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In‑domain versus out‑of‑domain 
transfer learning in plankton image 
classification
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Francesca Odone 2

Plankton microorganisms play a huge role in the aquatic food web. Recently, it has been proposed 
to use plankton as a biosensor, since they can react to even minimal perturbations of the aquatic 
environment with specific physiological changes, which may lead to alterations in morphology and 
behavior. Nowadays, the development of high‑resolution in‑situ automatic acquisition systems allows 
the research community to obtain a large amount of plankton image data. Fundamental examples are 
the ZooScan and Woods Hole Oceanographic Institution (WHOI) datasets, comprising up to millions 
of plankton images. However, obtaining unbiased annotations is expensive both in terms of time 
and resources, and in‑situ acquired datasets generally suffer from severe imbalance, with only a few 
images available for several species. Transfer learning is a popular solution to these challenges, with 
ImageNet1K being the most‑used source dataset for pre‑training. On the other hand, datasets like 
the ZooScan and the WHOI may represent a valuable opportunity to compare out‑of‑domain and 
large‑scale plankton in‑domain source datasets, in terms of performance for the task at hand.In this 
paper, we design three transfer learning pipelines for plankton image classification, with the aim of 
comparing in‑domain and out‑of‑domain transfer learning on three popular benchmark plankton 
datasets. The general framework consists in fine‑tuning a pre‑trained model on a plankton target 
dataset. In the first pipeline, the model is pre‑trained from scratch on a large‑scale plankton dataset, 
in the second, it is pre‑trained on large‑scale natural image datasets (ImageNet1K or ImageNet22K), 
while in the third, a two‑stage fine‑tuning is implemented (ImageNet → large‑scale plankton dataset 
→ target plankton dataset). Our results show that an out‑of‑domain ImageNet22K pre‑training 
outperforms the plankton in‑domain ones, with an average boost in test accuracy of around 6%. In 
the next part of this work, we adopt three ImageNet22k pre‑trained Vision Transformers and one 
ConvNeXt, obtaining results on par (or slightly superior) with the state‑of‑the‑art, corresponding to 
the usage of CNN models ensembles, with a single model. Finally, we design and test an ensemble 
of our Vision Transformers and the ConvNeXt, outperforming the state‑of‑the‑art existing works 
on plankton image classification on the three target datasets. To support scientific community 
contribution and further research, our implemented code is open‑source and available at https:// 
github. com/ Malga‑ Vision/ plank ton_ trans fer.

The term plankton refers to a large class of drifting aquatic microorganisms. Plankton plays a key role in the 
aquatic ecosystem, being at the bottom of the marine food chain. Moreover, phytoplankton is estimated to have 
produced around 50% of the total atmosphere oxygen with fundamental involvement in local and global climate 
 regulation1. Plankton community composition is deeply impacted by natural or artificial perturbations of the 
aquatic  environment2. Plankton microorganisms can respond to changes in the environment with physiologi-
cal changes, potentially causing morphological, and behavioral  modifications3. For these reasons, their usage as 
biosensors has been proposed: detecting deviations from a computed healthy baseline as indicators of potentially 
dangerous environmental  changes4,5.

The development of advanced in-situ high-resolution automatic acquisition systems, e.g., the submersible 
flow  cytometer6,7 and the In Situ Ichthyoplankton Imaging System (ISIIS)8, is leading to a large amount of avail-
able plankton image data. In particular, from 2006 to 2014 the Woods Hole Oceanographic Institution (WHOI) 
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acquired a large-scale dataset comprising millions of plankton images, labeled by experts in the field in 103 
categories. Another example is the ZooScan dataset (acquired by means of the homonymous  instrument9) which 
includes 1.4 million images labeled into 98 different categories. While there is a growing availability of such data, 
high-quality unbiased annotations can be costly in terms of both time and  resources10,11, furthermore there is a 
pressing need to develop highly accurate algorithms for automatic plankton image classification. To address this 
challenge, researchers have turned to machine learning solutions, particularly supervised training of Convolu-
tional Neural Networks (CNNs)12–16, which have demonstrated superior performance compared to traditional 
computer vision methods, as highlighted by several studies. CNNs are powerful deep learning architectures 
commonly used for image classification and object recognition tasks: they consist of multiple convolutional 
layers that can learn and extract hierarchical representations of input images, allowing the network to identify 
features of varying  complexity17.

A widely used approach in plankton image classification is transfer learning, where the weights of a pre-
trained CNN architecture on a large general dataset (such as natural images) are fine-tuned with the images and 
labels of a specific plankton dataset, as proposed by various  works15,18,19 (the knowledge acquired by the model in 
the pre-trained dataset is transferred to make the downstream task, i.e., plankton classification, easier). To achieve 
state-of-the-art performance in plankton classification, current approaches typically involve fine-tuning multiple 
CNN models, often six or more, and combining their predictions through ensemble methods to obtain highly 
accurate  results15,20,21. These methods typically rely on the widely-used ImageNet1k dataset for pre-training and 
are evaluated on small-to-medium-sized plankton datasets that have been curated from larger image collections, 
including  WHOI2222,  Kaggle388 and  ZooScan209, where the number following the name denotes the number of 
classes included in the dataset (see section “Datasets”). ImageNet1K denotes the subset of ImageNet that consists 
of 1000 natural image classes and was used in the ImageNet Large Scale Visual Recognition Challenge  201223. 
Conversely, we will refer to the entire dataset, which contains 21, 841 classes, as ImageNet22K.

An important limitation of the aforementioned approaches is that the ensemble requires training of multiple 
deep neural networks and, also, they should be used concurrently at inference time, impacting the efficiency 
of the resulting method. Furthermore, only classical CNNs are typically considered for plankton classification, 
and new architectures, designed in recent years, have not been yet fully explored. Additionally, to the best of our 
knowledge, no study has comprehensively examined the impact of the model pre-training on various large-scale, 
in-domain plankton datasets versus out-of-domain natural image datasets.

To address these gaps, in this paper, we first design three transfer learning pipelines to compare the effect of 
in-domain (extended versions of the three cited plankton datasets, comprising up to 1.4 million images) and 
out-of-domain  (ImageNet1K23 and  ImageNet22K24) source datasets when adopting transfer learning on the three 
plankton benchmark datasets, exploiting a classical CNN model: ResNet50.

Our experiments indicate that using ImageNet22K for pre-training results in a significant improvement of 
approximately 6% in test accuracy compared to in-domain dataset pre-training alone. This suggests that the 
complexity and diversity of ImageNet22K provide valuable learning opportunities for effective plankton clas-
sification. While representations learned from large-scale in-domain plankton datasets are more specialized to 
the domain, they may be less discriminative than those learned from ImageNet22K.

In the next part of this work, we adopt more recent and complex architectures trained on ImageNet22K: three 
types of Vision Transformers (i.e.,  ViT25,  Swin26 and  BEiT27) and a modern CNN (i.e.  ConvNeXt28). Vision Trans-
formers have been introduced  in25 and, in contrast to CNNs, exploit a self-attention  mechanism29 to aggregate 
information from patches of an image, enabling the model to recognize objects by attending to different parts of 
the image simultaneously. We fine-tune each of the Transformers and the ConvNeXt on our three target plankton 
datasets and our results show that the BEiT outperforms the ResNet50 model with an average improvement of 
2% in terms of test accuracy. Comparing our results with the best ensembling methods, our experiments show 
that the ImageNet22K pre-trained BEiT Transformer outperforms the state-of-the-art ensembles on Kaggle38 
and ZooScan20 and obtains a similar performance on the WHOI22 dataset. Additionally, we investigate whether 
combining the three Vision Transformers and the ConvNeXt models within an average ensemble architecture 
could bring further improvement in accuracy. However, the accuracy gain (compared to our best single model) is 
minimal and counterbalanced by the resulting additional computational complexity. Nevertheless, the ensemble 
classifier outperforms the state-of-the-art results for all three investigated datasets.

The remainder of the paper is organized as follows: first, we introduce the related works on transfer learning 
for plankton image classification. Then, we provide details on the datasets (section “Datasets”) and the imple-
mented pipeline (section “Transfer learning pipelines”). Finally, we provide the experiment details (section 
“Experiment details”), presenting and discussing the obtained results (section “ Results”).

Related works
In recent years, there has been a growing interest in the computer vision community toward plankton image 
 classification15. Starting from 2014, when the Kaggle National Data Science Bowl was organized with the aim 
to create an accurate classifier for plankton images, machine learning has been extensively applied to the task 
at  hand5. The main approaches involve designing and extracting features that are later used to train Random 
Forest or Support Vector Machine (SVM)  classifiers11,12,22 or exploit deep learning in the form of Convolutional 
Neural Networks (CNNs)11,20,30–35. Nowadays, large-scale annotated plankton datasets are publicly available 
(e.g., the  ZooScan989 and the WHOI80  datasets7). However, plankton datasets are typically  imbalanced36, and 
obtaining high-quality annotations is expensive both in terms of time and resources. A popular solution to deal 
with these challenges involves the usage of a transfer learning  framework15,20,21,34.  In34 the authors compare the 
performance of an SVM classifier trained on features extracted by means of CNNs (i.e., the  DeepSea37 and the 
 AlexNet38) pre-trained on the extended Kaggle plankton  dataset8 with 30 thousand images and ImageNet1K. 
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The authors find only a slight difference in the performance of AlexNet pre-trained on the Kaggle plankton 
dataset and ImageNet1K when using it as a features extractor on their in-house dataset.  In15, the authors adopt 
an ensemble of different CNN models with three different classification pipelines involving transfer learning, 
testing them on the same benchmark datasets used in this work. In particular, they compare: (i) a CNN pre-
trained on ImageNet1K and fine-tuned on the plankton target datasets; (ii) a two-round fine-tuning procedure, 
where the ImageNet1K pre-trained model is fine-tuned on a source plankton dataset and further trained on the 
target plankton datasets. In this work, the source dataset is obtained by fusing the extended version of the Kaggle 
 dataset8 (15, 962 images and 83 classes) and a dataset referred to as Esmeraldo (11, 005 images and 13 samples). 
The two-round fine-tuning procedure provides small improvements or degradation of test accuracy, depending 
on the model and the target dataset, with respect to a direct fine-tuning of the pre-trained model. Moreover, the 
designed ensemble of CNNs provides a boost in accuracy.  In21 the authors adopt average and stacking ensem-
bling of six CNN models including a  DenseNet39 and  EfficientNets40. All the CNN models are pre-trained on 
ImageNet1K. Their ensemble of six CNNs outperforms previous state-of-the-art results for the classification of 
the investigated plankton datasets.

In35 the authors compare different transfer learning scenarios using an ImageNet1K pre-trained AlexNet, 
fine-tuned on the extended Kaggle dataset, an extended version of the WHOI dataset with 53,239 images, and 
both of them in cascade. Their results show that the ImageNet1K pre-trained CNN is more accurate than the 
same model pre-trained on a plankton dataset, with the two-stage fine-tuning giving only a slight improvement.

The previously cited works focus on plankton image classification, which is the same task considered in our 
study. However, it is worth noting that the advantages of pre-training within a transfer learning framework have 
been investigated in other computer vision tasks applied to plankton, such as specimen  detection41, where the 
classification of plankton microorganisms is coupled with localization. Up to our knowledge, no work for speci-
men detection performs a systematic analysis on the effect of in-domain pre-training for the detection task, with 
most of the methods based on the fine-tuning of a pre-trained model on the plankton target dataset. In these 
works, the usage of models pre-trained on out-of-domain source datasets allows compensation for the limited 
availability of data, that prevents training from scratch. In the context of object detection, deep neural networks 
are typically pre-trained on Microsoft Common Objects in Context (MS-COCO), which is a popular out-of-
domain object detection dataset.  In42, the authors design a mask region CNN to perform multi-class microorgan-
isms detection. The proposed model is pre-trained on MS-COCO and then fine-tuned on a plankton dataset, 
achieving good detection performance also on an out-of-domain blood dataset.  In43, the authors introduce a 
phytoplankton image dataset, to be used as a candidate source dataset for the specimen detection task. In this 
work, a Faster R-CNN with an ImageNet pre-trained backbone is fine-tuned on the introduced dataset, showing 
high detection accuracy.  In44 an ImageNet pre-trained CNN is exploited to extract features from plankton images 
in a specimen detection task. The pre-trained features are shown to provide higher accuracy with respect to a set 
of hand-crafted features, without any fine-tuning on the plankton detection task.

Previous works have not systematically addressed the problem of in-domain versus out-of-domain transfer 
learning in plankton image analysis. They instead rely on small-scale plankton datasets as sources and typically 
employ classical CNN models. The ensembles of CNNs designed in these works tend to yield better performance 
than single models, however, limited insights are provided on the trade-off between increased complexity and 
computational training/test time and accuracy improvement. To address these gaps, this paper proposes three 
transfer learning pipelines to systematically evaluate the effectiveness of plankton in-domain and natural images 
out-of-domain pre-training datasets in a transfer learning framework. We consider source in-domain plankton 
datasets with up to one million images to allow a fair comparison in terms of the number of images with Ima-
geNet datasets. Finally, we design an ensemble of three Transformers and one ConvNeXt, evaluating its effect in 
terms of the trade-off between complexity and accuracy gains for the task at hand.

Methods
Datasets. In this work, we exploit three popular benchmark plankton image datasets. The target datasets are 
the same used  in12,15,20,21: (1) WHOI22, (2) Kaggle38; (3) ZooScan20. Each of these datasets is a subset extracted 
from a corresponding larger collection of annotated images. We consider the correspondent large-scale datasets 
as in-domain source datasets to pre-train our models when testing the proposed transfer learning pipelines. In 
the next paragraph, we provide a short description. Figure 1 shows sample images of eight species for each of 
the three included datasets, while Table 1 provides more details on the number of images and classes included.

WHOI dataset. The WHOI  dataset7 (see Fig. 1c) refers to a public large collection of plankton images acquired 
by the Woods Hole Oceanographic Institution (WHOI) using automated submersible imaging-in-flow cytom-
etry by means of an Imaging FlowCytobot (IFCB), from 2006 to  20146. The dataset includes 3.4 million images 
labeled into 103 categories. A subset of the WHOI dataset, introduced  in22, includes 6, 600 images labeled into 
22 categories. This subset is referred to as WHOI22, in our paper. Starting from the whole WHOI dataset, we 
eliminate all the 22 classes of the WHOI22 and the class labeled as mix, obtaining 253, 952 images belonging to 
80 different species of plankton. In this paper, we refer to the resulting dataset as WHOI80. We use the WHOI80 
as an in-domain source dataset, while the WHOI22 is exploited as a target dataset. The dataset is natively avail-
able with a test set, with a number of images equal to the training set.

Kaggle dataset. The Kaggle  dataset8 (see Fig.  1b) refers to a collection of plankton images acquired in the 
Straits of Florida by means of the In Situ Ichthyoplankton Imaging System (ISIIS), and exploited for the National 
Data Science Bowl 2015 Kaggle competition. The original labeled version of the dataset includes 30, 336 images 
belonging to 121 different classes.  In12,15 the authors use a subset of such dataset, including 14,374 greyscale 
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images labeled into 38 classes. We refer to such a subset as Kaggle38 in the remainder of the paper. Starting from 
the whole labeled dataset, we remove the samples belonging to the 38 classes of the Kaggle38 subset, obtaining 
15,962 plankton images belonging to 83 different categories (as done  in15). We refer to this version of the data-
set as Kaggle83 in the paper. We use the Kaggle83 as an in-domain source dataset and the Kaggle38 as a target 
dataset to test our transfer learning pipelines. Since no test set is available, we adopt the same test protocol  of12,15 
using a 5-fold cross-validation procedure.

ZooScan dataset. The ZooScan  dataset45 (see Fig.  1a) refers to a large-scale collection of plankton images 
acquired by means of an instrument named  ZooScan9. The complete version of the dataset includes 1.4 million 
images labeled into 98 classes (we refer to this dataset as ZooScan98). A popular benchmark plankton dataset 
extracted from ZooScan98 is used in many  works12,15. We refer to such a subset as ZooScan20, it contains 3, 771 
greyscale images labeled into 20 classes. We use ZooScan98 as an in-domain source dataset and ZooScan20 as 
a target dataset to test our transfer learning pipelines. Since no test set is available, we use again the same test 
protocol  of12,15 adopting a 5-fold cross-validation procedure.

Transfer learning pipelines. Figure 2 shows a schematic representation of the pipelines we designed to 
evaluate the impact of in-domain and out-of-domain transfer learning on plankton image data. In the first 
transfer learning pipeline (dashed blue square in Fig. 2), we use the extended version of the plankton datasets 
included in our analysis (see section “Datasets”) as in-domain source datasets to train a ResNet50  model46 from 
scratch. The resulting model is then fine-tuned on each of the three target datasets and evaluated in terms of 
accuracy and F1 score on the test sets (see section “Evaluation metrics” for further details).

(a) ZooScan dataset.

(b) Kaggle dataset.

(c) WHOI dataset.

Figure 1.  Sample images from seven different classes included in the datasets considered for our analysis.

Table 1.  Schematic overview of the eight datasets used in this work including number and type of images, 
number of classes, and role in the transfer learning pipeline.

Dataset # Images # Classes Images type Role

ImageNet22K 14,197,122 21,841 Natural Out-domain source

ImageNet1K 1,281,167 1000 Natural Out-domain source

ZooScan98 1,400,000 98 Plankton In-domain source

WHOI80 253,952 80 Plankton In-domain source

Kaggle83 15, 962 83 Plankton In-domain source

Kaggle38 14, 374 38 Plankton Target

WHOI22 6600 22 Plankton Target

ZooScan20 3771 20 Plankton Target
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In the second transfer learning pipeline (dashed black square in Fig. 2) we use two popular natural image 
datasets as out-of-domain source datasets to train a ResNet50 model: ImageNet1K and ImageNet22K. The first 
is a collection of 1.2 million images belonging to 1000 different classes, while the second includes 14 million 
images labeled into 21,841  categories47. We fine-tune the resulting model on each of the three target datasets and 
evaluate it in terms of accuracy and F1 score on the test sets. Finally, for the two in-domain plankton datasets 
with less than one million images (i.e., WHOI80 and Kaggle83), we design a third transfer learning pipeline 
(dashed red square in Fig. 2) adopting a two-stage fine-tuning procedure, in the attempt to mitigate the effect of 
the number of images, when comparing to the out-of-domain ImageNet datasets. In particular, we first fine-tune 
a ResNet50 model pre-trained on ImageNet22K on one plankton in-domain dataset, later performing another 
stage of fine-tuning on each of the three target datasets.

Ensemble of transformers and ConvNeXt architectures for plankton image classification. In 
this work, we first test the designed transfer learning pipelines exploiting a ResNet50 architecture. Then, we 
consider deeper and more complex architectures, namely Vision Transformers and a ConvNeXt. In particular, 
we adopt and compare  ViT25, a hierarchical Transformer (i.e., Swin)26, a BEiT  Transformer27 and  ConvNeXt28 to 
accurately classify our target plankton image datasets. All the models are pre-trained on ImageNet22K and fine-
tuned on the target datasets. Finally, following the state-of-the-art approaches for plankton image classification, 
we combine the four models into an ensemble, to evaluate the impact on performance on the target datasets. 
In particular, we average the output probabilities for each of the models, selecting the output class based on the 
maximum of the obtained values.

Results
Experiment details. Image pre‑processing. The plankton datasets used in this work include images of dif-
ferent sizes and aspect ratios. An important requirement for the efficient training of a neural network consists 
in having input images of the same size, allowing them to be batched into tensors for hardware acceleration. 
Additionally, for Transformer architectures, square input images are desirable as they are divided into a grid 
of pre-defined square patches during training. Therefore, we follow the resizing strategy employed in previous 
 works15: (1) the aspect ratio is maintained by padding the smallest dimension of each image, achieving a square 
shape; (2) all the images are resized to a fixed size; and (3) a square region is cropped from the resulting image. 
For ZooScan images, prior to the described pipeline, we automatically remove the artifact represented by the size 
indication legend. The resize and crop sizes are consistent with the ones used for pre-training each architecture: 
for ResNet50, images are resized to 256× 256 and then cropped to 224× 224 , while for other architectures (ViT, 
BEiT, Swin, and ConvNeXt), images are resized to 439× 439 and then cropped to 384× 384 . During training, 

Figure 2.  Schematic representation of the three implemented transfer learning pipelines. The dashed blue 
square corresponds to the first pipeline, where a model is pre-trained from scratch on a large-scale in-domain 
plankton dataset; the dashed black square identifies the adoption of out-of-domain ImageNet pre-training; the 
dashed red square represents the two-stage fine-tuning procedure (ImageNet → in-domain plankton dataset → 
target dataset).
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the crop is randomly performed across the image as an augmentation technique. During testing, the crop is 
centered on the image.

Training details. Before fine-tuning the model weights, we proceed by substituting the existing fully-connected 
layers on top of each model with a newly initialized bottleneck. This bottleneck comprises a linear layer with 
512 neurons, a normalization layer, and a non-linear activation function. Finally, a linear classification layer is 
added with the number of output dimensions matching the number of classes. The normalization is a Layer 
 Normalization48 (with GELU activation function) or a Batch  Normalization49 (with ReLU activation function) 
according to the used backbone (the former for Vision Transformers and ConvNeXt, the latter for ResNet50). 
We train the final classifier applying Weight  Normalization50. We use data augmentation based on random hori-
zontal and vertical flips, Stochastic Gradient Descent (SGD)51 with Nesterov momentum (0.9) for the optimiza-
tion, and cross-entropy as loss function. We use regularization with weight decay ( 10−2 ) and label smoothing 
(0.1). The initial learning rates are 10−3 for the pre-trained backbone and 10−2 for the bottleneck and the classi-
fier. They are decayed with exponential scheduling: at training step t, the learning rate is evaluated as the initial 
learning rate multiplied by decay(t) =

(

1+ γ t

n

)β where γ = 10 , β = 0.75 and n is the total number of training 
steps ( #epochs · #steps in one epoch ). We use 100 epochs with early stopping (training/validation split is 85/15). 
The batch size is 64, but we split every batch across 4 GPUs (NVIDIA V100 16 GB), exploiting gradient accumu-
lation, when needed. We synchronize batch normalization statistics across GPUs. For our experiments, we used 
Python (version 3.9.12) with PyTorch library (version 1.11.0) and CUDA 10.2. We imported the architecture 
implementations from the TIMM  library52. The ConvNeXt model used in our work is ConvNeXt-XL architec-
ture, while for the Transformers the BEiT-L, ViT-L, and Swin-L implementations are adopted.

Evaluation metrics. We evaluate our results by exploiting two common metrics for plankton image classifica-
tion (as done  in20): accuracy and F1 score , defined as:

In Eq. (1), Total True Positives represents the sum of true positives across all classes, and Total Instances represents 
the total number of images in the test dataset. In Eq. (2), C represents the total number of classes, and F1 scorei 
represents the F1 score corresponding to instances in class i. The latter is computed as shown in Eq. (3), where 
Precisioni =

TPi
TPi+FPi

 and Recalli = TPi+TNi

TPi+FPi+FNi+TNi
 . True Positive ( TPi ), True Negative ( TNi ), False Negative 

( FNi ), and False Positive ( FPi ) correspond to the element in the confusion matrix of class i. In summary, the 
accuracy metric provides a measure of performance, considering each instance equally important. The F1 score 
provides a measure of performance considering each class equally important when calculating the average. If 
a dataset is balanced, with the same number of instances per class, F1 score and accuracy coincide, however, in 
the case of imbalanced datasets, such as the plankton  ones36, F1 score may be considered a relevant additional 
metric in the evaluation of a classification task. Finally, for Kaggle38 and ZooScan20 datasets, the evaluation 
metrics are averaged among the 5 folds (see section “Datasets”).

Experiment results. In‑domain versus out‑of‑domain transfer learning. We apply the transfer learning 
pipelines described in section “Transfer learning pipelines” to the three datasets used in this work (see section 
“Datasets”). The experiments reported in this section, are performed using ResNet50 as a baseline architecture. 
Table 2 shows the obtained results in terms of accuracy and F1 score evaluated on the test set. It is worth notic-
ing that the three extended versions of the plankton datasets used as source datasets for the in-domain transfer 
learning pipeline have a different number of images: (1) 15,962 for the Kaggle83; (2) 253,952 for the WHOI80 
and (3) 1.4 million for the ZooScan98. As a comparison, ImageNet22K has 14 million images belonging to 
21,841 classes. ImageNet1K is a subset of ImageNet22K with 1.2 million images belonging to 1000 classes (with 
a size comparable to the ZooScan98 plankton dataset). As we can see in Table 2, ImageNet22K pre-training 
leads to the most accurate model for the WHOI22 and the Kaggle target datasets both in terms of accuracy and 
F1 score . ImageNet22K also leads to the best F1 score for the ZooScan dataset, while there is a slight improve-
ment when using a two-stage fine-tuning involving the WHOI dataset (+  0.004%) w.r.t. the test accuracy, on 
this dataset. Moreover, if we consider only the in-domain transfer learning pipeline, it is possible to notice that 
the ZooScan98 dataset leads to the best results for both the WHOI22 and the Kaggle dataset, with an average 
improvement of around 3.6% w.r.t. pre-training on the other two extended plankton datasets. We do not use Zo-
oScan98 as a source dataset for the fine-tuning on ZooScan20, because it contains all the images and the classes 
included in the target dataset. In fact, differently from WHOI80 and Kaggle83 extended dataset, we do not 
remove the classes in common with the target dataset for ZooScan98, because we are interested in considering a 
dataset with a size comparable to ImageNet1K, in order to fairly compare one in-domain plankton dataset to the 
external natural images dataset removing the number of images as potential influencing parameter. Our findings 
suggest that using in-domain plankton datasets as sources in transfer learning frameworks, has a limited or no 

(1)Accuracy :=
Total True Positives

Total Instances

(2)F1 score :=
1

C

C
∑

i=1

F1 scorei

(3)F1 scorei := 2×
Precisioni × Recalli

Precisioni + Recalli
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effect on the accuracy of tested models, while the number of classes and images in a source dataset are important 
factors that contribute to the quality of a pre-training dataset.

Exploiting the pre‑training on ImageNet22K: transformers and ConvNeXt for plankton classification. The out-
of-domain natural image dataset ImageNet22K corresponds to the best source dataset when pre-training a 
ResNet50 in our experiments, in terms of test accuracy. Having this in mind, we investigate the performance of 
more complex architectures that could benefit even more from an ImageNet22k pre-training. In particular, we 
consider three different Transformers:  ViT25, the hierarchical Swin  Transformer26 (Swin) and  BEiT27. We also 
include a modern CNN, i.e.,  ConvNeXt28, in our analysis. Table 3 shows the performance of each of these mod-
els on the three plankton benchmark datasets. In our experiments, the three Transformers and the ConvNeXt 
model are pre-trained on ImageNet22K. As we can see, BEiT Transformer shows the highest performance both 
in terms of test accuracy and F1 score , with an average improvement of 2% with respect to the ResNet50 model 
pre-trained on ImageNet22K (see Table 2). As a benchmark, we compare our results with four recent state-
of-the-art works on plankton image  classification12,15,20,21. Table  4 summarizes state-of-the-art results on the 
three investigated target plankton datasets.  Excluding12, the state-of-the-art benchmark results are obtained by 
ensembling several ImageNet1K pre-trained CNN models (six CNNs  in21, eleven  in15). As we can see in Table 3, 

Table 2.  Performance comparison (accuracy and F1 score ) of ResNet50 using the proposed transfer learning 
pipelines across the three benchmark datasets. The best results are highlighted in bold, second best results are 
underlined.

Target dataset → WHOI22 Kaggle38 ZooScan20

↓ Source dataset(s) Accuracy F1 score Accuracy F1 score Accuracy F1 score

WHOI80 0.878 0.878 0.876 0.831 0.826 0.837

Kaggle83 0.862 0.862 0.878 0.834 0.847 0.863

ZooScan98 0.912 0.912 0.914 0.884 – –

ImageNet22K 0.946 0.946 0.930 0.909 0.887 0.899

ImageNet1K 0.939 0.939 0.921 0.895 0.851 0.868

ImageNet22K → WHOI80 0.946 0.946 0.924 0.905 0.891 0.898

ImageNet22K → Kaggle83 0.938 0.938 0.929 0.907 0.877 0.896

Table 3.  Performance comparison (accuracy and F1 score ) of Vision Transformers, ConvNeXt, and ResNet50 
(as baseline) pre-trained on ImageNet22K across the three benchmark datasets. The best results are highlighted 
in bold, second best results are underlined.

Dataset → WHOI22 Kaggle38 ZooScan20

↓ Model Accuracy F1 score Accuracy F1 score Accuracy F1 score

ResNet50 0.946 0.946 0.930 0.909 0.887 0.899

BEiT 0.961 0.961 0.951 0.942 0.914 0.931

Swin 0.960 0.960 0.947 0.932 0.904 0.917

ViT 0.959 0.959 0.948 0.933 0.908 0.918

ConvNeXt 0.957 0.957 0.949 0.932 0.904 0.911

Table 4.  Performance comparison (accuracy and F1 score ) of our best single model (BEiT) and our ensemble 
of 4 models with state-of-the-art approaches on three investigated plankton datasets. The best results are 
highlighted in bold and the second best results are underlined.

Dataset → WHOI22 Kaggle38 ZooScan20

↓ Method Accuracy F1 score Accuracy F1 score Accuracy F1 score

Best 6  average21 0.961 0.961 0.947 0.937 0.898 0.915

Best 6  stack21 0.958 0.958 0.943 0.934 0.891 0.911

SFFS15 0.958 0.958 0.942 0.927 0.885 0.900

WS15 0.958 0.958 0.942 0.927 0.888 0.902

Fus 2R + Fus  1R20 – 0.953 – 0.926 – 0.897

Fus PR+ Fus 2R +Fus  1R20 – 0.953 – 0.926 – 0.896

NLMKL12 – 0.900 – 0.846 – 0.894

BEiT (ours) 0.961 0.961 0.951 0.942 0.914 0.931

Ensemble (4 models, ours) 0.966 0.966 0.955 0.945 0.925 0.937
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our single BEiT model outperforms the state-of-the-art results for the Kaggle and the ZooScan dataset, with 
performance comparable  to21 on the WHOI22 dataset, where an ensemble of six CNN models is used.

Nonetheless, inspired by previous state-of-the-art results in plankton image classification, we design an 
average ensemble of our ImageNet22K pre-trained Transformers and ConvNeXt (see section “Ensemble of 
Transformers and ConvNeXt architectures for plankton image classification” for further details) to assess the 
effect on performance with respect to the three target datasets. As we can see in Table 4, the resulting ensemble 
model provides a minimal effect on accuracy, with an average increase of around 0.6% with respect to our best 
performing Transformer (i.e., BEiT).

However, the minimal increase in accuracy is counterbalanced by a significant increase in time and resources 
needed for training and inference. Table 5 reports an indication of training and inference time, as the number 
of images that can be processed per second, by the different architectures considered in our study (and by the 
ensemble of the 4 architectures) on a single NVIDIA V100 GPU. These numbers depend on the specific hardware 
and implementation. However, they highlight the difference, in terms of efficiency, among the architectures, and 
the increase in time needed for computation when ensembling the four models. Thus, the trade-off between 
complexity and accuracy gain should be carefully evaluated, depending on the specific application (e.g., real-
time or post-acquisition analysis).

Conclusion
In this work, we compare in-domain and out-of-domain transfer learning approaches for plankton image clas-
sification. We design three different transfer learning pipelines using three large-scale in-domain source plankton 
datasets (i.e., WHOI80, Kaggle83, and ZooScan98) and two out-of-domain natural image datasets (i.e., Image-
Net1K and ImageNet22K).

The general framework consists in fine-tuning a pre-trained model on three target plankton datasets (i.e., 
WHOI22, ZooScan20, and Kaggle38). In the first pipeline, we train a model from scratch on an in-domain 
plankton dataset. In the second pipeline, we adopt an ImageNet1K or ImageNet22K pre-trained model, while 
in the third, we implement a two-stage fine-tuning procedure, fine-tuning an ImageNet pre-trained model on 
an in-domain source plankton dataset.

Regarding the first pipeline, we exploit three in-domain source datasets with different numbers of images and 
classes (see section “Datasets”). Our experiments show that the ZooScan98 dataset with 1.4 million images and 
98 classes provides the best performance when used as a source dataset, with an average improvement of 3.6% 
compared to the pre-training with the other two in-domain datasets.

From the second pipeline, we obtain that ImageNet22K provides better performance compared to Image-
Net1K, with an average improvement of 4%. These results suggest that there is no benefit in using a large-scale 
in-domain plankton dataset as a source dataset for transfer learning compared to the out-of-domain ImageNet. 
Moreover, little or no benefit is obtained when adopting a two-stage fine-tuning procedure. It is worth noticing 
that ZooScan98 has a higher number of images than ImageNet1K, but leads to lower performance when used 
as a source dataset. These results may indicate that the number of images and classes are key factors for a pre-
training dataset in a plankton image classification task. It is worth noticing that, despite acquiring and annotating 
large-scale plankton datasets (as ZooScan98) is expensive in terms of time and resources, our experiments show 
that the usage of in-domain pre-training datasets provides no benefit with respect to ImageNet.

In the next experiments, we adopt current state-of-the-art architectures (ViT, Swin, BEiT, and ConvNeXt, pre-
trained on ImageNet22K). The pre-trained models are fine-tuned on the target plankton datasets, providing an 
average accuracy boost of 2% with respect to the ResNet50 model pre-trained on ImageNet22K. As a benchmark, 
we compare the obtained results to recent state-of-the-art plankton image classification works, where ensembles 
of CNN models (up to 11) are used for the task at hand. Our results show that our single BEiT model achieves 
better performance than state-of-the-art on the Kaggle and the ZooScan datasets, with similar performance 
 to21 for the WHOI dataset. Following the current trend in plankton image classification, we further design and 
test an average ensemble of the three transformers and the ConvNeXt. The designed ensemble brings a slight 
improvement with respect to the ImageNet-22K pre-trained BEiT. However, it should be noted that such a boost 
in accuracy ( 0.6% on average) is counterbalanced by a significant increase in the computational resources and 
the training/inference time for the final model.

Data and code availability
All the code needed to reproduce our results is open-source and available at https:// github. com/ Malga- Vision/ 
plank ton_ trans fer. The target plankton datasets are available at:  Kaggle388;  ZooScan2045 and  WHOI2222. The 
code for downloading the extended version is included in the shared repository.

Table 5.  The average number of images processed by our models in one second at training and inference time. 
The values have been evaluated based on 1000 iterations. The higher the value, the faster the processing time.

Model BEiT ViT SWIN ConvNeXt Ensemble

Training (imgs/s) ↑ 20.32 21.72 32.57 13.16 4.95

Inference (imgs/s) ↑ 65.68 70.26 102.70 52.88 17.21

https://github.com/Malga-Vision/plankton_transfer
https://github.com/Malga-Vision/plankton_transfer
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