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Automatic identification 
of medically important mosquitoes 
using embedded learning 
approach‑based image‑retrieval 
system
Veerayuth Kittichai 1, Morakot Kaewthamasorn 2, Yudthana Samung 3, Rangsan Jomtarak 4, 
Kaung Myat Naing 5, Teerawat Tongloy 5, Santhad Chuwongin 5 & Siridech Boonsang 6*

Mosquito‑borne diseases such as dengue fever and malaria are the top 10 leading causes of death in 
low‑income countries. Control measure for the mosquito population plays an essential role in the fight 
against the disease. Currently, several intervention strategies; chemical‑, biological‑, mechanical‑ 
and environmental methods remain under development and need further improvement in their 
effectiveness. Although, a conventional entomological surveillance, required a microscope and 
taxonomic key for identification by professionals, is a key strategy to evaluate the population growth 
of these mosquitoes, these techniques are tedious, time‑consuming, labor‑intensive, and reliant 
on skillful and well‑trained personnel. Here, we proposed an automatic screening, namely the deep 
metric learning approach and its inference under the image‑retrieval process with Euclidean distance‑
based similarity. We aimed to develop the optimized model to find suitable miners and suggested 
the robustness of the proposed model by evaluating it with unseen data under a 20‑returned image 
system. During the model development, well‑trained ResNet34 are outstanding and no performance 
difference when comparing five data miners that showed up to 98% in its precision even after 
testing the model with both image sources: stereomicroscope and mobile phone cameras. The 
robustness of the proposed—trained model was tested with secondary unseen data which showed 
different environmental factors such as lighting, image scales, background colors and zoom levels. 
Nevertheless, our proposed neural network still has great performance with greater than 95% for 
sensitivity and precision, respectively. Also, the area under the ROC curve given the learning system 
seems to be practical and empirical with its value greater than 0.960. The results of the study may be 
used by public health authorities to locate mosquito vectors nearby. If used in the field, our research 
tool in particular is believed to accurately represent a real‑world scenario.

Mosquito-borne diseases such as dengue fever, zika, and malaria are a public health concern, which currently 
being top 10 leading causes of death in low-income countries, partly due to a healthcare service disruption 
during the COVID-19  outbreak1. These diseases are prevalent in tropical and subtropical areas due to human 
mobility: globalization, labor movement, public transport, and climate changes. The disease transmission and 
spread throughout the region are associated with the factorized population density and blood-feeding and seeking 
behaviors of mosquito  vectors2. Disease prevention-based automatic device has been encouraged to develop and 
deploy to control strategy in the entomological  field3. A conventional microscopic identification with a consult of 
taxonomic key is accepted as a gold  standard4, however, it is time-consuming, labor-intensive and needs highly 
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skilled and trained personnel. Effectively surveillance based on a simple and reliable identification method for 
mosquito species is required for further control strategy.

Conventional observation under a stereomicroscope, the intact mosquito identification-based taxonomy 
key under stereomicroscope taxonomy by skilled and experienced entomologists. This technique is normally 
used to distinguish the intact mosquito species by determining various external characteristics; including (1) 
proboscis and palpi based color and pattern of the head, (2) body integument and abdomen, (3) wing patterns, 
(4) mesonotum of thorax and (5) femur and tarsi of  legs5,6. Several studies are relied on the conventional obser-
vation with the intact mosquito identification-based taxonomy key by skilled and experienced  entomologists7,8. 
The method mentioned is prone to errors caused by humans and external factors such as variation of specimens 
from distinct geographical  range8. Unfortunately, un-intact mosquito samples may be found during the field-
caught and/ or preservation  processes9,10. These damaged- and incomplete morphological characteristics and 
decolorization are consequently causing a lack of key elements necessary for species identification by using the 
standard taxonomic key. This is because the deformity of the morphological features of the mosquitoes limits 
the precision of its  classification11. As the problem proposed as above lead us to acquire a need for an effective 
method to identification with accuracy and challenging with wide range species of the mosquito vectors to guide 
the effective intervention strategy. Although high throughput techniques (such as PCR, Real-Time PCR, and 
DNA barcoding) have been used to replace conventional  procedures12–14, the following techniques suffer from 
many drawbacks including the leisurely-speed of the detection and the lack of qualified molecular biologists. 
Alternatively, a rapid approach to enhancing the species identification of the mosquito vector is needed.

Automatic/ computerized assisting tools for species classification of the mosquito vector have been intensively 
 studied9,11,15,16. Advancing computerized devices can be represented by several major classification methods 
such as artificial intelligence (AI), machine learning (ML), and deep learning (DL) based convolutional neural 
networks (CNNs). Previously, Rustam et al.17 reported that using a Machine Learning (ETC model) and Deep 
Learning (VGG16) facilitate to classify two medically important mosquitoes, Aedes and Culex species. Those 
species are mainly distributed in tropical area.

Several versions of ML with the dimensionality reduction have been widely studied. For instance, gene expres-
sion data obtained from malaria mosquito vector dataset can be managed with popular feature extraction such as 
independent component analysis (ICA)18,19, hybrid techniques between principal component analysis (PCA) and 
 ICA20 and ANOVA-ant colony optimization  approach21. The extracted feature was classified by machine learning 
such as support vector machine (SVM), k nearest neighbors (KNN) and Decision Tree classifiers. As a result, the 
technique showed an improved classification accuracy and cost effective to find the relationship among relevant 
genes, which can be useful for clinicians in decision making. CNN-classification was successfully conducted and 
developed by using several types of input such as image characteristics and a wing-beat for  insects22–24. Previous 
studies proposed that vector population density could be determined by mosquito  data25–28; including the eggs 
and the body and wings which have been investigated to classify cryptic species of malaria  mosquito4,29. The 
wing-morphometric method, however, experiences several barriers; it is time-consuming to require skills and 
expertise while preparing and mounting wing samples onto slide-glasses. Hence, the use of the whole body for 
the characteristic-feature analysis is preferably as it is the closet condition and the most realistic object, with no 
special equipment for processing needed.

Since an object classification problem may be affected by class imbalance and data scarcity, deep metric 
learning (DML)-based semantic distance of data points including the content-based image retrieval (CBIR) 
analyses could give a better alternative. Previous studies have achieved to implement the DML and dimensional 
reduction to classify the medical insect as  effective30,31. A malaria mosquito species, namely Anopheles arabiensis, 
was observed by using Mid-infrared spectroscopy (MIRS) as dataset that was learnt by dimensionality reduction 
and transfer learning techniques. The study showed high accuracy to ~ 98% accuracy for predicting mosquito 
age classes, representing dynamic population of the mosquito vector specific to a  region30. In addition, Merchan 
and colleges (2023) introduced the use of Deep Metric Learning models based two neural network backbones; 
Siamese neural networks (SNNs) and Triplet neural networks (TNNs), to classify malaria mosquito species 
and tick species. High performance of the trained model obtained that showed upto 99% and 93% accuracy for 
identify Culicidae and Ixodidae’s families,  respectively31. The CBIR demonstrates the use of a query image on a 
train  database32–35. The technique relies on the functions of embedding losses to embed feature-vectors onto a 
 space36. Although slow convergence from a large proportion of data triplet-wise is encountered with pairwise or 
triplet-wise losses, the Pytorch Triplet-Margin loss was shown to be the proper alternative one in DML  works37,38. 
Main component of the CBIR is the image’s embedding as such transformation of images from Euclidean to 
multidimensional representatives, lower-dimensional manifolds, giving potential retrieval systems more accu-
rate and  faster35,39,40. The feature labels and model optimization seem to be a key component for image-retrieval 
tasks. Nowadays, DML technique is widely used in medical  research39–41. The clinical applications of CBIR 
were potentially assisted technicians by observing content-based pathological images and leading diagnosis by 
searching referent specimens from the compiling  database42–46. The CBIR also reduced an inefficient way for 
clinicians to spend a lot of time seeking textbook/ taxonomic key/ guidance for confirmed tasks. Popularly-CBIR 
application was used to deal with multi-sources of chest X-ray image for the COVID-19  pandemic35. Previously, 
CBIR implementation for classifying several histological data yielded recall at 84.04% in top-1 recommendation 
(Recall@1)34,47. The interpretation of digital images provided a timely diagnosis depending on the image retrieval 
system, specifically, for both physician/ radiologist examination and computer-aided diagnosis (CAD). Concep-
tually, the diagnosis of the similar/ambiguous images can provide a most probable answer for the queried image. 
Although traditional-DML has been studied for the medical area, no such development of the image retrieval 
system has been reported in the entomological field.

As several achievements studied using DML reported as above, it interests us to implement it to our work. 
This is because the model used aims to extract and to learn object features as multidimensional features vectors 
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(representing the distance and locations), assigned in a neighboring space that have similar features due to the 
distances between them are  minimized48. Considering DL attempts to define characteristics of each object’s class 
based on percentage of probability, nevertheless, DML learns to measure the similarities between object within 
any class by generating an embedding in in low-dimensional space where similar features of any object locate 
closer. Here may be the concept learning to support excellent result obtained and give the result better beyond 
deep learning approaches. The aims of the present study were to develop a simple and user-friendly automatic 
identification tool for medically important mosquitoes. We generated: (i) two datasets; (1) captured by using a 
stereomicroscope and (2) the other one used a microscope within a mobile phone. (ii) trained-model compari-
son for identifying the gender and also species of field-caught mosquito vectors was investigated whether the 
trained model with stereomicroscopic images to classify the test set from mobile phone images and vice versa. 
(iii) the combination of both different-image sources was trained and tested by using unknown slitted from the 
same sources depending on k-neighbors neighbors for 20-image retrieval. All model developments were trained 
based on the Resnet-34 as a neural network backbone and the embedding feature vector relied on the triplet-
margin Loss as feature-vector embedding function. The findings of the study could aid public health personnel 
in identifying mosquito vectors in the surrounding area. In particular, the tool from our research is thought to 
reflect an actual scenario if used in the field.

Materials and methods
Ethics statement. This research design was approved by the Animal Research Ethics Committee, King 
Mongkut’s Institute of Technology Ladkrabang with ACUC-KMITL-RES/2021/003 (This is a condition of Thai-
land research fund regulations). This study was carried out in accordance with ARRIVE guidelines (https:// arriv 
eguid elines. org).

Mosquito datasets. In the study, archived mosquito species identified by expert entomologists were 
 used16,49,50. Images were photographed by using two-independent equipment including a camera-adhere mobile 
phone and a Nikon SMZ745 microscope mounted to a Nikon DS series digital camera (Table 1). Two-different 
datasets were constructed in order to train a deep neural network model to come forward to a realistic situation 
when applying the model-embedded mobile phone application. A non-mosquito species, namely Musca domes-
tica, was included in the study which was used to confirm that the trained-model could distinguish the mosquito 
out from non-mosquito.

A total of 7682 images, of which 4709 and 2973 images were collected from the microscope (Fig. 1a) and the 
mobile phone (Fig. 1b), respectively. Both two-datasets as described above were randomly assigned into train-
ing/ validation (90%) and training sets (10%) (Table 1). There were fifteen-classes of animal species including 
field-captured mosquitoes that had deformations in their body parts and had lost their characteristics leading 
to the variety of the datasets. A mainstream of image collection is mainly taken side-, upper-, and ventral views 
for training the neural network  model51. The pixel densities of captured images is 2268 × 4032 and 2592 × 1944 
pixels obtained from the mobile phone- and the stereomicroscopic images, respectively. On the basis of data 
from previous studies, it confirms the concept that the size of image resolution for machine learning is at least 
320 × 320  pixels52,53. Although the use of different image resolutions was used to learn the neural network model, 
as seen above, their pixel densities were high enough for further training and evaluation of the proposed neural 
network models.

The assigned insect-specific characteristics were used to train/ validate a hybrid two-stage model based on a 
single deep-learning model of object detection and another, deep metric learning (DML), respectively. The data-
set used is assigned for learning the You Only Look Once (YOLO) neural network in order to localize and also 
classify an animal species. These image sets of each class were labeled on the basis of a rectangular box (ground-
truth labeling) and normally limited their potential environment as the region of interest (ROI). A threshold of 
probability was the confidential value obtained from this equation of Confidence = Pr(Object) + IOUTruthPred. 
Species-specific mosquitoes were corrected depending on the bounding box and were cropped to be a single 
mosquito per image by using our in-house CiRA CORE program. The ground truth conducted by entomologists 
under the CiRA CORE platform were publicly available from the GitHub repository with the url: https:// git. cira- 
lab. com/ cira/ cira- core, based on the species of relative mosquito. The cropped images were then used as input 
for classifying their relative genus, species and gender by using deep metric learning networks.

Experimental design for classification based DML. In this section, we have set three experiments 
including (1) miner comparison in order to find the best data mining procedure, (2) comparison trained-models 
of differential image sources, and (3) testing the trained model with unseen data collecting from another field 
study, which help confirm the model performance toward the robustness in real situation as follow;

(I) Data miner comparison:

We firstly study by using the most suitable model, Resnet-3454 as the neural network backbone. Comparison 
of the miners, which is important to define the positive- and negative-samples before embedding the feature 
vector onto 2-dimensional space. We applied all five-mines including AngularMiner, DistanceWeightedMiner, 
MultiSimilarityMiner, PairMarginMiner and TripletMarginMiner,  respectively36,37,55.

 (II) Learning conditions with different-image sources:

https://arriveguidelines.org
https://arriveguidelines.org
https://git.cira-lab.com/cira/cira-core
https://git.cira-lab.com/cira/cira-core


4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10609  | https://doi.org/10.1038/s41598-023-37574-3

www.nature.com/scientificreports/

We then performed three-independent model training based on the optimized learning condition as described 
above. We set for three vectorized features extraction and independent learning conditions depending on types 
of image sources such as mobile phone datasets, stereomicroscope dataset and the combination of both sources 
(Supplementary Fig. S1). A quality performance for well-trained models would be evaluated by using the testing 
set which randomly split from both sources as described above.

 (III) Robust trained-model with independently unseen dataset:

Table 1.  Sample size of image set used.

No Insect species Index

Mobile phone Stereomicroscope Combination

Total Train Test Total Train Test Total Train Test

1

Non-mosquito (Musca domestica)

mNM 254 229 25 – – – 254 229 25

2
Anopheles dirus, female

Adir_f 87 78 9 123 111 12 210 189 21

3

Anopheles dirus, male

Adir_m 857 771 86 151 136 15 1008 907 101

4

Aedes aegypti, female

Aeg_f 175 157 18 141 127 14 316 284 32

5

Aedes aegypti, male

Aeg_m 151 136 15 263 237 26 414 373 41

6

Aedes albopictus, female

Alb_f 1131 1018 113 314 283 31 1445 1301 144

7
Aedes albopictus, male

Alb_m 563 507 56 101 91 10 664 598 66

8
Armigeres subalbatus, female

Asub_f 617 555 62 283 255 28 900 810 90

9

Culex quinquefasciatus, female

Cqui_f 316 284 32 119 107 12 435 391 44

10

Culex quinquefasciatus, male

Cqui_m 558 502 56 154 139 15 712 641 71

11
Culex gelidus, female

Cgel_f – – – 341 307 34 341 307 34

12
Culex vishnui, female

Cvis_f – – – 229 206 23 229 206 23

13
Mansonia annularis, female

Mann_f – – – 150 135 15 150 135 15

14
Mansonia Indiana, female

Mind_f – – – 438 394 44 438 394 44

15
Mansonia uniformis, female

Muni_f – – – 166 149 17 166 149 17

Total = 7682 4709 4237 472 2973 2677 296 7682 6914 768
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Figure 1.  Dataset collection. Image-sets used were captured by a stereomicroscope and mobile phone cameras. 
Two-different sources were used including: (a) archived mosquito samples were captured by a stereomicroscope, 
(b) the same archived samples as described above were captured by mobile phone’s cameras. Those archived 
samples obtained were collected from four-different provinces in  Thailand16. (c) archived mosquito samples 
obtained from Faculty of Veterinary Science, Chulalongkorn  University49,50, were also captured by both 
stereomicroscope and mobile phone’s cameras.
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This section was designed for measuring the robustness of the best trained-model with optimized learning 
parameters. The quality performance of it was assigned whether the proposed neural network can be used to 
identify the independently unseen images collected from one another source of samples. The sample were previ-
ously prepared with sticky paper and set with a pin (Fig. 1c). Genus and gender levels of each animal sample were 
identified based on standard taxonomic key before capturing its image by experts who worked at faculty of Vet-
erinary Science, Chulalongkorn University. The captured images with varied pixel resolutions were obtained from 
three-different mobile phone cameras. An individual sample was placed on a gray colored background and used 
2× levels of zoom in. Of which, 716 images from four genus and were used. These images were rescaled to 32 × 32 
pixels before using to be the query image in our CBIR process with 20-returned images from the database. All 
seven classes were divided into 10% for testing and the rest, 90% for pseudo-training data. The pseudo-training 
data were assigned and combined with previous trained data, but the new combination data won’t be trained 
with any pre-trained model, nevertheless, the CBIR-based prediction has done by previous optimized model.

Development of deep neural networks. Object detection. The objective of this part was to find the 
suitable model for classification and localization of every single mosquito by using Yolo tiny-v4 neural network 
models from the in-house CiRA CORE platform (https:// git. cira- lab. com/ cira/ cira- core). The one-stage model 
applied for helping us detection and collection based the export-crop module to be a single-mosquito per image. 
To prevent overfitting with feature variation of each class, data augmentation conditions were applied before 
model training as follows;

(1) four-degree rotational angle increment as 45 steps at rotational angles (every 8 degrees) between minimum 
and maximum [− 180 to 180],

(2) ten-percent improvement in brightness/contrast condition for every 0.2 stage (with a variance of ± 25 
percent) between 0.4 and 1.2,

(3) nine-steps of Gaussian blur conditions were adjusted for nine steps at each step, and
(4) nine-steps Gaussian noise conditions were corrected for ten steps at each step.

For model training and evaluation, it was run on an Nvidia RTX2070 GPU platform. Learning rates were 
set at 0.001, which was assumed by the trained weight, reaching optimal accuracy versus loss. For the YOLO 
tiny-v4, the qualified models were trained for at least 100,000 epochs to record the learned parameters. The true 
positive value was considered by the likelihood of a threshold greater than and equal to 50%, nevertheless, the 
false positive values from the classification result are unexpected in medical  diagnosis56,57.

Deep metric learning model. Before training, all three datasets were assigned including of the 1st, 2nd, and 
3rd data are the mobile phone’s camera-captured images, the stereomicroscopes captured images and the com-
bination data mentioned as above, respectively. The architecture of the training model of deep metric learning 
(DML) used is the Resnet-34 neural network under which default parameters were selected including the Cross-
entropy loss function for classification, miner function, sampling strategy, and triplet-margin loss for embedding 
vector onto space, respectively (Fig. 2a,b). All processes including training, inference and evaluation of DML 
model were described in the pseudocode provided (Supplementary Fig. S2).

In this study, we applied the triplet margin Loss consisting of positive-, negative- and an anchor sample 
which was prepared from the miner function selected. The margin was calculated for identifying the positive 
or the opposite one as the negative. The positive sample locates within the border zone of the anchor, but the 
negative sample is vice versa. This distance value between anchor and positive  (dap) pair was small and less than 
a calculated margin. Nonetheless, the distance value between anchor and negative pair  (dan) was greater than 
the margin. The formula of the triplet margin loss was shown as follows:

where the desired difference  (dap) and  (dan), margin (m) = 0.1 was used as default in this study.
The DML model was designed into the three consecutive steps: including backbone, embedding and classifier 

parts. The pre-trained models on ImageNet, as backbone neural networks of the Resnet-34 models (Fig. 2c), 
were used as feature extractors in model training. Once the last feature layer was done, the important feature was 
transformed to the embedding space. During the experiment, the 1000-class output layer with a 64-dimensional 
embedding layer was set as the model embedder. Then, the embedding space classification was carried on by 
using k-mean clustering with k = 20, accompanying the ground truth label of the training dataset. According to 
the loss function within this step, the embedded layers kept the similar query input image to be closer and the 
dissimilar one to be far apart from each  other58. At the end of the embedding layer, the last classifier layer was 
applied to support the trainer. Within an output, therefore, the dimensional vectors were given to the desired 
dimensions of the classifier as 20 groups.

The mining and sampling process, other two-main parts of the metric learning architecture, were considered 
to find the best samples while training. The Multi-Similarity Miner is used in this study, facilitating the produc-
tion of the best pair mining candidates based on pair-based loss. Besides, it helps produce the optimal triplet 
mining by using the triplet loss during the model training. The loss will then be calculated based on those pairs or 
triplets. The Multi-Similarity Miner calculated the loss values of either pair or triplet values by setting the default 
epsilon of 0.1 to select the positive pairs or negative  pairs55. This study, the M-Per-Class Sampler with the batch 
size of 16 and the number of samples per class is  859. Training split was done at the 241 embedding batches due 

(1)Ltriplet =
[

dap − dan +m
]

+

https://git.cira-lab.com/cira/cira-core
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to the length of iteration is 7706 per epoch. Within the training process the sampling strategy is used to solve 
the random sampling problem, causing slow convergence and less performance of the model.

All five data miners studied come into two-steps including: (1) subset batch miners as for taking a batch of 
N embedding data and returned a subset n data to be used by a tuple miner or a loss function. (2) Tuple miners 
would take a batch of n embedding data and return k pairs/triplets to be used for calculating the loss function. 
Almost current miners are tuple miners that provides output as anchors, positives and negatives.

The combination models the DML mentioned above were trained on the Visual Studio Code version4, respec-
tively. We trained the model based on Ubuntu version 16.04, 16 GB RAM, and NVIDIA GeForce RTX2070 
graphic processor unit (GPU). All DML models obtained from open source PyTorch Metric Learning  Library59. 
Training was performed on the visual studio code and the model deployment is under NVIDIA GeForce 
RTX2070 GPU. Each experiment consisted of 200 epochs. The best-trained models with their accuracy were 
collected automatically. Adam optimizer with the default parameters: β1 = 0.9, β2 = 0.999, weight decay = 0.001, 
epsilon =  10−8 and learning rate (0.00001 for backbone and 0.0001 for embedding and classifier) was applied. The 
output with 64-dimensional vectors embedded to be classified as a 20-dimensional feature vector.

Evaluation of model performance. The trained models were evaluated for their quality performances 
by using an inference as described below. We presented these sections in two main parts: including inference 
and evaluation.

Inference. The inference of the trained-DML model was performed for known-image retrieval and clustering 
analysis against query images. Aligned with those, the well-trained model is also associated with the inference 
process since the evaluation of the error value obtained by optimizing the weight of the dataset during the train-
ing. Unlike the training process, the inference does not re-evaluate the output results. Likewise, the model train-
ing, the inference model employed the loaded-trained model and the match finder function, to do the matching 
pair on input embedding space by computing pairwise distances by using the Cosine Similarity function within 
its threshold of 0.5 in the testing phase. The k-nearest neighbor classifier (kNN) was finally facilitated to recon-
struct the trained-dataset index and be beneficial for the similarity search based on the chosen distance metric. 
In this study, the inference is established on the Pytorch  library59.

Model evaluation. The evaluation of the well-trained DML model is performed based on the nearest neighbor-
hood image under the image-retrieval process against the query input. We set kNN = 20, the 20-nearest images 
against the query image returned. The quality performance of the proposed models was evaluated by several 
statistical parameters including: precision, sensitivity, accuracy and  specificity60. The formulas for these param-
eters were shown as:

Figure 2.  Architecture for learning approach. (a) Training phase were assigned by using three data, namely 
mobile phone, stereomicroscope and combination, respectively. (b) The testing phase with a query image based 
the content-based image retrieval was shown. (c) Resnet-3454, network architectures for Resnet-34 residual with 
34 parameter layers (3.6 billion FLOPS), due to shortcuts increase dimensions within the architecture.
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where Tp is the number of true positive classifications, Tn is the number of true negatives, Fp is the number of 
false positive classifications, Fn is the number of false negatives.

All statistics obtained from the confusion matrix are used to calculate the performances of the proposed 
model as described above. The predictions scores of each class are obtained from the number of corrected images 
retrieved from the nearest images from trained-database, converting to percent (%). The given class with the 
highest score would be considered as the predicted class of the query image. Then, the number of corrected 
images of the testing dataset were collected for constructing the confusion matrix table.

In addition, the performance of the proposed model was assessed by calculating the area under the receiver 
operating curve (ROC) with 95% confidence intervals (CIs) and the area under the curve (AUC) to determine 
the accuracy of the model’s using python. The ROC curve was plotted on the basis of the likelihood value of the 
5% increment relative threshold. The 95 percent CIs is measured using a non-parametric bootstrap approach of 
1000-fold image re-sampling.

Results
In this study we have designed our experiments to find the optimal training conditions for model learning includ-
ing (1) using different sources and location of datasets in order to study the model as robustness, (2) integrating 
object detection and DML and the CBIR process, and (3) optimizing the training condition for DML. Within 
the DML we find our best data Miner from the comparison designed. The hybrid two-stage neural network 
model was developed based on independent-two algorithms, namely, object detection and another, deep metric 
learning. The best-selected Yolo tiny-v4 and Resnet-34 models were optimized under the in-house CiRA CORE 
platform and another under Pytorch program, respectively. In this study, to solve the conventional classification 
problem, the deep metric learning model was employed and trained with a number of dangerous-mosquito 
species as follows:

Data miner comparison. The data miner functions as an empirical section in the DML architecture by 
mining the positive- and negative pair sample and also calculates adjusted distance of those between those to 
anchor during the optimization process. Hence, the learning process performed by using a suitable miner could 
result in the best-selected trained models for further implementation.

In this section we did a comparison of all five miners to find the most effective one including Angular Miner, 
Distance Weighted Miner, Multi Similarity Miner, Pair Margin Miner and Triplet Margin Miner, respectively 
(Table 2). Overall, all trained models with a single five-miner used showed similarly high-performance ranking 
of 98% to 100% for precision and sensitivity, and 99% to 100% of specificity and accuracy, respectively. Besides, 
optimized training models can be shown based on the plateau region of the training accuracy and validation 
curves which infer the model learning achievable with training data well, suggesting to avoid overfitting condition 
and is able to make accurate prediction based unseen data testing (Fig. 3). The result of dimensional reduction 

(2)Precision =
Tp

Tp+ Fp

(3)Sensitivity(Recall) =
Tp

Tp+ Fn

(4)Accuracy =
Tp+ Tn

Tp+ Fp+ Tn+ Fn

(5)Specificity =
Tn

Fp+ Tn

(6)F1score = 2×
recall × precision

recall + precision

Table 2.  Performance analysis of miner comparison based on 14 classes using image from stereomicroscope. 
The miners used to include Angular Miner, Distance Weighted Miner, Multi Similarity Miner, Pair Margin 
Miner and Triplet Margin Miner, respectively.

Types of miners Precision (%) Sensitivity (%) Specificity (%) Accuracy (%)

Angular miner 100.00 100.00 100.00 100.00

Distance weighted miner 100.00 100.00 100.00 100.00

Multi similarity miner 99.66 99.66 99.97 99.95

Pair margin miner 99.66 99.66 99.97 99.95

Triplet margin miner 98.99 98.99 99.92 99.86



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10609  | https://doi.org/10.1038/s41598-023-37574-3

www.nature.com/scientificreports/

as UMAP representation with clear clustering data points within a relative class (Fig. 4). These helps confirm 
well-trained models for further predicting the testing data.

Considering species-specific evaluation, miss identification is found for both genders of Aedes aegypti, Aedes 
albopictus, Culex gelidus and Culex vishnui, respectively (Table 3). This may be due to testing the trained model 
with damaged and broken field caught samples leading to similar feature appearance between genders of Aedes 
genus and between species of the Culex genus. Nevertheless, the small proportion of an error classification found 
is under employed to the Triplet Margin Miner with at least 83.33% of precision for identifying male of Aedes 
albopictus (Table 4). Although the species is important for growing the mosquito population density, it is not 

Figure 3.  Training accuracy for five Miners comparison. The plots of training accuracy and validation accuracy 
of each data Miner are represented by a smoothed line and a dash line, respectively.

Figure 4.  UMAPs for five Miners comparison. All five UMAP represented well-clustering representation of 
the dimensional reduction based five-data miner based trained-DML models. All data miners used comprise of 
Angular Miner, Distance Weighted Miner, Multi Similarity Miner, Pair Margin Miner and Triplet Margin Miner, 
respectively. Each class of mosquito species was an assigned by a single colored datapoint.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10609  | https://doi.org/10.1038/s41598-023-37574-3

www.nature.com/scientificreports/

crucial to transmit any mosquito-borne pathogens due to it having no blood-feeding in male. Therefore, the rest 
of the four-miners suggested the most suitable selectable-miners.

In this study, deep metric learning with a simple ResNet architecture (Fig. 2) can potentially outperform the 
classical cross-entropy classification problem using the same ResNet network due to several reasons:

(1) Focus on Relative Distance: Metric learning focuses on learning the relative distances between different 
classes, rather than directly classifying them. This way, the model learns to discriminate better between 
classes, which can lead to better performance, particularly in tasks where inter-class variance is significant.

(2) Better Generalization: Metric learning optimizes the model to ensure that the learned embeddings of the 
samples from the same class are closer to each other and far apart from samples of different classes. This 
approach can result in better generalization to unseen data, as the model is not focusing on the absolute 
features of each class but the relative features across different classes.

(3) Beneficial for Large and Imbalanced Datasets: Deep metric learning models, such as those utilizing triplet 
loss or contrastive loss, often perform better with large and imbalanced datasets, which can be challenging 
for traditional cross-entropy classification models and

Table 3.  Performance analysis of miner comparison based on 14 classes. Comparison of data miners varied 
including AM abbreviates for Angular Miner; DWM for Distance Weighted Miner; MSM for Multi Similarity 
Miner; PMM for Pair Margin Miner and TMM for Triplet Margin Miner, respectively.

No Species

Sensitivity (%) Precision (%)

AM DWM MSM PMM TMM AM DWM MSM PMM TMM

1 sAdir_f 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

2 sAdir_m 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3 sAeg_f 100.00 100.00 100.00 92.86 100.00 100.00 100.00 100.00 100.00 93.33

4 sAeg_m 100.00 100.00 100.00 100.00 96.15 100.00 100.00 100.00 96.30 100.00

5 sAlb_f 100.00 100.00 100.00 100.00 93.55 100.00 100.00 100.00 100.00 100.00

6 sAlb_m 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 83.33

7 sAsub_f 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

8 sCqui_f 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

9 sCqui_m 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 sCgel_f 100.00 100.00 97.06 100.00 100.00 100.00 100.00 100.00 100.00 100.00

11 sCvis_f 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.83 100.00 100.00

12 sMann_f 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

13 sMind_f 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

14 sMuni_f 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Average 100.00 100.00 99.66 99.66 98.99 100.00 100.00 99.66 99.66 98.99

Table 4.  Confusion matrix for testing dataset. The kNN used is 20 returned images from database. The trained 
model-based Angular Miner. Significant values are in bold.

Actual class

Classes sAdir_f sAdir_m sAeg_f sAeg_m sAlb_f sAlb_m sAsub_f sCqui_f sCqui_m sCgel_f sCvis_f sMann_f sMind_f sMuni_f

Predictive class

 sAdir_f 12 0 0 0 0 0 0 0 0 0 0 0 0 0

 sAdir_m 0 15 0 0 0 0 0 0 0 0 0 0 0 0

 sAeg_f 0 0 14 0 0 0 0 0 0 0 0 0 0 0

 sAeg_m 0 0 0 26 0 0 0 0 0 0 0 0 0 0

 sAlb_f 0 0 0 0 31 0 0 0 0 0 0 0 0 0

 sAlb_m 0 0 0 0 0 10 0 0 0 0 0 0 0 0

 sAsub_f 0 0 0 0 0 0 28 0 0 0 0 0 0 0

 sCqui_f 0 0 0 0 0 0 0 12 0 0 0 0 0 0

 sCqui_m 0 0 0 0 0 0 0 0 15 0 0 0 0 0

 sCgel_f 0 0 0 0 0 0 0 0 0 34 0 0 0 0

 sCvis_f 0 0 0 0 0 0 0 0 0 0 23 0 0 0

 sMann_f 0 0 0 0 0 0 0 0 0 0 0 15 0 0

 sMind_f 0 0 0 0 0 0 0 0 0 0 0 0 44 0

 sMuni_f 0 0 0 0 0 0 0 0 0 0 0 0 0 17



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10609  | https://doi.org/10.1038/s41598-023-37574-3

www.nature.com/scientificreports/

(4) Handling New Classes: Metric learning models can handle new classes better than traditional classification 
models. With a metric learning model, if a new class is added, it doesn’t necessarily require retraining of 
the entire model as the model is based on distance measures. On the contrary, a traditional classification 
model would require retraining from scratch or significant fine-tuning if a new class is introduced.

Learning conditions with different‑image sources. Since many suitable miners gave good enough 
results, we selected the Multi-Similarity Miner as a default parameter for developing the model with varied 
image sources including the stereo-captured images for 14-independent classes, the mobile phone captured 
images for 10-independent classes and the combination of both image sources for 15-independent classes as 
above (Fig. 1a, b). All three plots of training loss per iteration shown the optimized model using ResNet-34 
backbone (Supplementary Fig. S3). Only the plot of the stereomicroscope dataset learnt model showed rarely 
fluctuated with large number of iterations, but the best trained weight file was automatically saved. Also, all 
dataset were combined for model training which results in more compact clustering analysis (Fig.  5) which 
inferring saturated and optimal condition observed. This is the advantage of the combination data, excepting for 
the separable first two data mentioned as above.

The trained-models with all three-image sources provided a high degree of greater than 99% for precision, 
sensitivity, specificity and accuracy, respectively (Fig. 5; Table 5). The UMAP results obtained from model learn-
ing with three different datasets showed clear clustering analysis based the best epoch when comparing to the 
first training epoch. In addition, data source wise comparison still showed well clustering among all classes. 
Interestingly, the combination sources-trained model rarely compact clustering than any others specifically in the 
orange cluster representing for male Ae. albopictus, the light-blue cluster for male Ae. aegypti and the blue cluster 
for male An. dirus, respectively. The rationale of supporting the presented result may be due to associate with a 
large amount of sample size used, giving more compact clusters belonging to the criteria to improve the model 
learning of supervised learning models (Fig. 5). Animal species-wise comparison of the trained models showed 
greatest performance when training the model with the stereomicroscopic image upto 99.66% for sensitivity and 
precision, respectively. Nevertheless, the trained model with the mobile phone images (Anopheles dirus, female 

Figure 5.  UMAPs for different image sources. The first and the best UMAP were compared. Above, middle 
and below ones are the plot of trained-models with stereomicroscope-, mobile phone-, and the combinations, 
respectively. Each class of mosquito species was an assigned by a single colored datapoint.

Table 5.  Performance analysis of trained Resnet-34 model to test the differential images collecting from 
stereomicroscope, mobile phone and the combination of both sources.

Sources of dataset Precision (%) Sensitivity (%) Specificity (%) Accuracy (%)

Stereomicroscope 99.66 99.66 99.97 99.95

Mobile phone 99.15 99.15 99.91 99.83

Combination 99.22 99.22 99.94 99.90
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and Aedes aegypti, female) gave lower than 90% of both sensitivity and precision (Tables 6, 7) that may be due to 
different sample size and also their quality of captured images used affected learning accuracy of the model used. 
Interestingly, the trained model with the combination of two-image sources showed an empirical performance 
with greater than 90% and 95% for sensitivity and precision, respectively (Table 6). Previous publication indi-
cated that combination of multiple-data sources plays a role as exploring the possibilities of using the model to 
improve future data collection quality. Also, scalable multiple data for model learning significantly highlights the 
cost-effective monitoring of disease vectors, especially in the context of the recent emergence and re-emergence 
of mosquito-borne diseases  worldwide61,62. As a result, combination also increase the clustering analysis in 
UMAP clear and compact as shown in Fig. 5. Our contribution is to develop and implement our deep metric 
learning approaches to classify on mosquito populations in multiple regions in Thailand by using the combined 
data, which is comparable to an augmented information. Hopefully, a framework provides the approaches to 
predict region specific mosquito species, which may be applied to other regions in tropical area near Thailand.

Data combination from different sources performed in order to increase variability of data and see this varia-
tion of them would have no affection to feature learning during cross-testing of the proposed model. In addition, 
the combination of different sources of data could technically improve the classification and refinement of the 
deep learning  method61. Hence, increasing data volume is unnecessary.

Although the damaged samples with loosen scales and discoloration which was specifically undistinguishable 
by naked-eye, were used, the trained model can also discriminate with small amounts of misidentification. There 

Table 6.  Performance analysis of trained Resnet-34 model for testing images collecting from the 
stereomicroscope, the mobile phone and the combination of both image sources.

No Species Index

Sensitivity (%) Precision

Stereo Mobile Combine Stereo Mobile Combine

1 Non-mosquito (Musca domestica) mNM – 100.00 100.00 – 100.00 100.00

2 Anopheles dirus, female Adir_f 100.00 88.89 90.48 100.00 100.00 95.00

3 Anopheles dirus, male Adir_m 100.00 100.00 99.01 100.00 100.00 100.00

4 Aedes aegypti, female Aeg_f 100.00 94.44 96.88 100.00 89.47 96.88

5 Aedes aegypti, male Aeg_m 100.00 100.00 100.00 100.00 100.00 97.62

6 Aedes albopictus, female Alb_f 100.00 100.00 98.61 100.00 100.00 100.00

7 Aedes albopictus, male Alb_m 100.00 98.21 100.00 100.00 98.21 97.06

8 Armigeres subalbatus, female Asub_f 100.00 100.00 100.00 100.00 100.00 98.90

9 Culex quinquefasciatus, female Cqui_f 100.00 100.00 100.00 100.00 96.97 100.00

10 Culex quinquefasciatus, male Cqui_m 100.00 98.21 100.00 100.00 100.00 100.00

11 Culex gelidus, female Cgel_f 97.06 – 100.00 100.00 – 100.00

12 Culex vishnui, female Cvis_f 100.00 – 100.00 95.83 – 100.00

13 Mansonia annularis, female Mann_f 100.00 – 100.00 100.00 – 100.00

14 Mansonia Indiana, female Mind_f 100.00 – 100.00 100.00 – 100.00

15 Mansonia uniformis, female Muni_f 100.00 – 100.00 100.00 – 100.00

Average 99.66 99.15 99.22 99.66 99.15 99.22

Table 7.  Performance analysis of trained Resnet-34 model for testing images collecting from the combination 
of the second sources, stereomicroscope and mobile phone cameras.

No
Genus and 
gender’s levels

Combination Stereomicroscope Mobile phone

Sensitivity 
(%)

Specificity 
(%)

Precision 
(%)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Precision 
(%)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Precision 
(%)

Accuracy 
(%)

1 Non-mosquito 
(Musca domestica) 100.00 99.87 96.67 99.88 100.00 100.00 100.00 100.00 100.00 99.81 96.67 99.82

2 Anopheles, female 89.66 99.62 89.66 99.27 100.00 99.14 84.21 99.71 76.92 99.82 90.91 99.30

3 Anopheles, male 99.04 99.86 99.04 99.76 100.00 99.71 94.74 99.72 98.84 99.79 98.84 99.65

4 Aedes, female 96.28 98.89 96.28 98.29 94.44 97.41 86.44 96.97 97.01 99.77 99.24 99.12

5 Aedes, male 99.09 99.44 96.46 99.39 94.87 99.38 94.87 98.90 100.00 99.60 97.26 99.65

6 Armigeres, female 97.96 99.59 96.97 99.39 90.63 99.70 96.67 98.90 100.00 99.40 95.65 99.47

7 Culex, female 88.89 100.00 100 98.42 89.74 99.30 97.22 97.25 84.62 100.00 100.00 98.95

8 Culex, male 98.57 99.07 90.79 99.03 80.95 99.71 94.44 98.62 98.18 98.83 90.00 98.77

9 Mansonia, female 100.00 99.73 97.44 99.76 100.00 99.30 97.44 99.45 100.00 100.00 100.00 100.00

Average 96.61 99.56 95.92 99.24 94.52 99.29 94.00 98.78 95.06 99.67 96.51 99.41
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are only two false negatives in A. dirus’s female and Ae. albopictus’s female and one false negative in A. dirus’s 
male and Ae. aegypti’s female, respectively (Suppl. Tables). At the 20 retrieved images are given comparing to 
their feature to the query image, unseen testing data. The similarity between the unseen testing image and the 
database was measured by Euclidean distance. The first left-side retrieved image is the most similar but, the sec-
ond is less similar and so on (Fig. 6). As a result, even though different learning with varied image sources, deep 
metric learning gave superior performance representing that classification problem can be solved by the DML 
model as effectively (Fig. 6). In addition, all high auROC values also supported the evaluation metrics found in 
Table 5 and those greater than and equal to 0.996 for all trained models (Supplementary Fig. S4).

We compare the performance results between the DML model with voting system (CBIR, kNN = 20 returned 
images) and the model with no voting system (kNN = 1 returned images). Several evaluation metrics were used 
to assessed the trained models including accuracy, specificity, precision, recall and F1 score, respectively (Sup-
plementary Tables S7–S9).

The model performance trained with the mobile phone dataset shows comparable results between k = 1 and 
k = 20 (Supplementary Table S7). On average, although there is contrast result between precision and recall, the 
harmonized mean (F1 score) between those metrics gives very similar values of 0.983 (k = 1) and 0.982 (k = 20). 
Surprisingly, the performance of the model with voting system using the stereomicroscope dataset provided 
higher metric values than that of non-voting system (Supplementary Table S8). The similar trend of the combi-
nation to the mobile phone dataset were analyzed (Supplementary Table S9).

Although the numbers of class labels were studied, of which, the classification power of using the proposed 
voting system can also be applied to obtained the correct answer. Comparing to the classification algorithms that 
need a large amount and class-balanced data with a unique feature for training the classification model, their 
results depending on the % probability. As a result, the CBIR system seems to be appropriated for classifying 

Figure 6.  CBIR for single- and combination testing data.
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unseen data with the small sample size, unbalancing class even the closer intra- and inter-class  variations63,64, 
for instance, the stereomicroscope data as described in Table 1.

Robustness of the trained‑model with independently unseen dataset. Our best selected neural 
network model was then used to validate its performance with unseen dataset obtained four-animal genus and 
assigned for seven classes (Table 7). All image sets used were collected by using the independent mobile phone 
camera and also the stereomicroscopic cameras, which are given the varied pixel-resolutions of the images. In 
this section, the proposed model was challenged with extremely uncontrolled environmental factors such as 
degree of lighting, image scales, background colors and zoom levels even though those factors described above 
were assigned to be controlled (Fig. 1c).

We recruited more data from different sources to determine whether the trained model can be a good enough 
to classify complexity and a flood of information in open-world image data (Fig. 7). As a result, overall qualita-
tive performance of the best model, based on the CBIR with kNN = 20 (Fig. 7), revealed an outstanding model 
with specificity for 99%, accuracy for 99%, sensitivity for 96% and precision for 95%, respectively (Table 7). Also, 
camera-wise comparison showed similar results. Here was the robustness model which presented in the CBIR 
result and the model used with no re-train with a new sample collected, assigned pseudo labels.

Although superior average performance of the proposed model for identifying the genus and gender was 
measured, true positive prediction data found less than that in previous the first data source, but the false nega-
tive data were increased, specifically for Anopheles (female), Aedes (female) and Culex (female) due to their 
potential area contained the color-pinned papers during image capturing (Suppl. Tables S4–S6). Nevertheless, 
the research result seems to be possible prediction due to uncontrolled environmental factors suggested those 
as before. In addition, although the low prediction result obtained when comparing to previous result with first 

Figure 7.  CBIR for second testing dataset.
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data source, the model still reveals the outstanding with auROC greater than 0.960 for both image data (Fig. 8), 
which supporting the learning system both practical and empirical model. Therefore, the trained model could 
help solve the classification problem of the entropy in real-world data.

Overall, the proposed model can be used to identify many mosquito vector species, such as Aedes-, Anoph-
eles- and Culex mosquito vectors, which could contribute to the control measure and employ toward the vector 
management in the realistic situation.

Discussion
In the research study result of the DML-based CBIR process showed great success for a new identification chal-
lenge for mosquitoes of public health concerns that can transmit various mosquito-borne pathogens, including 
dengue virus, ZIKA virus, West Nile virus, filaria and also malaria parasite in both animals and humans. Previ-
ously, a Machine Learning (ETC model) and Deep Learning (VGG16) were used to classify two critical disease-
spreading classes of mosquitoes, Aedes and Culex. Limitation focuses on two critical disease-spreading classes of 
mosquitoes, Aedes and Culex, and does not consider other  species17. However, our study has been investigated 
with greater number of mosquito species where distributed in Thailand. Hopefully, the proposed model would be 
challenged in several fields to gain more data training. Variation and special characteristics of the animal species 
used enables the CBIR system to operate with outstanding performance metric up to 99% for developed model 
and also greater than 95% in identifying the unseen second source of the image data. Our result revealed higher 
accuracy relative to other  mosquitoes9,11,65,66. As a previous study, using a large and annotated-data could improve 
model efficiency for uncommon image  classes9,67. Mwanga et al.30 showed high accuracy to ~ 98% accuracy for 
predicting mosquito age classes based on the dimensionality reduction and transfer learning techniques, that 
help confirm that the advantage of the similar techniques used as obtained in our study.

In this study, the optimized deep metric learning approach demonstrated its performance in helping solve 
the classical classification problem by making-decision for answer based on the returned image from trained 
dataset. Good success in distinguishing between dangerous mosquitoes and non-mosquito (total 15 classes) 
achieved high accuracy approximately 99% in the Miner-wise relation. The results need to be validated with 
unseen testing data with varied environmental factors. Although the performance of the proposed model testing 
with image data obtained from the second source gave lesser than 90% in sensitivity and precision for malaria 
vector (Anopheles) and West-Nile virus vector (Culex), average performance of our trained model still showed 
excellent (Suppl. Tables S1–S6). Additionally, we applied three different levels of Gaussian noises to three female 
mosquito species, namely An. dirus, Ae albopictus and Ar. subalbatus, respectively. As a result, the AUC under 
the ROC curve gradually reduced along with increasing noise degrees as expected (Supplementary Fig S5). Also, 
varied AUCs between animal species found may be depended on variation of biological data studied.

In this study, we normally have Anopheles dirus as one of main vectors for malaria in humans and animals, 
Aedes Aegypti and Ae. albopictus as main vector for dengue and Culex quinquefasciatus as secondary vector for 
 dengue16, and Cu. vishui, Cu. gelidus and Cu. tritaeniorhynchus as a vector for Japanese  Encephalitis68. There 
are several possible secondary vectors for malaria (An. nivipes, An. philippinensis, An. barbirostris, An. lesteri 
and An. annularis), dengue (Ae. scutellaris) and Japanese Encephalitis (Ae. j. japonicus)69. Although there are 
only 14 classes presented in this study, the proposed model can be shown the generalized approach to deal with 
several species of the mosquito vector in Thailand. Further study, development of deep metric learning approach 
with possible secondary vector could increase the potential AI platform to challenge wide range of populated 
mosquito vector in Thailand.

As the result obtained, this model can be useful in automatic surveillance of dangerous mosquitoes in remote 
areas. The predictions can also be extended to entomologically related work, as all organisms could be identi-
fied with high confidence using the proposed network model. This is because the dataset used quite covers a 
wide range of mosquito species that live in tropical countries where the mosquitoes are often responsible for the 
spread of several diseases in humans and  animals16,70–73. Similarly, the publication introduces the use of Deep 
Metric Learning models, for the classification of mass spectra of 12 malaria mosquito species and 18 tick species. 

Figure 8.  ROC curve for second testing dataset. Two different cameras used to collect the same samples. The 
cameras are stereomicroscope and one another, mobile phone cameras, respectively.
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Different backbone use comparing to our study (using ResNet), the study demonstrates the effectiveness of Sia-
mese Neural Networks (SNNs) and Triplet Neural Networks (TNNs) in accurately and efficiently categorizing 
mass spectra. The model performance of using the proposed three algorithms mentioned as above ranged from 
94 to 99% for mosquitoes and from 91 to 93% for ticks, respectively. This also help confirm the achievement to 
classify the medical insect species by using DML techniques. However, the study does not compare the perfor-
mance of the Deep Metric Learning models to other classification methods, which could provide further insights 
into the effectiveness of these  models31.

Deep metric learning is the combination between deep learning and metric learning, in which the model 
used aims to extract and learn object features as multidimensional features vectors (representing the distance 
and locations). The two similar features vectors were assigned in a neighboring space that have similar features. 
This is because the distances between them are  minimized48. Considering the different aspects between deep 
metric learning and deep learning techniques, deep learning attempts to define characteristics of each object’s 
class based on percentage of probability, nevertheless, deep metric learning learns to measure the similarities 
between object within any class by generating an embedding datapoints in latent space where similar features 
of any object locate closer in low-dimensional space. Here may be the concept learning to support excellent 
result obtained in our study. Interestingly, the distinguishable power of well-trained DML module can be used 
to describes embedding features with both the closer intra-class and discriminative inter-class variations. This 
is because the features were better generalized enough, though the unseen classes recruited.

Although computational modeling has had a significant influence on science work, more enhancements are 
needed. For example, it requires (1) a large number of training details and intact samples, and (2) a new meth-
odological architecture to be learned and managed data collected from different  cameras74 and also the difference 
in focus quality may make it difficult to label datasets and train  models75. Using the same basic type of camera 
property and/ or stereo microscope to capture the mosquito image could help promote further deployment of 
the embedded device network concept in remote areas elsewhere, without re-training the data prior to use in 
real-time scenarios. Deep metric learning approach is suitable to deploy into current surveillance and control 
measure of the entomological work.

Conclusion
We obtained archived samples from two different study sites and represented to national-level data. The first study 
site, the sample was collected from four provinces in Thailand including Kalasin (Northeastern region), Bangkok 
(Central region), Prajaubkirikhan (Southern region) and Chonburi (Eastern region),  respectively16. The second 
study site, archived samples were obtained from Kanchanaburi province, the western region of Thailand. The 
proposed DML network algorithm and the CBIR provides great potential for newly automatic screening and/ or 
support embedding devices for entomological staff during mosquito identification. We have achieved the DML 
model developments using the ResNet-34 and the embedding feature vector relied on the triplet-margin loss 
as feature-vector embedding function. The model can be learnt two new generated data, captured by stereomi-
croscope, mobile phone’s cameras and also combination of both two data mentioned as above. The 20-top rank 
of retrieval images-based the k-nearest neighbors showed the suitable process for testing entomological image 
gave high values of both the true positive and true negative  rate76. Variation task of biological samples has been 
solved and accomplished by encouraging them to analyze the image sample based Euclidian distance similarity 
between the query and dataset as being the same as the model test set. Due to DML is type of supervised learn-
ing model that the great performance of it depending on a large sample size and variation of the image dataset. 
The preparation of image dataset would be achieved if there are (1) the intact mosquito samples were used. The 
color and pattern of mosquito anatomy are found such as proboscis and palpi, terga and abdomen, mesonotum, 
femur and tarsi,  respectively5. Next, (2) angles taken of mosquito images including lateral-, dorsal- and ventral 
sides, the more position collected, the greater performance of training model obtained. (3) Image size collected 
by different quality of cameras can affect the trained model during testing in real  world77. In this context, the 
CBIR-based trained DML algorithm achieved state-of the-art performance on real world  data78, giving robust-
ness model on independently unseen dataset collected from other study site.

Data availability
The data that support the findings of this study are available upon request to the corresponding author.
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