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Analysis of age‑dependent 
gene‑expression in human tissues 
for studying diabetes comorbidities
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Elena Succurro 1,2, Francesco Andreozzi 1,2 & Pierangelo Veltri 4

The study of the relationship between type 2 diabetes mellitus (T2DM) disease and other pathologies 
(comorbidities), together with patient age variation, poses a challenge for medical research. There is 
evidence that patients affected by T2DM are more likely to develop comorbidities as they grow older. 
Variation of gene expression can be correlated to changes in T2DM comorbidities insurgence and 
progression. Understanding gene expression changes requires the analysis of large heterogeneous 
data at different scales as well as the integration of different data sources into network medicine 
models. Hence, we designed a framework to shed light on uncertainties related to age effects and 
comorbidity by integrating existing data sources with novel algorithms. The framework is based 
on integrating and analysing existing data sources under the hypothesis that changes in the basal 
expression of genes may be responsible for the higher prevalence of comorbidities in older patients. 
Using the proposed framework, we selected genes related to comorbidities from existing databases, 
and then analysed their expression with age at the tissues level. We found a set of genes that changes 
significantly in certain specific tissues over time. We also reconstructed the associated protein 
interaction networks and the related pathways for each tissue. Using this mechanistic framework, 
we detected interesting pathways related to T2DM whose genes change their expression with age. 
We also found many pathways related to insulin regulation and brain activities, which can be used 
to develop specific therapies. To the best of our knowledge, this is the first study that analyses such 
genes at the tissue level together with age variations.

The co-occurrence of diseases, or comorbidity, may have both a genetic and environmental  cause1. Comorbidi-
ties, especially with chronic diseases, cause a rapid decline in the quality of life and longevity. Moreover, they 
contribute to an increased demand for hospital beds and higher costs for the health care system  overall2. Con-
sequently, there is the need to shed light on the insurgence and progression of comorbidities by elucidating the 
time of their onset and their genetic  relations3–5. Moreover, comorbidities can vary with age, sex, and external 
factors such as environmental issues related to living  areas6–9.

In this work, we focus on diabetes mellitus disease and its comorbidities. Diabetes mellitus, with an estimated 
number of 415 million adults affected, is one of the most widespread chronic  diseases10. There are three types of 
diabetes: type 1 Mellitus (T1DM), type 2 Mellitus (T2DM), and gestational diabetes. Here we consider comorbidi-
ties in T2DM, considered the most common category of diabetes  mellitus11–15. T2DM is a complex metabolic dis-
order characterised by a progressive loss of b-cell insulin secretion, causing hyperglycemia against a background 
of insulin resistance. It often presents at least one comorbidity in  patients16–19. T2DM, prevalent in adults over 
65  years7,10,20,21, considerably impacts public health causing high mortality, disability and  hospitalisation22. The 
underlying pathophysiology of the disease is exacerbated by the ageing process, which affects metabolic regula-
tion and accelerates the progression of many  comorbidities23–26. For instance, in people aged 65–79, diabetes 
mellitus is associated with a high risk of cardiovascular, microvascular, and other  complications27–29.

We study T2DM comorbidities by leveraging existing data and models at the system  level30,31 and integrating 
information by means of network medicine models. Network medicine (together with data science) can be used 
as a practical framework for studying disease comorbidities and  progression1,32–38. It is based on the analysis 
of data from graph theory model integrating different data sources. In this work, we propose a mechanistic 
framework to study molecular causes related to comorbidities at a tissue level related to age. We hypothesise 
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that differences in age may be explained by differences at the molecular level of genes whose basal expression 
is modified with age. For instance, Fig. 1 depicts the behaviour of an increasing and a decreasing gene expres-
sion with respect to different human age groups. To this end, we consider genes for which there is evidence of 
correlation with comorbidities in T2DM disease. By using T2DiACoD  database39 we study the genes correlated 
to T2DM comorbidities. Indeed, the T2DiACoD database contains genes that provide evidence of correlation 
with comorbidities in T2DM. Also, we consider tissues associated with genes and their variations with age. The 
proposed framework allows us to: (i) identify genes presenting significant changes with ageing and (ii) define 
networks at the tissue level in order to study significant gene changes at the network level. The workflow imple-
mented by the proposed framework is reported in Fig. 2. We start from gene expression data stored in the GTEx 
 database40 and comorbidities of TD2M stored in the T2DiACO database. Focusing on T2DM, we obtained 
results from 54 different tissues organised into six age groups 20-29, 30-39, 40-49, 50-59, 60-69, 70-79 years (see 
Fig. 2). We obtained different samples for each tissue, and then calculated the median value of the expression in 
each age interval. We then filter genes presenting a significant increase or decrease with age as reported in Fig. 3.

Our results show that there is a considerable number of genes whose expression changes with age and thus 
related to the risk of presenting comorbidities with T2DM. Finally, the proposed framework uses the  STRING41 
database for deriving the protein interaction networks induced by the genes obtained in the above steps (i.e., 
extracting the protein interaction networks corresponding to the identified genes in T2DiACO database). With a 
multiscale approach, the obtained networks can thus be studied by means of tissues, age and gender as  factors42.

Using the here proposed framework, we obtained results suggesting that ageing may augment the risk of 
T2DM comorbidities. This indicates the need for further research on the mechanisms of the age-associated 
increase in the prevalence of T2DM, which can also be used for novel therapeutic  strategies43.

Results
Figure 2 reports the workflow of the framework used to analyze genes related to T2DM disease. The framework 
identifies genes whose expression changes with age. Then selected genes are used to define protein interaction 
networks that can be associated with tissues. Networks (see Finally, see bottom part of Figure 2) are then studied 
and analyzed to identify those genes that exhibit an increase (or decrease) of mean expression changes with age.

Starting from genes in the T2DiACoD database, we extract their associated expression values from the GTEx 
database, where each expression is related to tissues and human-age interval (e.g., gene expression for liver in 
the 30-40 years age range). For each tissue we select only increasing or decreasing genes. We found 171 increasing 
genes (some of which are present in more than one tissue), and 204 decreasing genes. We then selected only genes 
with a significant change measured by means of Kruskal–Wallis  test44. We also performed the functional (Gene 
Ontology) and pathway (KEGG database)45 enrichment  analysis46. Table 1 reports the number of genes with 
changes for each tissue, while Fig. 4 reports the associations among genes and tissues. We also evidenced the rela-
tions among the genes and the associated comorbidities in Fig.5, where relations are extracted from the T2DiACoD 
database. Figure 3 depicts the behaviour only of significantly increasing and decreasing genes in the heatmap.

We  analyse gene expressions in different tissues, and for each tissue, we investigate the behaviour of signifi-
cantly increasing and decreasing genes as heatmap by means of a Kruskal Wallis test. We also focus on the protein 
interaction networks gathered from the STRING (when available) annotated with the main pathways found. 
For each tissue, we measured the functional enrichment by using the STRING database, where a functional 

Figure 1.  Boxplots illustrating two gene expressions patterns: an increasing gene expression (on the left 
representing the IL18 gene) and a decreasing one on the right (the MME gene).
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enrichment is considered significant when the false discovery rate (FDR) is less than 0.01. For brain cerebel-
lum and brain cerebellar haemisphere tissues we found the following genes: HPSE, VDAC1 LPL, ADK, SMPD1, 
NUCB2, ATP2A2, PEBP1, SMAD7, PRDX2, RCAN1, and ATF4. Such genes are reported as changes of expres-
sion as heatmaps in Figs. 6 and 7 with respect to age intervals. Rows represent genes with significant changes 
while columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years old (i.e. 20–29 notation 
indicates an age interval among 20 and 29 years old). Both Figures report the proteins interaction where proteins 
are related to the found genes.

In brain cortex tissue we found significant changes for the following genes, whose behaviour is reported as 
heatmap in Fig. 8: TRH, P2RX2, CACNA1H, NQO1, COLEC12, MAFB. As the above tissues, Fig. 8 reports the 
protein interactions network built by gathering data from STRING database.

Figure 2.  Figure depicts the workflow of the experiment performed in the proposed framework. First, we select 
the list of genes related to comorbidities of T2DM on the T2DiACoD database. Then, we retrieve expression 
data on GTEx data portal for each previously selected gene. Metadata regarding the age and sex of patients are 
also considered. We then find those genes that exhibit an increase (or decrease) of mean expression changes 
with age. Protein interaction networks corresponding to the genes with significant changes are gathered from 
the STRING database and then analysed.
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Figure 3.  Figure depicts the average value of the expression of genes. Rows represent genes with significant 
changes (by means of a Kruskal Wallis test). Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 
70–79 years. Lower values are represented in red while green means higher values.
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In brain frontal cortex tissue we found significant changes for the following genes: GAP43, IGF1, PAK6. Fig. 9 
reports the behaviour of such genes as heatmap and the protein interactions network built by querying STRING.

For the hippocampus tissue we detected PDPK1, NEDD4L, UNC13A, MAPK1, and RPS6KA6 genes, whose 
values are reported as heatmap in Fig. 10.

In the hypothalamus, we found SLMAP, APC, NCALD, ATP2A2, and RTN1 genes as reported in Fig. 11. 
Figure 12 reports the set of identified genes for all the aforementioned brain tissues.

Furthermore, the results are related to different tissues. We found a relatively high number of modulated genes 
in adipose tissue, in particular the following: COL8A2, PRDX6, LPL, PRCP, CD9, SLC2A3, ACACB, LTB4R2, 
PAK6, PLIN1, PDPK1, PMP22, COLEC12, CD40, AGTR1, and CNR1. The heatmap in Fig. 13 reports the genes 
found in the tissue grouped by age and the protein networks obtained by querying STRING.

For liver tissue, we found expression changes for IL1B and TNF genes, as reported in Fig. 14.
In the aorta tissue, we found the modulation of CCK and KCNQ1 genes (see Fig. 15).

Table 1.  Table reports the number of genes which present a modification (number of genes increasing and 
decreasing) for different age groups in different tissues.

Tissue No increasing No decreasing

Adipose subcutaneous 9 4

Adipose visceral 51 17

Adrenal gland 7 4

Artery aorta 2022 5 5

Artery tibial 2022 0 0

Brain anterior 1 11

Brain caudate 5 2

Brain cerebellar hemisphere 3 24

Brain cerebellum 3 20

Brain cortex 13 12

Brain frontal cortex 1 6

Brain hippocampus 4 20

Brain hypotalamus 1 14

Brain 2 4

Brain putamen basal ganglia 3 3

Brain spinal cord cervical 0 2

Brain substantia nigra 1 17

Breast mammary 202 1 1

Colon sigmoid 0 1

Colon transverse 2 0

Esophagus muscolaris 1 0

Heart atrial appendage 3 0

Heart left ventricle 1 0

Kidney cortex 0 2

Liver 2 8

Lung 2 5

Minor salivary gland 9 2

Muscle skeletal 10 0

Nerve tibial 2 1

Ovary 1 1

Pancreas 12 0

Pituitary 3 0

Prostate 4 1

Spleen 1 1

Testis 1 0

Thyroid 0 0

Uterus 6 13

Vagina 0 1

Blood 1 2

Total 171 204
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Finally, as depicted in Fig. 16, we found a significant (p value ≤ 0.01 Kruskal Wallis test) variation in the fol-
lowing genes with respect to tissues: CHI3L1 in the kidney, B2M in the lung, CNTF in muscle, AR in nerve tibial, 
CX3CL1 in the pancreas, TSC1 in the uterus, and NGF in Blood.

The patterns for all the genes obtained by using the proposed framework have been reported as boxplots and 
are available at https:// github. com/ hguzzi/ Diabe tesAg ing/ tree/ main/ boxpl ot.

To complete our study we built the network of interactions of all the significant genes found by using the 
STRING database. The resulting network has 65 interacting genes and 147 interactions as reported in Fig. 17. 
Functional enrichment of this network has been evaluated and results are reported in Fig. 18, where the den-
drogram shows some interesting detected functions.

We further analysed the network by means of cluster analysis made with Markov Clustering  Software47, which 
reveals the insurgence of four subnetworks as reported in Fig. 19.

First subnetwork shows a set of genes (i.e., CHI3L1, AGTR1, SMPD1, CX3CL1, XIAP, CD40, CD9, IL6, and 
CNR1) centred around TNF and IL1B as depicted in Fig. 20.

This network is related to the following KEGG pathways (FDR less than 0.01): Insulin resistance, TNF1 and 
IL1B pathways, hematopoietic cell lineage and AGE–RAGE. The subnetwork, depicted in Fig. 21, shows a set of 
proteins centred around MAPK gene responsible for (i) the mTOR signalling pathway, (ii) the PT3K-Akt path-
way and (iii) the insulin signalling pathway. The network confirms that many mechanisms related to diabetes 
mellitus are deregulated with age.

The network depicted in Fig. 22, highlights the changes in proteins related to calcium signalling. Finally, 
the 54 obtained networks are available at https:// github. com/ hguzzi/ Diabe tesAg ing/ tree/ main/ netwo rkana lysis.

Discussion
Elderly patients diagnosed with T2DM usually have more than two  comorbidities48. T2DM comorbidities span 
a wide class such as (i) cognitive and visual impairment, (ii) incontinence, (iii) hearing loss, (iv) severe hyper/
hypoglycemic episodes and adverse cardiovascular events, and (v) peripheral and autonomic neuropathy. Patients 
presenting pathologies such as obesity, geriatric syndromes, or cardiovascular risk factors, may also have an 
increased mortality risk related to diabetes mellitus  disease49.

Assuming that the increased risk of comorbidity in elderly could be related to changes in the basal expression 
of genes, we selected all the genes related to comorbidities and found that a number of them present significant 
changes with age, thus confirming our hypothesis. We analysed such genes and found that they are significantly 
enriched in some aspects related to diabetes mellitus, as depicted in Fig. 18 where functional enrichment of the 
genes with a different expression across different age groups is reported.

Results show a relatively high number of genes related to comorbidities whose basal expression modifies with 
age. The analysis of such genes in different brain tissues shows the deregulation of many genes and pathways 
(see Figs. 6, 7, 8, 9, 10, 11).

These changes may explain the particular insurgence of neurological T2DM comorbidities in the elderly. 
The network among these genes is reported in Fig. 17 where it can be noted some modulated pathways poten-
tially responsible for brain damage were identified. Moreover, by analyzing the obtained networks, we found 

Figure 4.  Figure reports the genes which present a significant modification over time in different tissues (p 
value <0.05, Kruskal Wallis Test). The figure represents the association between genes (in bold) and tissues (in 
red italics). Blue labels evidence genes we found changed in more tissues.

https://github.com/hguzzi/DiabetesAging/tree/main/boxplot
https://github.com/hguzzi/DiabetesAging/tree/main/networkanalysis
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the VEGFA-VEGFR2  pathway50 whose modifications have been demonstrated to correlate with a metabolic 
 syndrome51.

Functional enrichment also indicates a change in the pathway related to insulin signalling and the metabolism 
of regulation of glucose and  lipid52,53. In the adipose tissue, as shown in Fig. 13, we found significant changes in 
glucose-related pathways as  in54, where research topics regarding adipose tissue and its dysfunction and changes 
in gene expression with age are reported. As reported  in55, there are beneficial effects of cardiac microvascular 
protection in diabetes mellitus through PRDX2 pathways. We found that the downregulation of the PRDX2 gene 
in elderly patients implies an added risk of cardiac disease in this age group. In parallel, we found some genes 
related to the AGE-RAGE signalling pathway as  in56. The dysregulation of the AGE-RAGE pathway results in 
Advanced glycation end products triggering oxidative stress. Consequently, diabetes mellitus in older patients 
amplifies the modification of this pathway, thus enhancing the triggering of oxidative stress and inflammation.

Since obesity entails an accelerated ageing process, thus inducing an inflammation state, we find many genes 
responsible for comorbidities are expressed in the adipose tissue. We may thus state that reducing obesity induces 
the reduction of ageing process and inflammation, pointing the way towards new therapies.

We found two genes, the CCK, and the KCNQ1, that are expressed in the aorta tissue, whose expression is 
significantly modified with age. Both are related to pancreatic secretion  pathways57. KCNQ1 is also associated 
with diabetic nephropathy (DN) that can be considered the primary cause of end-stage renal disease (ESRD)58. 
Also, we identified IL1B and TNF genes that change with age in liver tissue as in Fig. 14. The role of IL1B in 
diabetes mellitus has been investigated recently  in59.60 excludes a prominent role of IL1B in T2DM, while we 
found that there is evidence of a function of IL1B in the regulation of postprandial  glucose60, and in glucose 
 homeostasis61. Our findings suggest that dysregulation of IL1B levels may play a physiological role in IL1B and 
insulin regulation, exacerbating postprandial inflammation. The synergistic dysregulation of IL1B and TNF in 

Figure 5.  Figure highlights the relations among the studied genes and the comorbidities, as reported in the 
T2DiACoD database. Blue Nodes are related to a single disease, while orange nodes are shared between two or 
more diseases.
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elderly patients may suggest the tailoring of therapeutic strategies for the  elderly62. We found deregulation of 
Beta 2 microglobulin (B2M) in the lung as depicted in the heatmap of Fig. 16. This implies the deregulation of 
cytokine regulation and PI3-AKT pathways. The literature notes that B2M has a role in oxidative stress in older 
 patients63. The dysregulation of B2M may have an impact on the regulation of cellular functions. It also has a 
documented role in kidney dysfunctions in diabetes mellitus patients. Here we provide that B2M may have a 
supplementary role in lung  inflammation64,65.

In this work, we used only in-silico data, and we analysed the change of the basal expression of such genes 
in the healthy population. This may be a limitation of this work regarding causality relation. Nevertheless, we 
think that screening all the possible candidates and selecting a limited group of candidates and defining relations 
among ages and comorbidities may help in - for instance - studying new strategies for preventing and treating 
comorbidities occurrence.

Figure 6.  Figure reports the heatmap of the genes with significant changes in Brain Cerebellar tissue with 
age. Changes have been measured by using a Kruskal–Wallis test. Rows of the heatmap represent genes with 
significant changes. Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years. Lower 
values are represented in red while green means higher values. Figure depicts the protein interaction network 
extracted from the STRING database. Figure bottom part reports functional enrichment analysis (biological 
process from Gene Ontology portal).

Figure 7.  Figure depicts the heatmap of the genes with significant changes in Brain Cerebellum tissue with 
age. Changes have been measured by using a Kruskal–Wallis test. Rows of the heatmap represent genes with 
significant changes. Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years. Lower 
values are represented in red while green means higher values. Figure depicts the related protein interaction 
network extracted from the STRING database while the bottom part contains the functional enrichment 
analysis (biological process from Gene Ontology portal).
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The specificity of the findings for diabetes mellitus relies on the initial selection of candidate genes in the 
T2DiACoD database that stores only genes known to be related to T2DM comorbidities. All the genes contained 
in the T2DiACoD database have a direct relation with T2DM comorbidities. The added value of our manuscript 
is the analysis of how these genes also present a modulation with age. The age-dependent modulation can be an 
additional risk factor for developing diabetes comorbidities. The analysis of the causal relationship may constitute 
a follow-up of this work.

Figure 8.  Figure depicts the heatmap of the genes with significant changes in Brain Cortex tissue with age. 
Changes have been measured by using a Kruskal–Wallis test. Rows of the heatmap represent genes with 
significant changes. Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years. Lower 
values are represented in red while green means higher values. Interaction network for proteins extracted from 
the STRING database is reported in the middle, while the bottom part contains the functional enrichment 
analysis (biological process from Gene Ontology portal).

Figure 9.  Figure depicts the heatmap of the genes with significant changes in Brain Frontal tissue with age. 
Changes have been measured by using a Kruskal–Wallis test. Rows of the heatmap represent genes with 
significant changes. Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years. Lower 
values are represented in red while green means higher values. The interaction network gathered from STRING 
databases is the one related to such genes. The bottom part contains the functional enrichment analysis 
(biological process from Gene Ontology portal).
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Methods
To study genes and their changes with respect to ageing tissues, we queried available databases using the proposed 
framework whose architecture is reported in Fig. 2. This framework uses (i) the T2DiACoD database for selecting 
candidate genes, (ii) the GTEx portal for gene expression at the tissue level, and (iii) the STRING database to 
build interaction networks. We briefly describe the aforementioned data sources, as well as the bioinformatics 
pipeline reported at the bottom part of Fig. 2.

Data sources. The proposed framework is based on the following data sources:  T2DiACoD  database39, 
GTEx  database40, and STRING network  database66. T2DiACoD contains genes and non-coding transcripts 
related to complications associated with type 2 diabetes mellitus. It is the result of research into T2DM which 
links genes to disease. In particular, the authors focused on comorbidities and complication diseases such as 

Figure 10.  Figure depicts on the left the heatmap of the genes with significant changes in Brain hippocampus 
tissue with age. Changes have been measured by using a Kruskal–Wallis test. Rows of the heatmap represent 
genes with significant changes. Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years. 
Lower values are represented in red while green means higher values. The central area of the figure depicts the 
related protein interaction network extracted from the STRING database while the bottom part contains the 
functional enrichment analysis (biological process from Gene Ontology portal).

Figure 11.  Figure depicts on the left the heatmap of the genes with significant changes in Brain hypothalamus 
tissue with age. Changes have been measured by using a Kruskal–Wallis test. Rows of the heatmap represent 
genes with significant changes. Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years. 
Lower values are represented in red while green means higher values. The central area of the figure depicts the 
related protein interaction network extracted from the STRING database while the bottom part contains the 
functional enrichment analysis (biological process from Gene Ontology portal).
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atherosclerosis, nephropathy,diabetic retinopathy, diabetic neuropathy, and cardiovascular diseases. The data-
base, populated by mining the literature and other data sources, stores 650 genes and 34 microRNAs related 
to comorbidities. Genes are associated with the comorbidities as reported in the following Table 2. The number of 
samples for each tissue is variable as reported in Table3

The GTEx data portal represents one of the most commonly used sources for collecting whole-genome 
sequencing and RNA-seq data in individuals. For each sample, GTEx provides patient information, such as tissue 

Figure 12.  Heatmap showing the behaviour of all the significant changed genes in all brain tissues divided by 
age interval (i.e. 20–29,...).
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of provenance, sex and age (grouped into six classes). The current version of the GTEx database (v8 accessed on 
September 25th stores 17382 samples of 54 tissues of 948 donors, see at https:// gtexp ortal. org/ home/ tissu eSumm 
aryPa ge) is available on the web and offers an easy to use query interface and visualisation of data in tissues used 
in many ageing-related  studies3,67–69.

The STRING protein interaction network database is used to build protein networks. It collects evidence of 
interactions from many sources, from text-mining and computational prediction to annotated experiments. For 
each interaction, it provides the source of the association (e.g. physical or computational) and a reliability score 
in the 0..1 interval. We considered only physical interactions with a reliability value higher than 0.400.

Data analysis. The above reported data sources have been used by framework proposed herein to perform 
the following steps. The framework allows the user to query the T2DiACoD database to retrieve genes related to 
T2DM comorbidities contained in the database. Each gene is then used to query the GTEx data portal in order to 

Figure 13.  Figure depicts on the left the heatmap of the genes with significant changes in Adipose  tissue with 
age. Changes have been measured by using a Kruskal–Wallis test. Rows of the heatmap represent genes with 
significant changes. Columns represent age groups: 20–29, 30–39. 40–49, 50–59, 60–69, 70–79 years. Lower 
values are represented in red while green means higher values. The central area of the figure depicts the related 
protein interaction network extracted from the STRING database while the bottom part contains the functional 
enrichment analysis (biological process from Gene Ontology portal).

https://gtexportal.org/home/tissueSummaryPage
https://gtexportal.org/home/tissueSummaryPage
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retrieve all the available expressions. Results obtained from the GTEx portal are also associated with tissues and 
age information. Samples are grouped using tissues and each tissue expression is analysed. Also, median values 
of gene expression is calculated with respect to age classes: 20–29, 30–39, 40–49, 50–59, 60–69, 70–79 years. We 
then selected those genes whose average values of the expression are monotonically increasing or decreasing in 
that age interval. For each gene we calculated the significance of the difference in the expression between the 
intervals by means of Kruskal–Wallis test. A p-value less than 0.01 (after correction for multiple tests) was con-
sidered significant. Since we verified that normality distribution does not hold for some classes, we decided to apply 
a Kruskal Wallis test with respect to the ANOVA. The calculated p-value and testing correction has been performed 
by using the Bonferroni correction method. 

Figure 14.  The top left corner of the figure depicts the average value of the gene expressions. Rows represent 
genes with significant changes (by means of Kruskal–Wallis test). Columns represent age groups: 20–29, 30–39. 
40–49, 50–59, 60–69, 70–79 years. Lower values are represented in red while green means higher values. The 
central area depicts the related protein interaction network extracted from the STRING database and the 
pathway analysis, at the bottom.

Figure 15.  Gene expression in aorta tissue. We found CCK that decreases with age while KCNQ1 increases. 
Significant changes found by means of a Kruskal–Wallis Test, p<0.05.
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Figure 16.  The top left corner of the figure depicts the average value of the expression of genes. Rows represent 
genes with significant changes (by means of Kruskal -Wallis test). Columns represent age groups: 20–29, 30–39. 
40–49, 50–59, 60–69, 70–79 years. Lower values are represented in red while green means higher values. In the 
top right corner is the related protein interaction network extracted from the STRING database.

Figure 17.  Figure depicts the protein interaction network induced by all the genes with a different average 
expression depending on age groups. The network has 66 nodes and 147 edges. The average node degree is 4.45 
and has a p-value < 1.0e-16 to be generated at random. This means that the proteins have more interactions 
themselves than what would be expected for a random set, indicating that as a group the proteins are at least 
partially connected biologically.
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From the STRING  database70 we extracted the protein interaction networks induced by increasing or decreas-
ing genes. For each network we computed the functional enrichment by means of the STRING web server 
focusing on gene ontology (GO) Biological Process and KEGG database pathways enriched with FDR p-value 
less than 0.05.

Figure 18.  Figure depicts the functional enrichment of the genes with a different average expression depending 
on age group. The dendrogram shows some interesting functions such as Insulin Resistance, AGE–RAGE 
pathway, Lipid and Atherosclerosis.

Figure 19.  Clustered Network of all the interactors using Markov Clustering MCL (inflation parameter set to 
3.0). The analysis reveals the emergence of seven subnetworks, each corresponding to a synergistic relation of 
the genes.
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Data and code availability. Network visualisation was performed through a Cytoscape app (http:// apps. 
cytos cape. org/ apps/ strin gapp). The analysis was implemented in the R programming Language. Data and Code 
are available at https:// github. com/ hguzzi/ Diabe tesAg ing. More data are available upon reasonable request. 
Heatmaps used in this article have been generated by using the on line software http:// www. heatm apper. ca/ 
expre ssion/71.

Figure 20.  Figure depicts the protein interaction network induced by all the genes having a different average 
expression depending on age group. The table shows the main enriched function. Functional Enrichment shows 
that the subnetwork is associated with pathways related to diabetes: Insulin resistance, AGE–RAGE2 pathway, 
and Tumor Necrosis alpha.

Figure 21.  Figure depicts the protein interaction network induced by all the genes having a different average 
expression depending on age group. Table shows main enriched function. The following proteins and the 
related pathways are involved in diabetes and ageing: longevity regulating pathway (MAPK1), Insulin Signaling 
Pathway (PDPK1), and mTOR.

http://apps.cytoscape.org/apps/stringapp
http://apps.cytoscape.org/apps/stringapp
https://github.com/hguzzi/DiabetesAging
http://www.heatmapper.ca/expression/
http://www.heatmapper.ca/expression/
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Figure 22.  Figure depicts the protein interaction network induced by all the genes having a different average 
expression depending on age groups. Table shows the main enriched function.

Table 2.  Number of Genes for each disease as stored in the T2DiACoD database.

T2 associated disease Number of genes

Atherosclerosis 115

Cardiovascular 172

Diabetic nephropathy 403

Diabetic neuropathy 130

Diabetic retinopathy 161

Table 3.  Number of samples for each tissue.

Tissue Samples

Adipose subcutaneo 663

Adipose visceral 541

Adrenal gland 258

Artery aorta 864

Brain anterior 176

Brain caudate 246

Brain cerebellar 215

Brain cortex 255

Brain frontal cortex 209

Brain hippocampus 197

Brain hypotalamus 202

Brain nucleus accumbengs 246

Brain putamen Basal ganglia 205

Brain substantia nigra 139

Breast 459

Colon 373

Kidney 85

Liver 226

Lung 578

Muscle skeletal 803

Nerve tibial 619

Pancreas 328

Uterus 142

Whole blood 755



18

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10372  | https://doi.org/10.1038/s41598-023-37550-x

www.nature.com/scientificreports/

Conclusion
We proposed a framework that by focusing on type 2 diabetes (T2DM) comorbidities, can gather data from gene 
databases. By measuring gene variations over time, we obtained significant results as regards the gene responsible 
for comorbidities. First we selected from the T2DiACoD database the list of genes related to comorbidities. We 
then extracted networks of proteins connecting them and, at the same time, analysed their pattern considering 
age as factors. We proved the action of certain genes that could be used to develop specific therapies. As the pro-
portion of elderly people grows the number of cases of T2DM increases. This research could help in understand-
ing the hidden link between age and diabetes, thereby fostering the development of new strategies to prevent the 
effects of ageing and also improve the treatment or prevention of Type 2 diabetes mellitus.

Data availibility
Website https:// github. com/ hguzzi/ Diabe tesAg ing/ tree/ main/ boxpl ot contains all the figures, data and networks 
used in this work.
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