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An Alzheimer’s disease category 
progression sub‑grouping analysis 
using manifold learning on ADNI
Dustin van der Haar 1*, Ahmed Moustafa 2,3, Samuel L. Warren 3, Hany Alashwal 4 & 
Terence van Zyl 5

Many current statistical and machine learning methods have been used to explore Alzheimer’s disease 
(AD) and its associated patterns that contribute to the disease. However, there has been limited 
success in understanding the relationship between cognitive tests, biomarker data, and patient AD 
category progressions. In this work, we perform exploratory data analysis of AD health record data by 
analyzing various learned lower dimensional manifolds to separate early‑stage AD categories further. 
Specifically, we used Spectral embedding, Multidimensional scaling, Isomap, t‑Distributed Stochastic 
Neighbour Embedding, Uniform Manifold Approximation and Projection, and sparse denoising 
autoencoder based manifolds on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. We 
then determine the clustering potential of the learned embeddings and then determine if category 
sub‑groupings or sub‑categories can be found. We then used a Kruskal–sWallis H test to determine 
the statistical significance of the discovered AD subcategories. Our results show that the existing AD 
categories do exhibit sub‑groupings, especially in mild cognitive impairment transitions in many of the 
tested manifolds, showing there may be a need for further subcategories to describe AD progression.

Alzheimer’s disease (AD) is the most common form of dementia, and one of the leading causes of death 
 worldwide1. AD is currently diagnosed using a clinical evaluation which involves procedures such as physical 
tests, psychological assessments, and clinical interviews (e.g., collection of demographic and family history 
data)2. While these procedures are adequate for detecting the later stages of AD, they have many limitations. For 
example, current diagnostic methods are prone to misdiagnosis, are blind to the early stages of the disease, and 
have varying reliability (e.g., tests vary in performance at different stages of AD)3–5. Current clinical diagnoses 
are not confident and can only be confirmed with an autopsy. It is estimated that significant improvements in 
diagnostic methods (e.g., detecting the early stages of AD) could lead to advancements in the treatment, under-
standing, and prevention of  AD6. Accordingly, there is a critical need to improve current AD diagnostic methods.

Over the last few decades, considerable research has sought to accurately and reliably diagnose AD. These 
diagnostic studies generally seek to classify the various stages of AD (e.g., significant memory concern and mild 
cognitive impairment) using multivariate statistical or computational models. For example, it is common for 
studies to diagnose AD using statistical models that analyse cognitive tests (e.g., mini-mental state examination), 
brain scans (e.g., magnetic resonance imaging [MRI]), and biomarkers (e.g., beta-amyloid)  (see7). There has 
been a shift in recent work towards the detection of the earlier stages of AD, such as mild cognitive impairment 
(MCI)8. Machine learning-based methods have shown some success, but there has been recent success in using 
deep learning-based methods, such as Alexnet and Resnet18 on MRI  data9,10. However, there is limited research 
on deep learning methods applied to other data modalities, such as cognitive tests and biomarkers, and how 
they can be used to identify AD progression, such as from the control (CN), mild cognitive impairment (MCI) 
and then AD, along with regressive transitions, such as MCI to CN.

This study proposes using unsupervised approaches such as manifold learning methods such as spectral 
embedding, multidimensional scaling (MDS), Isomap, t-Distributed Stochastic Neighbour Embedding (t-SNE), 
and Uniform Manifold Approximation and Projection (UMAP), along with an autoencoder-based embedding of 
cognitive tests, CSF and other biomarkers to differentiate AD’s various stage transitions better. We show that the 
t-SNE and autoencoder embeddings can encapsulate more nuanced AD progression stages from cognitive tests 
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and biomarker data and prove the subcategory AD stages that we discovered are valid with statistical analysis 
(specifically with a Kruskal–Wallis H test). We also show that there is potential for achieving AD progressed 
stage segmentation without existing priors using clustering in the embedding space, which could be used in a 
clinical setting for screening patients.

The remainder of this paper is as follows: “Background” outlines early detection AD research, followed by “Lit-
erature review”, which describes similar works using statistical, machine learning, or deep learning methods to 
detect AD. “Experiment setup” explains the study’s methods, key characteristics, and advantages of autoencoders. 
“Results” outlines the methodology employed for the study, and “Conclusion” presents the results of our study.

Background
Alzheimer’s disease (AD) is characterised by the impairment of cognitive function in predominately elderly 
individuals as progressive dementia associated with neurofibrillary tangles, amyloid beta plaques, and 
 neuroinflammation11,12. However, this complex neurogenerative disease still has much unanswered questions 
in the early stages, and it is difficult to differentiate between different stages such as early mild cognitive impair-
ment (EMCI), mild cognitive impairment (MCI), and  AD13. The difficulty quantifying the structural changes 
during the transition from the asymptomatic to the symptomatic pre-dementia phase introduces diagnostic 
uncertainty in the clinical setting. This difficulty, coupled with the co-occurrence of another disease, such as 
Cerebrovascular  disease14, makes it difficult for clinicians to automate.

To detect the early stages of AD effectively, an adequate representation is required to encapsulate the changes 
found in a patient with the potential to progress to AD. Studies have shown some success by analyzing the 
structural changes in captured data modalities, such as magnetic resonance imaging (MRI), using prior-defined 
regions of interest or voxel-based morphometry. However, these approaches struggle with spatial  reasoning15. 
These methods required well-defined priors, which hindered method development and tiny sample sizes. These 
limitations drove the exploration of other alternatives, such as machine learning methods, to achieve the feature 
engineering, segmentation, and classification tasks better and have seen some success in introducing more deep 
learning-based  methods16–20.

Other modalities aside from MRI-based data can be used to identify and monitor AD, such as  speech21, which 
are less invasive to the patient. Another modality that can be explored when analyzing AD is the demographics, 
 biomarkers22, or biosignatures found in the electronic medical records (EMR) for specific AD datasets, such as the 
Alzheimer’s Disease Neuroimaging (ADNI)  database23 and OASIS-324. ADNI reports on relatively easily obtain-
able measurements, such as cognitive scores, genetic risk, vital signs, and plasma biomarkers, beyond the more 
common MRI-based studies. However, representing these biomarkers or biosignatures in a lower dimensional 
space while preserving discriminator ability and explainability is challenging.

To better understand how the disease progresses, clinicians can adjust assessment and treatment plans by 
looking at electronic medical records. They will be able to identify outlier cases more effectively, making this an 
attractive area of research. Various strategies have been proposed to monitor Alzheimer’s disease (AD) progres-
sion over time, many plagued by severe  limitations25. Much of these limitations are centred around finding better 
feature presentations or embeddings that can be used to model key phases present during AD progression reliably.

Literature review
Usually, the collection of data for AD diagnoses has been manually performed by clinicians on-site. However, with 
the recent adoption of big data techniques in medical practice, tools such as electronic health records could enable 
new approaches to disease diagnoses. Electronic health records are extensive databases that contain patients’ 
medical records. Large institutions (e.g., governments) usually run these electronic health records, allowing for 
the gradual and semi-automatic collection of patients’ medical  data26. Electronic health records enable clinicians 
to perform informed and efficient consultations. By expanding the current use of electronic health records, it 
has been suggested that these medical databases could inform disease  diagnoses27.

Alzheimer’s disease detection using classic methods. Using a ventricular enlargement assessment, 
a clinician can use a standard indicator to differentiate between MCI and AD using a ventricular enlargement 
 assessment28. The work shows physiological attributes that allow one to distinguish between key transition 
points, such as mild cognitive impairment and Alzheimer’s disease, and confirm empirically using a t-test. How-
ever, leveraging this approach in an automated manner remains difficult.

After finding attributes that were easier to measure when determining AD progression, a pursuit of models 
was started, which saw specific covariates, such as age, gender, and the APOE genotype, play a role in AD pro-
gression  analysis29. Although there was significant progress in the research, especially regarding the addition 
of the ADNI dataset and more multivariate-based approaches, severe limitations were found in methods that 
model disease  progress25.

Alzheimer’s disease detection using machine learning. One way to model this level of differen-
tiation in an automated manner is by using machine learning-based methods. Early works achieve this on the 
ADNI dataset using sparse logistic regression with stability selection over four years with 15 predictors, which 
included APOE genotyping, demographic and cognitive  measures30. The approach performed well and yielded 
an AUC score of 0.8587 when employing their defined selection approach called biosignature-15, improving 
their random forest-based works. However, looking at more attributes may be beneficial when exploring more 
complex models, where attribute count does not contribute to poor performance, as in sparse logistic regression-
based methods.
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Some studies have suggested that more complex models could diagnose AD using electronic health records. 
For example, a study  by31 used machine learning algorithms (such as support vector machines) to predict AD 
development on electronic health record data. Park et al.31 found that their algorithm could predict AD with 
an accuracy of 71% on a large-scale dataset (the Korean National Health Insurance Service database). While 
overcoming the burden of data collection related to performing cognitive tests, many of these electronic health 
record-based models still require better-performing models that can potentially be used in a clinical setting.

Recent work has also shown that it is possible to predict AD transition using classic machine learning methods 
by first employing a dimensional reduction method (PCA)32. They show that it can achieve comparable results 
to MRI-based method counterparts, and specific attributes contribute more to the overall outcome. However, 
their principal component analysis (PCA) relies on linear assumptions, potentially diminishing discriminator 
ability and may hinder model explainability. Green et al.25 mentioned that there is value in investigating more 
latent variable-based approaches to model AD progression. This work shows the first green shoots that prove 
that it improves performance.

Alzheimer’s disease detection using deep learning. Many deep learning methods applied to the AD 
recognition task take a different approach to feature engineering. A representation learning process occurs in 
the earlier layers of the derived architecture, which differs from the exact feature engineering process seen in 
previous methods. This representation learning, coupled with pre-trained deep neural  networks33 has allowed 
these methods to surpass the performance of current approaches on MRI  data9,10,34,35, and allowed it to cater to 
varying  modalities36. However, as found in the ADNI dataset, a limited amount of research exists that applies 
deep learning methods, specifically for electronic health records containing cognitive benchmarks, brain meas-
urements, and biomarkers.

Compared to supervised methods, relatively less literature exists for unsupervised AD stage  segmentation37. 
The use of methods, such as association, dimensional reduction (such as PCA or  ICA38, or clustering (includ-
ing Nonnegative Matrix Factorization-based  clustering39,40, hierarchical agglomerative  clustering41, Bayesian 
 clustering42 and  others43–45), applied when analyzing AD stages has potential within a clinical setting. One can 
identify critical patterns in AD progression to recommend better treatment plans that are more personalized 
based on patient attributes. The dimensional reduction of electronic health records can map out more compre-
hensive dependencies and visualize the relationship between different AD progression cases. Lastly, by clustering 
the data better, we can differentiate between patient categories and determine the level of similarity between a 
current patient and the derived AD categories. This study addresses this gap by exploring autoencoders as an 
alternate feature embedding to PCA and analyzing it to determine its discriminator ability for unsupervised 
AD stage segmentation.

Experiment setup
In this study, we analyse different manifolds in order to assess their value in analysing AD progression categories 
using the ADNI dataset. In the experiments we start with the baseline experiment that is related to similar work, 
then we assess which of the manifold learning methods, namely, Isomap, Spectral, MDS, t-Distributed Stochas-
tic Neighbour Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and a sparse 
denoising autoencoder can preserve sufficient information required for reconstruction in order to differentiate 
AD category progression categories. The learnt embedings are visualised in order to manually inspect emergent 
AD progression groupings, followed by a clustering assessment using DBSCAN of the best learnt embeddings. 
Classification accuracy is then assessed using the learnt embeddings and a Support Vector Machine (SVM) 
trained estimator. Finally a Kruskal–Wallis H Test is done on the orginal attributes for discovered AD progres-
sion subgroupings in order validate their significance as new potential AD sub-categories.

Dataset and data pre‑processing. The ADNI dataset is a publicly available secondary dataset from a 
multisite study that aims to improve clinical trials for the prevention and treatment of AD collected and col-
lated by the private and public sectors across 63 sites in the US and Canada. The data set spans 2004–2021 and 
contains records of patient visits and the accompanying cognitive tests. The dataset consists of more than 1000 
participants with clinical evaluations, neuropsychological tests, genetic markers, AD biomarkers, MRI scans, 
PET scans and a neuropathological examination if the participant dies and has consented to autopsy. All work 
was carried out was done following relevant guidelines and regulations set out by the ADNI study and in an 
ethical manner.

We selected the following fields as fundamental tests. 

1. The clinical evaluation data that includes overall health and relevant history
2. All the neuropsychological tests
3. Genetic markers
4. AD biomarkers
5. Neurological, structural measurements

Each individual in the dataset has a baseline visit and several follow-up visits. As a result, the individual patient’s 
data might be treated as a time series. Considering each patient as a time series is convenient as it provides the 
mechanism to fill in missing values in the patient’s record. These missing values exist since not every test is per-
formed at every visit. We first remove irrelevant or redundant temporal data, such as duplicated date fields. We 
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also remove variables relating to the protocol. Also, since we are not considering the spatial context, we remove 
the Site attribute.

All numeric fields are corrected if containing string modifiers such as greater than or less than, and negative 
values are encoded as missing. Any baseline records without a diagnosis are removed (20 records). Next, we 
ensure the records are self-consistent, using the baseline values as a ground truth. Then we apply forward filling 
followed by backward filling for each patient’s time series of visits. Since the diagnosis at baseline and later visits 
have different resolutions, we encode the visit values in the following way. 

1. Both Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) are mapped 
to Mild Cognitive Impairment (MCI).

2. Based on work  by46, which shows it may not be an appropriate category to represent individuals with cogni-
tive impairment, the subjective memory complaints (SMC) records are mapped to Cognitive Normal (CN).

We one-hot encoded all categorical variables except for the target diagnostic variables, which were removed for 
fitting or training and used for validation. We fill missing values with the median value for each variable and 
add a dummy indicator variable to the record where a missing value has been filled. Since the missing values are 
likely correlated, we use PCA to reduce the dimensionality of the missing value dummy variables. Adding dummy 
missing value indicators and the subsequent dimensionality reduction resulted in 41 additional dummy variables.

For each record, we add the following target variables: 

1. Baseline diagnosis to visit diagnosis (high resolution).
2. Baseline diagnosis to visit diagnosis (low resolution).

Methods. A popular area of machine learning learning today is that of manifold learning where a succinct 
or lower dimensional representation is derived that can be useful for downstream tasks. Manifold learning can 
be divided into linear and non-linear  methods47. Popular linear methods include principal component analy-
sis (PCA) and multidimensional scaling (MDS) with non-linear methods including Laplacian eigenmaps, Iso-
map, Local-linear embedding, t-Distributed Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold 
Approximation and Projection (UMAP). Each of these methods at its core have three attributes: a nearest neigh-
bour search, some way to represent distances or affinities between points and an eigen problem for embedding 
high-dimensional points into a lower dimensional  space47.

There are numerous advantages to having lower dimensional representations of data. Not least among these 
are capturing the most salient features for future analysis and visual analytics. Early attempts focused on embed-
dings that preserved predefined similarities/relationships in the data, such as adjacency and pairwise distances. 
Later approaches such as Autoencoders build on the success of deep neural networks and train a neural network 
to approximate the identity function (trained to reproduce or recontruct its input), the former half of the archi-
tecture serve as an encoder and one of the hidden layers (typically before the decoder half) serve as the lower 
dimensional embedding.

t‑distributed stochastic neighbour embedding (t‑SNE). To determine the efficacy of the embedding, we employ 
another embedding, t-distributed stochastic neighbour embedding (t-SNE), to allow us to visualize how well 
AD stages are segmented. t-SNE is a non-parametric visualization technique that computes pairwise distances 
affinities according to some perplexity constraint that retains the local structure of the data while revealing some 
important global structure, such as clusters at multiple  scales48. It has since become widespread in machine 
learning as a mechanism for deriving compelling two-dimensional maps of data with many dimensions in a 
very flexible  manner49. The study uses it to visualize the derived four-dimensional embedding from the auto-
encoder. However, we also use it to visualize the original data to demonstrate the value of the low-dimensional 
embedding.

Uniform manifold approximation and projection (UMAP). Uniform manifold approximation and projection 
is a k-neighbour-based graph learning algorithm that competes with t-SNE. It constructs a weighted graph, 
then transforms its edges to ambient local distance and then derives a lower dimensional representation while 
preserving topological  structure50. It deals with higher dimensions and is helpful in contexts that suffer from the 
curse of dimensionality problems. We chose UMAP as an alternate embedding to confirm findings with t-SNE 
and to cast light on any global structural differences that can be used for AD stage progression analysis.

Sparse denoising autoencoder. An autoencoder is an unsupervised machine learning model that uses the uni-
versal approximation capacity of deep neural networks to learn unsupervised lower dimensional representations 
of data. The embeddings are verified and refined by trying to reconstruct the input from the encoding. The 
autoencoder learns this dimensionally reduced representation for a data set by training the network to ignore 
the noise.

Variants of autoencoders exist to compel the learned representations to assume relevant attributes. Variants 
include regularised autoencoders (Sparse, Denoising and Contrastive) and Variational autoencoders, which can 
act as density estimators. We are particularly interested in the regularised autoencoders, which are effective in 
learning representations for subsequent machine learning tasks such as clustering or classification. Autoencod-
ers have been successfully applied to numerous problems, from computer vision to natural language. In the 
medical diagnostic domain, autoencoders have successfully been employed for medical  denoising51, medical 
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image  searching52, feature learning for medical  images53 and more recently to transform test images to improve 
 predictions54.

An autoencoder has two main parts: an encoder that maps the input into the embedding and a decoder that 
maps the embedding to reconstruct the input. The simplest way to replicate an input signal to an autoencoder 
would be to duplicate the signal. Instead, autoencoders are required to reconstruct the input approximately, pre-
serving only the most relevant aspects of the data by ensuring that the embedding is a squeezed representation of 
the original input. In this research, we use a Sparse Denoising-Autoencoder. The architecture for the autoencoder 
can be found in Fig. 1, where the autoencoder consists only of Linear layers with LeakyReLU non-linearities.

Some prior research has combined autoencoders with electronic health records for medical diagnoses. For 
example, Zhou et al.55 applied an autoencoder to two electronic health record data sets. In the first dataset, Zhou 
et al.55 used an autoencoder to predict the length of hospitalisation in individuals with pneumonia. In the second 
dataset, Zhou et al.55 used an autoencoder to classify alcoholics from controls. In turn, Zhou et al.55 found that 
their autoencoder models could predict hospitalisation length with an accuracy of 71.4% and classify alcohol-
ism with an accuracy of 65.1%. In another study, Landi et al.56 used a combined autoencoder and convolutional 
neural network model to distinguish various disorders in electronic health records. Using a clustering algorithm, 
Landi et al.56 could distinguish AD from other disorders and observe the progression of the disease (e.g., classify 
different stages of severity). However, few studies explicitly focus on AD when using autoencoders and electronic 
health records for clinical diagnoses.

Moreover, to our knowledge, no study has sought to predict AD progression. Accordingly, this study uses a 
novel autoencoder model to predict AD development. Specifically, we incorporate electronic health records and 
an autoencoder-based feature embedding to predict AD progression. We also seek to perform a visual-based 
analysis that outlines the discriminant ability of our unsupervised autoencoder model. Thus, our aims are as 
follows: (a) confirm the use of electronic health records for the prediction of AD; (b) use an autoencoder-based 
feature embedder to predict AD progression, and (c) conduct a visual-based analysis that assesses the discrimi-
nant ability of our unsupervised autoencoder model.

Autoencoders are a unique type of deep neural network that learn diagnostic features through the compres-
sion and upscaling of data. Through this process of simplification and recreation, autoencoders can learn the 
key characteristics (features) that underline a phenomenon and, thus, perform diagnoses. Unlike most deep 
neural networks, autoencoders can be fully automated and are flexible to different data types. Moreover, autoen-
coders have higher diagnostic accuracy than traditional methods due to their end-to-end feature learning and 
classification design. The accuracy and efficiency of autoencoders are further aided by their ability to remove 
noise (unnecessary input) and dimensionally reduce data (compress data). Specifically, dimensional reduction 
minimises the computational resources required for classification, and noise reduction decreases the chance of 
errors. These properties make autoencoders specially equipped to process and analyse big data such as electronic 
health records.

For the auto encoder, we split the data into training and validation (80–20). We use the 20% validation data 
to set the hyper-parameters using manual search by minimising the reconstruction loss of the Auto Encoder on 
the validation set whilst training on the training set. We find the optimal hyper-parameters in Table 1. Finally, 
once the hyper-parameters are acquired, we use the entire dataset to parameterise an Autoencoder to create the 
embeddings.

Manifold embedding evaluation. A fundamental issue with current manifold methods is that there is a 
lack of methods for embedding quality assessment and many of the evaluation methods are either limited to a 
specific method (such as Isomap) or are not tolerant of  outliers57. The study takes evaluates the derived embed-
dings in a comprehensive way using the following four steps: 

Figure 1.  The sparse denoising autoencoder architecture used in the study.

Table 1.  Hyper-parameter values for autoencoder.

Hyper-parameter Values

Batch size 512

Learning rate 1e−3

Weight decay 1e−5

Embedding size 7
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1. First an embedding of 2 dimensions is fitted so that it can be visualised for highlighting appropriate local 
and global groupings present in a qualitative manner.

2. In order to identify groups of similar patients, clustering is performed on the same fitted 2 dimensional 
embedding to determine if the emergent groupings can be identified in an unsupervised manner.

3. The fitted embeddings (and variants of it) that fared well during clustering are then assessed to determine 
its potential in a downstream classification task.

4. Lastly, a Kruskal–Wallis H test is performed to confirm subgroupings present in the best embedding to 
determine the validity of subgroupings based on the original patient data.

Embedding visualisation. We are interested in understanding the natural latent space of the embedding within 
the dataset. We wish to evaluate if the data sits on a lower dimensional manifold embedded in the higher dimen-
sional space. Finding such a manifold would allow us to visualise the data better, identify potential anomalies 
and outliers, inform future analysis and improve downstream clustering and classification results.

t-SNE was employed for visualising the embeddings since it retains the data’s local and global structure and 
can be computed relatively  efficiently58. For the t-SNE parameters, we used parameters commonly accepted in 
the community and an embedding dimension of two for visualisation. The early exaggeration is set to 12.0 with a 
learning rate of 200.0, using euclidean distance and Barnes–Hut approximation (with a 0.5 angular size). Varying 
perplexities were experimented with, and a perplexity score of 130 was found to be the best for the comparison 
of the selected manifold learning methods.

Uniform manifold approximation and projection (UMAP) was selected as a second visualisation method 
since t-SNE has been criticised for not appropriately preserving global structure in specific  contexts59. For the 
UMAP parameters, we used a 15 local neighbour size, euclidean distance and an embedding dimension of two for 
visualisation. We also used a learning rate of 1.0 with spectral initialisation, repulsion and spread and a minimum 
distance of 0.1. The remaining parameters were held at commonly accepted values.

Clustering evaluation. In our study, we employed density-based spatial clustering (DBSCAN) because it can 
group AD categories in the embedding better than partition-based and hierarchical clustering approaches 
because of its ability to encapsulate arbitrary group shapes and find outliers. Through experimentation, we vary 
the epsilon or distance threshold that specifies whether points belong to a neighbourhood and the minimum 
number of data points that constitute a cluster to determine the best parameter combination. We analysed the 
performance of all the runs and reported on the best-performing learnt manifolds. The metrics we use for this 
measurement are cohesion in contrast to separation, known as the silhouette score, and the Rand index, which 
determines the similarity measure between two clusters to their ground truths. The clustering analysis should 
then be able to determine the potential of an unsupervised approach for key learnt manifolds in the experiment 
within the ADNI context.

Classification evaluation. As an additional test of the learnt embeddings, each embedding is fed into a sup-
port vector machine with a radial basis kernel function. Using an 80/20 split to train the model, we benchmark 
each learned manifold using four common metrics for class predictions: accuracy, precision, recall and f1 score. 
By evaluating the classification metrics one can determine the potential of the key learnt embeddings within a 
supervised context.

Kruskal–Wallis H test. The Kruskal Wallis test is a non-parametric alternative to the one-way analysis of vari-
ance (ANOVA) that tests the ranks of the data instead of the actual data points to determine if there is a signifi-
cant difference between groups (AD stages in our case)60. The null hypothesis assumes that groups are subsets 
from the same population, and the variance of ranks is computed to derive the H statistic. Since the H closely 
resembles a chi-square distribution, one can determine if the groups should be in the same population (i.e. if any 
found subcategories are statistically significant).

The Kruskal–Wallis H test was selected because it is less sensitive to outliers, more compatible with our data 
and can derive a variance of ranks in a non-parametric manner. Kruskal–Wallis H test can determine if the 
emergent subcategories are statistically significant and warrant further investigation. However, it is essential to 
note that the Kruskal–Wallis H test cannot tell us which variables differ between specific groups, only all the 
groups. The Kruskal–Wallis H test only examines a single variable’s variance across multiple groups. However, 
more complex learned manifolds may be able to encapsulate more complex relationships that look at more than 
two variables at once.

Results
In order to provide a fair assessment of the various learnt manifolds, we include results for the baseline PCA 
experiment, followed by the various selected learnt manifolds in the study. These include Spectral embedding, 
Multidimensional scaling, Isomap, t-Distributed Stochastic Neighbour Embedding, Uniform Manifold Approxi-
mation and Projection, and a sparse denoising autoencoder.

PCA baseline results. The first experiment results report on using principal component analysis (PCA) as 
a lower dimensional manifold inspired by work done by Llera et al.38. The PCA results demonstrate the baseline 
performance from which the other learnt manifold approaches can be compared against. From Fig. 2, we can see 
that reducing the original data with PCA to two dimensions is not favourable. Upon further exploration, we can 
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see that it has a very low mean explained variance ( 3.5 × 10
39 ), thereby showing that more than 2 dimensions 

would be more appropriate.
The required increase in the amount of components is confirmed in Fig. 3, where one can see that deriving a 

four dimensional embedding and visualising it using t-SNE and UMAP produce very good results. In both plots 
each of the AD progression categories are well defined with some categories containing two or more emergent 
groupings. Following this finding, we explored other manifolds (including t-SNE and UMAP from the raw 
data) instead of the PCA embedding to see if these emergent groupings are present when using other manifold 
learning methods.

Manifold 2‑dimensional visualisation results. In the study the manifold learning methods selected 
were Spectral embedding, Multidimensional scaling, Isomap, t-Distributed Stochastic Neighbour Embedding 

Figure 2.  The PCA plot of the manifold built from the pre-processed row subset for the raw, PCA embedding 
with 2 components.

(a) PCA t-SNE (b) PCA UMAP

Figure 3.  The t-SNE and UMAP plots of the manifold built from the pre-processed row subset for the raw, PCA 
embedding with 4 components and autoencoder embedding of size 4 and the t-SNE having a perplexity of 130.
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(t-SNE) on the raw data, Uniform Manifold Approximation and Projection (UMAP) on the raw data, and a 
sparse denoising autoencoder. For each methods we visualise the different outputs using their two-dimensional 
embeddings to visualise how local and global structures are formed and ideal candidates are explored further.

For each result that is shown, the optimised version is used, such as using the ideal amount of principal 
components or the most optimal autoencoder architecture (i.e. using the hyper-parameters shown in Table 1). 
We also selected the subset with no baseline rows described above that does not contain the baseline diagnosis 
for a more fair comparison of the works.

From Fig. 4, we can see that some manifold embeddings do not perform as well, such as Isomap. Since Isomap 
can be viewed as an extension of MDS or Kernel PCA that maintains geodesic  distances61, it is not an unexpected 
result. Although, MDS did present groupings of the high level AD categories, the rest of the manifold embeddings 
had much clearer groupings. The Spectral embedding successfully modelled the AD progression continuum with 
the exception of the extreme cases that went from cognitive normal to being diagnosed with AD, along with 
patients reverted to mild cognitive impairment from a AD baseline diagnosis. UMAP provided clear groupings 
of the high level AD progression categories and similar to the Spectral embedding struggled to encapsulate the 
abrupt progressions. However, t-SNE and the autoencoder did manage to encapsulate these nuanced progression 
cases, thereby warranting further investigation.

Autoencoder results discussion. Since we t-SNE already optimised the t-SNE parameters to find an 
ideal embedding (two dimensions with a perplexity of 130, early exaggeration of 12.0, 1000 iterations with a 
300 progress cut-off, N

3
 learning rate and PCA initialisation), we explored increasing the dimensionality of the 

autoencoder. We found the ideal autoencoder was had an embedding dimension of 4 withe the same parameters 
outlined in Table 1. When visualising the embedding in two dimensions as seen in Fig. 5, we can see even clearer 
groupings of the various AD progression categories in both the t-SNE and UMAP plots with the t-SNE showing 
the problematic progression categories (such as CN to AD) much clearer.

t-SNE preserves the local and global structure. However, there is a tradeoff to retaining local and global 
structures simultaneously, so we had to carefully monitor the Kullback-Leibler divergence against the outcome 
during experiments. t-SNE is also susceptible to the perplexity parameter, and after experimentation a constant 
perplexity value of 130 was selected to visualise the embeddings. The visualisations can be found in Fig. 5, which 
shows the t-SNE embeddings for the raw row subset data, the PCA and autoencoder embedding. Interestingly, 
the t-SNE embedding on the pre-processed raw data can still separate the AD categories. However, the PCA and 
Autoencoder embedding-based visualisation shows they better separate the AD categories. From these visualisa-
tions, there is evidence that there may be potential sub-categories of the existing AD categories, which are the 
focus of the Kruskal–Wallis H test discussed below.

UMAP is considered better at encapsulating global structure differences. However, the density of these clus-
ters is sensitive to minimum distance and local neighbour size, so we had to monitor these parameters and keep 
them the same across all the embeddings for a fair comparison. As seen in Fig. 5 the UMAP embedding did 
well at differentiating between the key AD stages and as shown in the separate groupings of samples labelled to 
be the same AD stage in the PCA and Autoencoder embeddings. This result aligns with the t-SNE embedding 
visualisations that suggest potential subcategories of existing AD stages, thereby warranting further investigation.

Clustering results. 
Table 2 shows the top result for four-manifolds: t-SNE, UMNAP, MDS and the Autoencoder. Interestingly, the 
t-SNE embedding with a dimension of 2, epsilon of 1.15 and a minimum number of points of 3 relatively good 
results with a Silhouette score of 0.44 and a Rand index of 0.6. This makes t-SNE a good embedding in our context 
for downstream tasks such as unsupervised classification or anomaly detection. Figure 6 shows that UMAP, MDS 
and the Autoencoder could still form good clusters from their learnt two-dimensional embeddings. The figure 
also confirms the claim that t-SNE exhibits good cluster groupings and shows ten clear clusters that form in the 
two-dimensional embedding when DBSCAN clustering is performed, two more groupings than the ground truth 
labels associated with the AD progression categories.

Classification results. 
The four best results for the classificatin task are reported in Table 3. The t-SNE with two dimensions achieved an 
accuracy of 97.14% and precision, recall and F1 score being 97%, thereby further proving t-SNE is an excellent 
embedding. Interestingly, the second best-performing learnt manifold was the Autoencoder, which had four 
dimensions, thereby showing value in exploring its performance with embedding dimensions higher than two.

Kruskal–Wallis H test. 
Since the t-SNE embedding visualisations shown in the t-SNE DBSCAN clustering in Fig. 6 show that there may 
be subcategories present that can further differentiate AD category progressions in patients, a Kruskal–Wallis 
H test was performed on the t-SNE embedding. The results show that for the t-SNE clusters, 12 of the 44 vari-
ables significantly differed across the t-SNE clusters and are the reason they present as subcategories. Table 4 
shows that the most significant group differences were confirmed based on Age, DIGITSCOR, TRABSCOR and 
Fusiform baselines. However, the most significant subcategories were found in the EMCI category when apply-
ing Bonferroni significance correction, as shown in Table 4. The computed significance provides evidence that 
these AD subcategories are valid subgroups differentiated by Age, MMSE and the Entorhinal baseline, thereby 
warranting further investigation within these groups in a clinician-based study.
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(a) Spectral (b) MDS

(c) t-SNE (d) UMAP

(e) Isomap (f) Autoencoder

Figure 4.  The visualized raw pre-processed Spectral, MDS, t-SNE, UMAP, Isomap, and Autoencoder manifold 
embeddings with 2 dimensions for the ADNI row subset (i.e. the dataset without the baseline diagnosis).
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Conclusion
A good representation capable of encapsulating the nuance or non-linearity in differentiating between the early-
stage AD categories is a sought-after solution. The shift from statistical to machine and deep learning methods 
has helped MRI-based studies. However, more work needs to be done in analysing other modalities that are more 
accessible within a clinical setting. Additionally, more research needs to be done on unsupervised methods that 
do not require many ground truth labels to work and to analyse AD categories further.

This study shows the value of using autoencoders, t-SNE and UMAP embeddings derived from electronic 
health records, such as clinical evaluation data, neuropsychological tests and biomarkers for achieving AD 
progression category segmentation, especially for the early stages. We show that the varying embeddings allow 
one to analyse the AD progression stages better. The autoencoder embedding is a better representation than the 
principal component analysis (PCA) used in the literature. Still, the t-SNE embedding performs the best since 
it encapsulates non-linear relationships and can separate AD categories into more nuanced subcategories. We 
validate that it is a more appropriate representation by visualising its ability to differentiate between the various 
categories, using DBSCAN clustering, along with a classification task using a support vector machine and confirm 
its subcategories with a Kruskal–Wallis H test on the derived cohorts. When  Beltran32 showed with PCA that 
there is value in computing a lower dimensional embedding in analysing AD categories. This study shows that 
the same can be achieved using manifold learning methods, such as t-SNE and UMAP, along with deep learning 
methods, such as autoencoders, which should be helpful in further downstream unsupervised tasks.

Although our work shows there is value in exploring existing, more recent manifold learning methods for 
high dimensional AD data with inherent non-linear relationships, future work will demonstrate further there 
is value in aligning insights found in the embedded space and clinician insights. The alignment should clarify 
understanding of AD progressions better without compromising too much explainability of method predictions. 
Another exciting avenue of inquiry is exploring how transformers can be used to derive contextual embeddings 
within the AD progression context, which can potentially unlock further understanding of categorical-based 
attributes and generate samples for under-represented AD categories.

(a) Autoencoder t-SNE (b) Autoencoder UMAP

Figure 5.  The t-SNE and UMAP plots of the manifold built from the pre-processed row subset for the raw, PCA 
embedding with 4 components and autoencoder embedding of size 4 and the t-SNE having a perplexity of 130.

Table 2.  The clustering results in a summary of the various learned manifolds using DBScan as a clustering 
method. Significant values are in [bold].

Manifold

Epsilon

Minimum Silhouette Rand

Type Dim’s Samples Score Index

t-SNE 2 1.15 3 0.44 0.6

UMAP 2 0.65 20 0.44 0.26

MDS 2 0.30 30 − 0.05 0.08

Autoencoder 2 0.05 30 − 0.04 0.15
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(a) t-SNE (b) UMAP

(c) MDS (d) Autoencoder

Figure 6.  The top four visualized two-dimensional embeddings (t-SNE, UMAP, MDS, and autoencoder) when 
DB scan clustering is performed.

Table 3.  The classification result summary of the various learned manifolds using a Support Vector Machine 
with a radial basis function kernel as a classification method. Significant values are in [bold].

Manifold

Accuracy (%) Precision (%) Recall (%) F1 score (%)Type Dim’s

t-SNE 2 97.14 97 97 97

Autoencoder 4 97.14 97 97 97

Autoencoder 2 91.91 90 92 91

UMAP 2 89.35 89 89 89
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Data availability
The datasets analysed during the current study are available in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) repository, https:// adni. loni. usc. edu/.
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