings, and the renewable uncertainty cost coefficients are listed in Table 429. The 
modified IEEE 30-bus structure diagram was shown in Fig. 4. Parameter values of the probability distribution 
function of simulated renewable energy in all Cases 1–4 are given in Table 5.

Result on case 1: minimize the generator cost and emission.  In this case, the goal of optimization is to mini-
mize generation costs and emissions. Cost and emission are in conflict, but power system generation cost and 
emission control should also be given more attention to. After the 30 runs, the Hyper-Volume (HV) indicator 
obtained by MOPFA and other algorithms in Case 1 are listed in Table 6, which statistically analyzes the maxi-
mum (Max), average (Mean) and minimum (Min) values of each algorithm in the 30 runs and the best results 
are highlighted in boldface. Furthermore, in order to better test the performance of the algorithm, the Wilkerson 
rank sum test is used to rank the algorithm.

From Table 6, it can be calculated that MOPFA obtained the maximum HV indicator of 0.18025 and the 
minimum value of 0.1423 after 30 runs, which was better than other algorithms. The average value was also 
compared, MOPFA achieved 0.14773, ranking first. Although the mean square deviation value was not as good 
as MOAHA’s, the gap was also small. MOPFA’s Wilkerson rank sum test score is 4.87, ranking it first among the 
six multi-objective algorithms. The boxplot figure of the HV indicator obtained by each algorithm on Case 1 is 
given in Fig. 5. The Pareto front obtained by the HV index maximum runtime algorithm is plotted in Fig. 6. It 

Table 5.   Renewable energy probability in modified IEEE 30-bus test system according to Eqs. (18–20).

Wind power plant (bus 5) Wind power plant (bus 11) Solar generators (bus 13) Tidal power plant (bus 8)

Number of 
turbines Rated power

Weibull PDF 
parameters

Number of 
turbines Rated power

Weibull PDF 
parameters Rated power

Lognormal PDF 
parameters Rated power

Gumbel PDF 
parameters

25 75 MW K = 2, 1 = 10 20 60 MW K = 2, λ = 9 50 MW 0.6 ,6 40 MW 220,24.52

Table 6.   HV-indicator in Case 1.

Case Algorithm

HV

Max Min Mean Std Score Rank

Case 1

MOPFA 0.18025 0.14239 0.14773 0.0064009 4.87 1

NASGA-II 0.13307 0.02018 0.06352 0.030878 1.03 6

MOPSO 0.16488 0.10165 0.13857 0.013743 3.57 4

MOMVO 0.16829 0.12083 0.14649 0.0091062 4.55 2

MOAHA 0.15845 0.13968 0.14647 0.0047576 4.53 3

MOSSA 0.14884 0.086813 0.11812 0.017829 2.47 5

Boxplot of HV indicator in case 1

MOPFA NASGA-II MOPSO MOMVO MOAHA MOSSA
0.02
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Figure 5.   Boxplot of HV indicator in Case 1.
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can be seen that the Pareto front obtained by MOPFA is more uniform and MOPFA can give a more diverse set 
of Pareto optimal solutions.

According to the fuzzy decision system mentioned in the preceding part of this paper, the compromise solu-
tions were selected from the Pareto front in Fig. 6. The compromise solutions on Case 1 of MOPFA and other 
well-known multi-objective optimization algorithms are reported in Table 7. The composition of renewable 
generation energy and thermal generation energy in the solution obtained by each algorithm is shown in Fig. 7. 
The compromise solution obtained by MOPFA is marked in Fig. 6, the value of generation cost is 813.8379 ($/h) 
and emission is 0.2057 (t/h).

From Table 7, it can be calculated that MOPFA obtained the best emission value: 0.2057, but MOMVO 
obtained the best generation cost value: 800.0093. From Fig. 7, it can be seen why MOPFA’s solution did 
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Figure 6.   Pareto front in Case 1.

Table 7.   Compromise solution values obtained by each algorithm. Significant values are in bold.

LB UB

Algorithm

MOPFA NASGA-II MOPSO MOMVO MOAHA MOSSA

Control variables

 PG2 (MW) 20 80 40.4386 29.2474 40.2342 31.6149 37.4524 48.3333

 PG5 (MW) 0 40 23.0599 26.3456 23.7595 22.6247 22.0329 22.1281

 PG8 (MW) 0 75 46.9693 46.4971 46.9788 47.5637 44.7445 37.2967

 PG11 (MW) 0 60 37.1813 37.1798 38.1290 33.1001 37.2897 29.6634

 PG13 (MW) 0 50 41.1541 33.3938 37.5290 39.0482 39.2914 31.0788

 V1 (P.U.) 0.95 1.10 1.0588 1.0617 1.0620 1.0762 1.0611 1.0715

 V2 (P.U.) 0.95 1.10 1.0385 1.0487 1.0271 1.0661 0.9776 1.0379

 V5 (P.U.) 0.95 1.10 1.0955 1.0505 1.0293 1.0902 1.0803 1.0356

 V8 (P.U.) 0.95 1.10 1.0851 1.0857 1.0563 1.0941 1.0796 1.0994

 V11 (P.U.) 0.95 1.10 1.0968 1.0350 1.0704 1.0381 1.0913 1.0946

 V13 (P.U.) 0.95 1.10 1.0914 1.0850 1.0828 1.0013 1.0888 1.0992

State variables

 PG1 (MW) 98.7111 115.6094 101.3245 114.4035 107.3417 120.6074

 QG1 (MVAr) 3.3609 − 2.5389 19.0039 − 2.6376 6.7935 18.1485

 QG2 (MVAr) − 20 5.9618 − 20 27.2211 − 20 − 20

 QG5 (MVAr) 35 35 35 40 35 35

 QG8 (MVAr) 40 40 31.4838 40 35 29.9355

 QG11 (MVAr) 29.8692 10.2685 23.1952 12.3685 27.3617 28.3307

 QG13 (MVAr) 25 25 25 1.7404 25 25

Objectives

 F1: Generation Cost [$/h] 813.8379 803.0716 812.4313 800.0093 805.6819 801.4793

 F2: Emission [ton/h] 0.2057 0.5224 0.2351 0.4864 0.3250 0.7013
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not achieve the best cost. Because MOPFA’s solution uses the total thermal power and renewable energy is 
139.1494 MW ( PG1 + PG2 ) and 148.3646 MW ( PG8 to PG13 ), while MOMVO’s solution uses the total thermal 
power and renewable energy is 141.5587 MW ( PG1 + PG2 ) and 143.4163 MW ( PG8 to PG13 ). MOPFA’s solution 
uses more renewable energy and renewable energy uncertainty will increase the generation cost, But MOPFA’s 
0.2057 (ton/h) emissions are 50% lower than MOMVO’s 0.4864 (ton/h). The total generated power of six algo-
rithms are 287.4 MW, 288.2 MW, 287.8 MW, 288.3 MW, 288.0 MW and 289.0 MW respectively, which achieves 
the power system required load 286.949 MW shown in Table 3. Compare MOPFA’s compromise solution with 
the published literature was reported in Table 8, MOPFA’s generation cost is lower than other algorithms except 
ACNSDE-SF30, but MOPFA’s emission is lower than ACNSDE-SF. Both generation cost and emission are consid-
ered, MOPFA obtained value is lower than MODFA32, MOEA/D-SF33, ESDE19, PSO-SSO34 and MOMICA35. In 
summary, the solutions given by each algorithm are not dominated by each other, and the decision maker decides 
which one to choose, but MOPFA’s HV index of the Pareto front is higher, indicating that the Pareto front is more 
evenly distributed, and it can provide a greater diversity of solutions. Moreover, MOPFA’s compromise solution 
is more inclined toward the utilization of renewable energy, which will reduce the spending of enterprises when 
the government imposes higher emission taxes.

Result on Case 2 and Case 3.  In Table 9, for Cases 2 and 3, the number of optimization objectives is three. 
Case 2’s goal is to reduce generation costs, emissions, and real power loss. Case 3 aims to minimize generation 
cost, emission and voltage deviation. In Case 2 and Case 3, MOPFA obtained the maximum values of HV index 
0.108043 and 0.133712 in the six algorithms and also achieved the best results on the minimum and average 
values of the HV indicators. The Wilkerson rank sum test scores of MOPFA in Cases 2 and 3 were 5.40 and 5.93, 
respectively, MOPFA ranked first among six algorithms in the two cases. The boxplot figure of the HV indicator 
obtained by each algorithm in cases 2 and 3 is given in Figs. 8 and 9, the variance of MOPFA is very small, indi-
cating that the solution obtained by MOPFA is very stable. The Pareto front, resulting from the maximum run of 
the HV indicator is plotted in Figs. 10 and 11, it is obvious that the Pareto front obtained by MOPFA in Cases 2 
and 3 is more evenly distributed than that obtained by other algorithms.

The compromise solutions obtained by each algorithm in the two cases are given in Tables 10 and 12, respec-
tively. In Case 2, the compromise solution obtained by MOPFA is marked in Fig. 10, the value of generation 
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Figure 7.   The composition of renewable and thermal power in Case 1.

Table 8.   The compromise solution of Case 1 obtained by MOPFA was compared with the published literature. 
Significant values are in bold.

Algorithm Generation cost [$/h] Emission [ton/h]

MOPFA 813.8379 0.2057

SHADE-SP29 782.503 1.762

ACNSDE-SF34 843 0.123

MODFA48 831.665 0.2432

MOEA/D-SF49 829.515 0.2501

ESDE23 833.474 0.2540

PSO-SSO50 834.804 0.243

MOMICA51 865.06 0.222
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cost is 863.2328 ($/h), emission is 0.0508 (t/h) and real power loss is 2.3446. In Case 3, the compromise solu-
tion obtained by MOPFA is marked in Fig. 11, the value of the generation cost is 884.6613 ($/h), emission is 
0.0489 (t/h) and the voltage deviation is 0.4037. Figures 12 and 13 provided the composition of renewable gen-
eration energy and thermal generation energy in the solutions obtained by each algorithm.

From Table 10, it can be seen that MOPFA achieved the best real power loss of 2.3446 MW, while the 
second-best score of 2.9515 MW was obtained by MOAHA, MOPFA’s solution results in a 30% reduction in 
power loss compared to MOAHA’s solution. MOSSA obtained the best generation cost value 834.2038 ($/h) 
in Case 2. MOAHA obtained the best emission value 0.0482 (ton/h) in Case 2. It can be seen from Fig. 11, 
MOPFA uses 81.9 MW thermal power generation energy, which is much lower than the 127.4 MW, 111.2 MW, 
125.9 MW, 105.3 MW and 138.2 MW of other algorithms. In particular, wind farms, photovoltaic plants and 
tidal power plants connected to buses 5, 8, 11 and 13 are scheduled to be assigned 74.5949 MW, 57.8024 MW 
and 47.2424 MW respectively. This is more than 90% of the intended capacity of these renewable power plants, 
which will undoubtedly increase the default and reserve costs, but as the experimental data shows, the renew-
able energy generation process does not require fuel costs, so the cost increase is acceptable. The Case 2 results 
obtained by MOPFA were compared with the recently published literature in Table 11. The comparison results 
show that MOPFA obtained the minimum emission value 0.0508 (ton/h) than other algorithms. Although 
MOPFA’s power loss value of 2.1891 (ton/h) is inferior to TLBO’s38, the cost and emission of MOPFA are signifi-
cantly lower than TLBO’s38 among the three targets. MOPFA’s emission and power loss is lower than NASGA-II-
SF30, MOEA/D-SF33, PSO-SSO34, MOAGDE31 and ACNSDE-SF30. Different from Cases 2 and 3 adopts voltage 
deviation instead of power loss optimization target. From Table 12, it can be seen that MOPFA provides the 

Table 9.   HV-indicator in Case 2 and Case 3. Significant values are in bold.

Case Algorithm

HV

Max Min Mean Std Score Rank

Case 2

MOPFA 0.108043 0.064170 0.084408 0.010844 5.40 1

NASGA 0.054673 0.000922 0.015265 0.015585 1.10 6

MOPSO 0.088829 0.048563 0.062856 0.009252 3.53 4

MOMVO 0.084535 0.042549 0.061788 0.011016 3.70 3

MOAHA 0.095046 0.054996 0.077686 0.011747 5.00 2

MOSSA 0.076067 0.007374 0.038917 0.018555 2.27 5

Case 3

MOPFA 0.133712 0.047613 0.083691 0.019008 5.93 1

NASGA 0.031523 0.001726 0.010767 0.007625 1.76 6

MOPSO 0.049571 0.020964 0.031593 0.007267 2.60 4

MOMVO 0.085249 0.031574 0.048198 0.012535 3.93 3

MOAHA 0.105672 0.024056 0.054976 0.017598 5.00 2

MOSSA 0.063557 0.004595 0.022643 0.016286 1.77 5

Boxplot of HV indicator in case 2
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Figure 8.   Boxplot of HV indicator in Case 2.
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best result on the emission (0.0489) and VD (0.4037), while MOMVO obtained the best cost value of 793.6699. 
Although MOPFA’s cost value is 884.6613 and it beyond other algorithms, carefully scrutinize Fig. 12, the reason 
is that MOPFA only uses 109.7 MW thermal power, while MOPSO uses 164.1 MW. In order to satisfy the power 
demand of the system, MOPFA dispatched more renewable energy supply, including 28.8977 MW of tidal energy 
and 74.3827 MW of wind energy, while MOPFA ensuring the minimization of VD and achieving the result of a 
minimum VD value. It is concluded that the proposed MOPFA can solve MOPF problems in a greener way and 
provide more diverse solutions for engineers to choose from.

Result on Case 4: minimize the four objective functions.  Earlier in the article, this research identifies four optimi-
zation objectives: generation cost, emission, real power loss and voltage deviation. In Case 4, four optimization 
objectives were selected together, this presents a big challenge to the optimization algorithm, but MOPFA still 
gives competitive results. The HV indicators obtained by MOPFA and other five algorithms after 30 runs are 
listed in Table 13. MOPFA achieves the best maximum, minimum and average values, the HV indicator variance 
plots of each algorithm are plotted in Fig. 14. MOPFA’s results are remarkably stable and better than those of the 
other five algorithms, the results of the 30 runs were ranked by Wilkerson rank sum and MOPFA ranked first in 
six algorithms, it’s score is 5.88. Figure 15 shows the best Pareto front obtained by each algorithm. From Fig. 15, 
it can be seen that the distribution of Pareto optimal solutions of MOPFA on each objective is very uniform, 

Boxplot of HV indicator in case 3
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especially on the third objective function F3: real power loss, which can be almost evenly distributed in the entire 
value range.

The selected compromise solutions of six algorithms in this Case are reported in Table 14. According to 
this table, MOPFA’s solution has the lowest emission: 0.0486 (ton/h) and the highest real power loss (3.0052). 
MOMVO obtained the minimum value for generation cost, but the value of emission and real power loss are 
more than twice as high as MOPFA’s. Through the energy composition histogram in Fig. 16, the reason for 
the compromise solution is analyzed. Because MOPFA’s solution dispatches the most tidal energy, this may be 
because tidal power is more stable than wind power, reducing the extra cost of renewables to some extent. The 
total renewable power of MOPFA’s solution is 178.9 MW, it is bigger than NASGA-II: 147.9 MW. But dispatching 
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Figure 11.   Pareto front in Case 3.

Table 10.   Compromise solution values obtained by each algorithm. Significant values are in bold.

LB UB

Algorithm

MOPFA NASGA-II MOPSO MOMVO MOAHA MOSSA

Control variables

 PG2 (MW) 20 80 28.6566 54.4651 44.2135 61.6351 53.2922 55.3038

 PG5 (MW) 0 75 74.5949 60.5986 63.4783 60.3973 59.9942 59.9810

 PG8 (MW) 0 40 24.3144 22.9219 23.6391 21.9237 24.4547 21.6535

 PG11 (MW) 0 60 57.8024 41.9632 48.1911 48.0717 57.8974 34.9888

 PG13 (MW) 0 50 47.2424 33.9319 40.8802 30.2714 38.6188 32.3837

 V1 (P.U.) 0.95 1.10 1.0428 1.0653 1.0073 1.0551 1.0624 1.0464

 V2 (P.U.) 0.95 1.10 1.0514 1.0575 1.0296 0.9500 1.0297 1.0368

 V5 (P.U.) 0.95 1.10 1.0779 1.0676 1.0897 1.0336 1.0309 1.0572

 V8 (P.U.) 0.95 1.10 1.0478 1.0399 1.0488 1.1000 1.0453 1.0390

 V11 (P.U.) 0.95 1.10 1.0828 1.0162 1.0898 1.1000 1.0527 1.0718

 V13 (P.U.) 0.95 1.10 1.0997 1.0651 1.0779 1.1000 1.0223 1.0655

State variables

 PG1 (MW) 53.3042 72.9842 67.0141 64.3562 52.0941 82.9726

 QG1 (MVAr) − 20 0.2124 − 20 9.8130 28.9735 − 3.6311

 QG2 (MVAr) 13.5855 15.9054 2.0945 − 20 − 20 − 8.8179

 QG5 (MVAr) 26.6269 24.3422 35 35 35 35

 QG8 (MVAr) 40 40 40 31.4350 34.9244 40

 QG11 (MVAr) 24.8168 4.2196 30 30 21.5755 23.7276

 QG13 (MVAr) 25 25 25 25 12.1666 25

Objectives

 F1: Generation cost [$/h] 863.2328 838.6775 845.0190 847.8680 857.7920 834.2038

 F2: Emission [ton/h] 0.0508 0.0732 0.0622 0.0601 0.0482 0.1024

 F3: Real power loss [MW] 2.3446 3.4651 3.1340 3.2564 2.9515 3.8834
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The composition of renewable and thermal power in case 2
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Figure 12.   The composition of renewable and thermal power in Case 2.
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Figure 13.   The composition of renewable and thermal power in Case 3.

Table 11.   The compromise solution of Case 2 obtained by MOPFA was compared with the published 
literature.

Algorithm Generation cost [$/h] Emission [ton/h] Real power loss [p.u]

MOPFA 863.2328 0.0508 2.3446

NASGA-II-SF34 853.54 0.11812 2.8492

TLBO52 882.2742 0.1004 2.1891

MOEA/D-SF49 881.012 0.2164 4.1441

PSO-SSO50 865.18 0.224 4.093

MOAGDE4 821.8398 0.2536 9.9646

ACNSDE-SF34 827.33 0.19659 4.1918
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through MOPFA increases the use of more stable tidal energy in solutions, which reduces the uncertainty of 
wind and photovoltaic energy. As a result, MOPFA’s generation costs 5.6% less than NASGA-II. Table 15 reports a 
comparison of the solutions obtained by MOPFA and the recently published literature. From Table 15, it is obvi-
ous that MOPFA gets the smallest emission (0.0486), PSO-SSO50 gets the smallest cost, NASGA-II-SF34 gets the 
best voltage deviation. The solutions provided by these algorithms do not dominate each other, but the MOPFA 
solution should be considered when considering emissions taxation. In summary, MOPFA offers a more diverse 
set of solutions, and MOFPA offers solutions to increase the use of more stable tidal energy when renewable 
energy uncertainty increases the cost of the solution. This will help to resolve the contradiction between costs 
and emissions, and further demonstrates that the use of three renewable energy sources connected to the grid 
can greatly reduce emissions, and this energy composition will be very promising in the future.

System constraints of the best compromise solution.  In the MOOPF problem, the voltage on each branch must 
be within the secure range to guarantee the power system’s regular functioning. Because the bus containing the 
green energy units and thermal power units is already in the range, the voltage on the remaining 24 buses must 
be in the range of [0.95 p.u., 1.05 p.u.]. As a result, in order to validate the effectiveness of the answer achieved 
by each algorithm in Cases 1–4, Fig. 17 depicts the voltage of each branch of each algorithm on the IEEE 30-bus 
in the four study cases, clearly showing:

Table 12.   Compromise solution values obtained by each algorithm. Significant values are in bold.

LB UB

Algorithm

MOPFA NASGA-II MOPSO MOMVO MOAHA MOSSA

Control variables

 PG2 (MW) 20 80 57.4243 51.9143 80 21.5395 61.4589 58.7567

 PG5 (MW) 0 75 74.3827 61.7280 63.3067 52.1651 53.7995 62.3518

 PG8 (MW) 0 40 34.1595 17.0056 35 20.8785 30.8963 23.5868

 PG11 (MW) 0 60 39.6052 49.5539 26.0829 33.9943 49.5359 46.6194

 PG13 (MW) 0 50 28.8977 49.8478 0 34.5303 29.6939 18.5482

 V1 (P.U.) 0.95 1.10 1.0471 1.0557 1.0614 1.0258 0.9938 1.0119

 V2 (P.U.) 0.95 1.10 1.0819 0.9676 1.0931 1.0323 1.0497 1.0421

 V5 (P.U.) 0.95 1.10 1.0807 1.0481 1.0326 1.0771 1.0890 1.0405

 V8 (P.U.) 0.95 1.10 0.9500 1.0873 0.9500 1.0998 0.9916 1.0081

 V11 (P.U.) 0.95 1.10 1.0998 1.0840 1.0961 1.0999 1.0790 1.0771

 V13 (P.U.) 0.95 1.10 1.0797 1.0787 1.1000 1.1000 1.0734 1.0859

State variables

 PG1 (MW) 52.3740 56.3713 84.1607 125.9656 65.9542 78.3861

 QG1 (MVAr) − 13.5846 5.2632 − 6.9106 − 20 − 20 − 20

 QG2 (MVAr) 60 − 20 60 6.4275 54.3186 35.1202

 QG5 (MVAr) − 30 35 − 30 35 − 13.4506 5.4266

 QG8 (MVAr) 40 40 40 40 40 40

 QG11 (MVAr) 30 25.7018 30 30 27.5689 27.7867

 QG13 (MVAr) 25 25 25 25 25 25

Objectives

 F1: Generation cost [$/h] 884.6613 854.9569 794.2250 793.6699 876.0810 860.6207

 F2: Emission [ton/h] 0.0489 0.0509 1.9315 0.9777 0.0622 0.0874

 F4: Voltage deviation [p.u] 0.4037 0.4836 0.4094 0.4159 0.4075 0.4058

Table 13.   HV-indicator in Case 4. Significant values are in bold.

Case Algorithm

HV

Max Min Mean Std Score Rank

Case 4

MOPFA 0.058931 0.024535 0.039264 0.0081685 5.88 1

NASGA-II 0.014293 2.5373E−04 0.002985 0.0031157 1.77 5

MOPSO 0.010190 0.001639 0.005150 0.0023695 2.58 4

MOMVO 0.029612 0.004936 0.016069 0.0071498 3.75 3

MOAHA 0.045301 0.013464 0.027674 0.0751510 5.10 2

MOSSA 0.010712 1.2139E−04 0.003324 0.0027382 1.76 6
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In Cases 1–4, the intermediate solution produced by six algorithms meets the branch voltage restriction, 
demonstrating the possibility of using a meta-heuristic algorithm to solve the MOOPF issue. When we concen-
trate on Case 1, each algorithm’s obtained voltage in bus 3 is near to, but not exceeding, the upper bound. The 
voltage intervals of each algorithm are not noticeably different in the other three testing instances. In summary, 
each calculation’s compromise answer meets the branch voltage limit.

Conclusion and future work
In this work, a multi-objective optimization power flow (MOOPF) problem with stochastic wind, solar power 
and tidal power models is introduced. Different scenarios of renewable energy supply are simulated by consid-
ering different probability distribution functions. To solve this complex multi-objective optimization problem, 
a novel multi-objective optimization algorithm MOPFA was proposed. The thermal power generators in IEEE 
30-bus were replaced by wind turbines, photovoltaic power plants, and tidal power generation equipment. The 
simulation is carried out on the modified IEEE 30-bus system. The experiment was conducted in four different 
cases and the experimental results are compared with those of other well-known multi-objective optimization 
algorithms. Statistical results showed that MOPFA achieved the best HV indicator in all four cases. In addition, 
MOPFA’s Wilkerson rank sum test was also ranked first, while MOPFA is slightly better than other algorithms. 
In solve the multi-objective optimal power flow problem, MOPFA can obtain a more widely distributed solu-
tion set, and the solution that satisfies the constraints, so it can be used as the preferred algorithm to solve this 
problem. The compromise solution is calculated from the solution set obtained by MOPFA by fuzzy logic, and 
the compromise solution of MOPFA uses more renewable energy supply and effectively reduces emissions. 
Incorporating renewable energy into the power system can reduce emissions while maintaining system stability, 
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which will be an advantage in the future, so the compromise solution obtained by MOPFA is more in line with 
the development trend of future power dispatch. In the future, this research will focus on the direction of solving 
the MOOPF problem on larger IEEE test systems with real wind energy datasets, and search for real power price 
datasets from the government to build more accurate models.

Table 14.   Compromise solution values obtained by each algorithm. Significant values are in bold.

LB UB

Algorithm

MOPFA NASGA-II MOPSO MOMVO MOAHA MOSSA

Control variables

 PG2 (MW) 20 80 55.0827 67.7103 57.3602 21.8571 22.5218 47.7580

 PG5 (MW) 0 75 51.5612 71.7705 61.5017 38.9172 66.2482 46.7818

 PG8 (MW) 0 40 22.5658 28.8133 25.0488 22.7267 21.2179 28.1285

 PG11 (MW) 0 60 60 38.0716 38.3362 42.6629 41.4882 32.9828

 PG13 (MW) 0 50 44.8031 9.2449 32.6630 34.2024 42.5803 31.0533

 V1 (P.U.) 0.95 1.10 1.0593 1.0591 1.0400 1.0797 1.0456 1.0547

 V2 (P.U.) 0.95 1.10 1.0398 1.0595 1.0353 0.9658 1.0187 1.0456

 V5 (P.U.) 0.95 1.10 1.0557 1.0560 1.0794 1.0998 1.0979 1.0926

 V8 (P.U.) 0.95 1.10 1.0999 1.0704 1.0356 0.9907 1.0303 1.0162

 V11 (P.U.) 0.95 1.10 1.0891 1.0813 1.0923 1.0999 1.0780 1.0786

 V13 (P.U.) 0.95 1.10 1.0684 1.0217 1.0705 1.0707 1.0959 1.0727

State variables

 PG1 (MW) 52.3824 71.2731 71.9532 129.0667 93.0083 101.2521

 QG1 (MVAr) 7.1748 − 16.8915 − 13.1505 50.4159 6.7013 − 7.6273

 QG2 (MVAr) − 20 18.8164 − 5.2117 − 20 − 20 17.2120

 QG5 (MVAr) 35 35 34.2552 − 5.6715 33.0471 13.7113

 QG8 (MVAr) 40 40 40 40 40 40

 QG11 (MVAr) 27.7525 25.3068 30 30 27.4323 24.9460

 QG13 (MVAr) 23.0593 7.9208 25 25 25 25

Objectives

 F1: Generation Cost [$/h) 852.2493 903.5947 841.0084 790.0268 828.3344 823.4770

 F2: Emission [ton/h] 0.0486 0.0726 0.0715 1.1849 0.1598 0.2340

 F3: Real power loss [MW] 3.0052 3.4297 3.4722 6.0329 3.6648 4.5565

 F4: Voltage deviation [p.u] 0.5193 0.4388 0.4111 0.4158 0.4310 0.4147
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Figure 16.   The composition of renewable and thermal power in Case 4.
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Table 15.   The compromise solution of Case 4 obtained by MOPFA was compared with the published 
literature. Significant values are in bold.

Algorithm Generation cost [$/h] Emission [ton/h] Real power loss [MW] Voltage deviation [p.u]

MOPFA 852.2493 0.0486 3.0052 0.5193

NASGA-II-SF34 845.32 0.42792 4.2069 0.39792

TLBO52 878.3400 0.0958 2.6208 0.4528

MOEA/D-SF49 919.04 0.6221 5.5429 0.4530

PSO-SSO50 826.94 0.258 5.5150 0.466

MOAGDE4 826.5070 0.2227 9.4052 0.8141

ACNSDE-SF34 837.46 0.18045 3.6984 0.4179
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Figure 17.   Different load bus voltage of the best compromise solutions obtained by six algorithms on IEEE 
30-bus system: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.
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