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A novel neural network model 
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The considerable improvement of technology produced for various applications has resulted in 
a growth in data sizes, such as healthcare data, which is renowned for having a large number of 
variables and data samples. Artificial neural networks (ANN) have demonstrated adaptability and 
effectiveness in classification, regression, and function approximation tasks. ANN is used extensively 
in function approximation, prediction, and classification. Irrespective of the task, ANN learns from 
the data by adjusting the edge weights to minimize the error between the actual and predicted 
values. Back Propagation is the most frequent learning technique that is used to learn the weights 
of ANN. However, this approach is prone to the problem of sluggish convergence, which is especially 
problematic in the case of Big Data. In this paper, we propose a Distributed Genetic Algorithm based 
ANN Learning Algorithm for addressing challenges associated with ANN learning for Big data. Genetic 
Algorithm is one of the well-utilized bio-inspired combinatorial optimization methods. Also, it is 
possible to parallelize it at multiple stages, and this may be done in an extremely effective manner 
for the distributed learning process. The proposed model is tested with various datasets to evaluate 
its realizability and efficiency. The results obtained from the experiments show that after a specific 
volume of data, the proposed learning method outperformed the traditional methods in terms of 
convergence time and accuracy. The proposed model outperformed the traditional model by almost 
80% improvement in computational time.

Artificial Neural Networks are built from a collection of connected units or nodes known as artificial neurons, 
which are roughly modelled after the neurons in the biological brain. Warren McCulloch, Walter Pitts, and 
Donald Hebb introduced the concept of an artificial neural network (ANN) in the  1940s1. In the beginning, it 
was a means of simulating intelligent behavior by modelling the interconnected circuits of neurons in the brain. 
Nodes in an ANN include an input layer, hidden layer(s), and an output layer. There are connections between 
each node, or artificial neuron, and each one has a threshold and weight associated with it. Any node whose 
output exceeds the predefined threshold value is activated and begins providing data to the subsequent layer of 
the network. If this condition is not met, no data is sent to the next network layer.

When training a neural network, the standard approach involves randomly selecting a starting point and 
then following the gradient till reaching the top of the hill. This method is known as gradient decent algorithm. 
For objective functions with a single peak, such as the cost function in linear regression, this method is highly 
effective and efficient. However, in most real-world scenarios, we have a tremendously complicated problem 
described as landscapes made up of many peaks and valleys. Such algorithms fail due to their intrinsic ten-
dency to become stuck at the local optima. Another flaw is the inefficiency of differential operation. Hidden 
layers in multilayer networks typically employ sigmoid transfer functions. Because they compress an infinite 
input range into a finite output range, these functions are commonly referred to as “squashing” functions. The 
defining feature of a sigmoid function is that its slope tends to zero as the input is big. For example, if you are 
using steepest descent to train a multilayer network with sigmoid functions, you might run into trouble if the 
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magnitude of the gradient changes less and less as the input size grows; this would result in increasingly minor 
adjustments to the weights and biases, even though they are still well off their optimal values. In contrast, Genetic 
Algorithms (GAs) are potent optimization techniques that provide a fast search strategy for a large problem 
space. Replacing the gradient descent with a GA might be useful in avoiding the above-mentioned issues. Also, 
Genetic Algorithms have many advantages over other global optimization schemes, such as Particle Swarm 
Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA) etc. Genetic algorithms use 
a population-based approach, allowing for diverse solutions to be explored while converging towards promising 
regions. This characteristic makes GA well-suited for tackling complex optimization problems, as GA explores 
the search space extensively, ensuring a diverse set of potential solutions is considered. Also, The parallel nature 
of GA allows for simultaneous evaluation and evolution of multiple solutions, enabling faster convergence 
and improved scalability. GA possesses inherent robustness against local optima due to its population-based 
nature and the mechanisms of selection, crossover, and mutation. This characteristic allows GA to escape from 
suboptimal solutions and continue searching for better solutions globally. Genetic Algorithms have been suc-
cessfully applied to a wide range of optimization problems, including feature selection, parameter tuning, and 
classification tasks in literature.

This study intends to employ GA to train the neural networks. The GA is widely used in many subfields of 
management science, operational research, and industrial engineering since it is one of the most well-known 
metaheuristic algorithms. If the iterative processes required by the genetic operators can be implemented in a 
parallel and distributed computer architecture, GAs would be more effective in solving large-scale optimiza-
tion issues. In order to harness the power and efficiency of GA evolution when training ANNs, this research 
suggests incorporating the popular GA into the widely-used Apache Spark distributed computing framework. 
The major contribution of our work lies in the integration of a neural network model and a distributed evolu-
tionary approach, specifically tailored for big data classification. While both neural networks and evolutionary 
algorithms have been extensively studied independently, our research presents a novel approach by combining 
these two domains to enhance the accuracy and scalability of classification tasks involving large datasets using 
Apache Spark framework.

Literature review
Neural networks are powerful tools for solving complex systems due to their ability to learn and recognize 
patterns from data. By training on large datasets, Neural Networks can approximate complex functions, make 
predictions, optimize processes, and detect anomalies. Their versatility and capacity for learning make them 
valuable in a wide range of applications, including pattern recognition, forecasting, optimization, and control 
of complex systems. There are numerous existing methods available to effectively model complex systems. Iqbal 
et al. conducted an analysis of a computer virus epidemic model using fractional order differential  equations2. 
Iqbal et al. also conducted an analysis on the stochastic form of the Newell–Whitehead–Segel  equation3. Kazeem 
et al. utilized the exponential matrix algorithm, differential transformation algorithm, and Runge–Kutta method 
to simulate temperature distribution in heating  tanks4. Liaqat et al. introduces a conformable Shehu transform 
decomposition method (CSTDM), a novel algorithm for solving quantum mechanical models with high accu-
racy and  efficiency5. Shahzad et al. investigated fluid flow through double disks, considering various boundary 
conditions and incorporating the effects of microorganisms and thermal  parameters6. Another study presents a 
mathematical model of non-integer order through the fractal fractional Caputo operator to analyze the develop-
ment of Ebola virus  infections7.

There are also numerous existing works where neural networks have been utilized to analyze and understand 
complex systems. Basma et al. introduces the numerical performances of the fractional kind of food supply 
(FKFS) model using fractional derivatives and stochastic scaled conjugate gradient neural  networks8. Sabir et al. 
introduced a stochastic solver based on the Levenberg-Marquardt backpropagation neural networks (LMBNNs) 
for the nonlinear host-vector-predator  model9. The COVID-19 spreading model is investigated using artificial 
neural networks with Levenberg-Marquardt backpropagation training by Umar et al10. Another work by Umar 
et al. introduces a numerical computing technique using artificial neural networks optimized with particle swarm 
optimization and active-set algorithms to solve the nonlinear corneal shape  model11.

Neuroevolution is the term used to refer to the process of applying evolutionary algorithms for the opti-
mization of neural  networks12,13. Recent years have garnered the attention of researchers in the possibilities of 
integrating the search power of evolutionary computation (EC) with the learning capabilities of artificial neural 
networks (ANN) for a variety of  applications14. Traditionally, Backpropagation (BP) has been the most common 
algorithm used to train multilayer feed-forward neural networks. As a means of reducing the network’s error, 
BP employs a gradient descent rule. However, BP has certain constraints. Since it excels mainly at exploiting the 
existing solution, it tends to converge to local optima, which might lead to subpar classification accuracy. It also 
has issues with both convergence speed and  scalability15. Researchers are increasingly adopting metaheuristic 
algorithms with global search capabilities to build optimum weights and biases in ANNs, since these can surpass 
the limitations of conventional approaches. GA, a form of search heuristic, takes its cue from Darwin’s theory of 
evolution through natural selection, in which only the strongest and most adaptable survive to pass their genes on 
to future  generations16. Er and Liu suggested a hybrid approach employing GA with BP to improve MLP Neural 
Network (MLPNN) parameters in  200917. Singh and De developed an MLP-GA-based approach to incoming 
traffic in the year 2017, with the intention of detecting application layer DDoS  attacks18. A strategy for optimiz-
ing the hyper-parameters of an MLPNN through a GA was proposed in 2018 by Itano, Sousa, and  Hernandez19. 
In 2020, Ecer et al. put forward an approach to predict stock price movement direction through integrated MLP 
methodologies, multilayer perceptron-genetic algorithm (MLP-GA) and multilayer-particle swarm optimization 
(MLP-PSO)20.  In21–26, training an MLP with GA and comparing its findings to those obtained via BP were carried 
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out. Training ANN algorithms is a computationally expensive task, thus limiting its usage in processing big and 
complex problems. Therefore, it is desirable to implement ANNs on a parallel or distributed platform to boost 
performance. Calvert proposed a technique in 2005 to anticipate and evaluate the performance of distributed 
ANN algorithms by looking at how well they handle the relatively straightforward mathematical operations 
required to build the  network27. To improve the accuracy of identifying students with learning disabilities, Wu 
et al. suggested parallelizing and optimizing a genetic-based ANN classifier in  201028. In 2012, Casas suggested 
a method for parallelizing the backpropagation algorithm used to train a network that predictions the SP 500 
Index. Parallelizing the backpropagation technique to operate on four processors concurrently reduced train-
ing time by 61%29. In 2012, Gonzalez et al. proposed a multi-step ahead TSF (Time Series Forecasting) using a 
fully automatic Evolutionary ANN (EANN) system using two parallel programming standards: Message Passing 
Interface (MPI) and Open Multi-Processing (OpenMP)30. In this study, a distributed processing framework for 
GA-evolved neural network classifier has been explored, as well as the effectiveness of this framework in big data 
classification problems. A comprehensive review and recent advances of EC in ANN and other machine-learning 
algorithms can be found in Telikani et al.31.

Distributed evolutionary neural network
Overall architecture. This study proposes a metaheuristic method to train the neural networks (Fig. 1). 
GA is used to determine suboptimal values of weight coefficients and bias for the Artificial Neural Network. 
With an input layer, two hidden layers, and an output layer, our ANN model has a total of four layers. A distrib-
uted GA Architecture is employed to train the neural networks to improve the model’s effectiveness in handling 
large datasets.

Training neural networks with GA. Weight training for an ANN using a GA entails three stages. The first 
step is to determine the chromosome representation of connection weights for the GA population; the second 
step is to evaluate the fitness of these connection weights by testing the efficacy of the weights in an ANN and 
computing the mean square error; and the third step is to apply the evolutionary process of GA, which includes 
selection, crossover, and mutation. Evolution ceases when fitness exceeds a specified value or the population 
converges. The Genetic Learning of ANN weights can be described using the following stages: 

 (i) Each chromosome in the population represents the weight matrix of the neural network. The population 
is initialized in such a way that each chromosome is initialized with a random set of integers as genes. 
The population size and size of a chromosome is initialized as hyper-parameters.

 (ii) Evaluate each set of the connection weights by passing them through the feed-forward ANN model to 
make a prediction and compute the total mean square error between the predicted and target outputs. 
Total MSE (Equation (1)) is used to estimate the fitness of an individual chromosome. 

 (iii) In the next phase, based on their fitness values, the best chromosomes are selected as parents for repro-
duction in the new population. This aids the model to converge or move to optimal solutions. A selection 
method based on a roulette wheel is  adopted16. The population of the current generation is represented 
on a roulette wheel, with each chromosome occupying a slot in proportion to its fitness.

 (iv) The crossover and/or mutation operators are then applied to parent chromosomes to generate offsprings 
and increase genetic variability, forming the next generations. This study uses a single-point crossover, 
in which a random combination point is chosen for both parents’ chromosomes. The chromosomal seg-
ments after these combination locations are exchanged, producing two new offsprings. After applying 
crossovers, mutation is applied on randomly selected chromosomes based on the mutation  rate32. If the 
stopping condition is met the fittest individual in the population is returned; otherwise, the evolution 
continues.

Distributing genetic operators using map reduce. This section describes the distribution of genetic 
operators of GA for weight training of ANN as depicted in Fig. 1. The data is split into 80% for training and 20% 
for testing purposes. The proposed Apache Spark is utilized to distribute the GA. Distributed GA generates an 
initial population of solutions at random and distributes them as an RDD across multiple partitions. Using the 
parallelize method, the initialized population is parallelized into populationRDD and then divided into seg-
ments, with each segment being assigned to a separate node in the distributed environment for processing. After 
mapping the parallel population segments with a fitness function, each segment of the population is evaluated in 
parallel. The fitness of each particle in the population is calculated using mean-squared error. The fitness value 
of each chromosome is evaluated on different workers where the chuck of the population that has the particular 
chromosome resides. Following that, the driver program collects the results and performs genetic operators on 
them. In the context of the spark driver execution, the parallelize() method of Spark is used to convert the ini-
tial population into a populationRDD that comprises pairs of chromosome identifiers and their corresponding 
chromosomes, < chromosome_id, chromosome>. The training data is partitioned across the nodes using the 
parallelize() method. After that, a map transformation of spark is executed as map(evaluateFitness()) is applied 
to the populationRDD and the training data to compute the fitness score of each chromosome in the popula-
tion and to turn populationRDD into fitnessValueRDD, which contains pairs of <fitness, chromosome> entries. 
The training data is distributed across the nodes into different partitions, and the driver program executes the 

(1)MSE =

n∑

i=1

(Yi − Ŷi)
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evaluateFitness() function on the cluster in parallel on different worker nodes to compute the fitness values of 
each partition of the training data. When the evaluation phase concludes, and the collect() operation initiates the 
collection of these pairs to the driver. Next, the fitnessValueRDD is parallelized using the parallelize() function 
of Spark where it is divided into subpopulations. Then the mapPartitions(geneticEvolution()) transformation, 
is invoked where the geneticEvolution() function is performed in parallel on each worker node which con-
tains different partitions of the fitnessValueRDD. In the function geneticEvolution() three genetic operators are 
applied, selection(), crossover() and mutation() functions and a evolutionRDD is produced in the end, which 

Figure 1.  Overall architecture of proposed distributed evolutionary neural network.
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contains the evolved chromosome <chromosome_id, chromosome> pairs. In selection(), a roulette wheel selec-
tion mechanism is used to select the best individuals for reproduction in the next generation, crossover() uses 
the selected best individuals from selection() for reproduction and produces better offspring and mutation() 
is then performed on the produced offsprings so that the model converges to a solution faster. To perform 
crossover, all the selected chromosomes are sampled and stored into two even list RDDs, which are parallelized 
using the parallelize() function and key-value pairs of two random chromosomes in the two lists are formed. 
A map() function is used to perform single-point crossover over the key-value pairs, <chromosome, chromo-
some>, one by one and the crossoverRDD is produced. After the crossover is complete, the gene loci of randomly 
selected chromosomes are traversed using map() with the mutation factor specified as a hyperparameter, and 
then a negation operation is done on the gene loci to produce a new chromosome. As a result of mutation, the 
evolvedRDD is generated and saved in the system’s memory. Once all the genetic operators have been applied, 
and evolvedRDD is produced, the map(.best_chromo()) transformation is applied to convert evolvedRDD into 
bestChromosomeRDD, which is a <key,value> pair, where the key is the chromosome_id and value is the fitness 
value of the fittest chromosome in the partition. At last, the collect() method compiles the top performers from 
each worker to determine the optimal solution, which is then used to train the feed-forward neural network.

Coordinated learning process. The GA generates numerous potential solutions to the issue at hand and 
then refines them over the course of several generations. Every solution contains all of the parameters that might 
contribute to producing better results. When applied to ANN, weights in each layer contribute to achieving high 
accuracy. As a result, a single solution obtained using GA will contain all of the weights used by ANN. Our ANN 
model consists of a total of four layers, which are comprised of an input layer, two hidden layers, and an output 
layer.
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Implementation and tools
The experiment was carried out on a high-performance Hadoop cluster consisting of one Name node server and 
two Data node servers with a total of 768GB RAM and 144 core processor. Apache Spark 3.3.0 is supported by 
the cluster. Apache Spark is a free and open-source distributed data processing engine that is scalable, rapid, and 
allows massive data processing established by UC Berkeley, which permits distributed application developers 
to program in Java, Python, Scala, and R. PySpark is its Python API. Not only does it provide the Python APIs 
needed to develop Spark applications, but it also gives access to the interactive PySpark shell for analyzing the 
data in a distributed environment.

Results and discussions
Benchmark datasets. Three datasets, HEPMASS, SUSY, AND HIGGS, are used to evaluate the perfor-
mance of the proposed Distributed Evolutionary Neural Network. The datasets were obtained from the UCI 
Machine Learning Repository. The HEPMASS data set contains sophisticated physics experiments designed to 
search for exotic particles as well as a bi-classification task. The “SUSY” data discriminate between a signal pro-
cess that generates super-symmetric particles and a background activity that does not correspond to the occur-
rence. Data referred to as “HIGGS” are samples of signals used to assess if they are consistent with the emission 
of Higgs Bosons. Each data set’s properties are displayed in Table 1.

Performance evaluation of the proposed model with the existing models. The performance of 
the model is evaluated using various performance metrics. These performance measures considered are accu-
racy and area under ROC. Accuracy is the degree to which the projected value closely matches the actual value. 
The outcome of a data point might be True Positive, TP (label and prediction are both positive), False Positive, 
FP (the label is negative, but the prediction is positive), True Negative, TN (label and prediction are both nega-
tive) and False Negative, FN (the label is positive but prediction is negative). The accuracy metric is described 
as follows:

Table 2 depicts the comparison of accuracy values obtained for GA-based ANN, which works in a normal mode, 
and the proposed distributed evolutionary neural network.

Both GA-ANN and DENN give comparable results in terms of accuracy values, with DENN producing 
slightly better performance. It can be observed that the effect of the distributed environment does not have a nega-
tive impact on the performance of accuracy but, rather, leads to a marginal improvement in the accuracy values.

In addition to measuring accuracy, the area under ROC (Receiver Operating Characteristic) curve is assessed 
as well. The receiver operating characteristic (ROC) plot compares the true positive rate (TPR) to the false positive 
rate (FPR) at various thresholds for classifying the data. The area under the receiver operating characteristic curve 
(ROC) is a metric that depends on how effectively the classifier can differentiate between the two binary classes. 
The area’s value varies from 0 to 1. The greater the ROC area, the more accurate the prediction. Figures 2, 3 and 4 
depicts the results of ROC curve and the Area under ROC curve values for all the algorithms under consideration.

As with the case with accuracy, it can be observed that there is just a marginal improvement in the case of Area 
under ROC Curve metric values. This depicts that the distribution does not considerably impact the accuracy 
or AUC measures. More Area under ROC values (usually greater than 0.65) indicates classification confidence.

(2)A =
(TP + TN)

(TP + TN + FP + FN)

Table 1.  Details of datasets.

Dataset Number of instances Number of attributes Size (GB)

SUSY33 5,000,000 18 2.23

HEPMASS34 10,500,000 28 4.82

HIGGS35 11,000,000 28 5.74

Table 2.  Accuracy comparison.

SUSY HEPMASS HIGGS

BP-ANN 69.33 72.78 59.24

ACO-ANN 74.62 86.5 60.27

PSO-ANN 77.69 89.13 62.88

ABC-ANN 73.25 88.71 63.9

GA-ANN 76.54 90.16 64.25

DENN 78.63 90.69 67.30
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Impact on training time. Taking into consideration the execution time, it can be observed that the use of 
the distributed environment in DENN accelerates the learning performance of the classifier by more than 75% 
in all the datasets considered when compared with GA-ANN executed in normal mode (Table 3). These results 
were obtained when the whole of the dataset was considered for classification.

A similar result also can be seen in Table 4, where distributed environment also improves the speed by around 
80% for every scenario in partial training data except for when the number of rows is 10000. For a smaller number 
of instances, the overhead of distributing the dataset is higher; hence a significant improvement in the execution 
time cannot be observed.

Speedup trend. Another metric used to evaluate the performance of the proposed model is speedup. The 
increase in speed of a parallel algorithm relative to its serial equivalent is known as speedup. It is an essential 
method for determining the efficiency of parallel processing and the impact of parallelization. Assuming the 
duration of the serial algorithm (single node) is Ts and the duration of the parallel algorithm (many nodes) is Tp, 
the speedup can be represented using the Eq. (3).

The higher the speed, the greater the parallel efficiency and performance. Figure 5 depicts the speedup trends 
observed for the datasets taken into consideration, SUSY, HEPMASS and HIGGS, for an increasing number of 
cores.

It can be observed that until four cores the speedup trend is similar for all three datasets, and after four cores 
HEPMASS dataset has the highest speedup factor, followed by HIGGS and then the SUSY datasets.

Scalability analysis. Scalability is also used to evaluate the performance of the proposed model. Scalability 
is the ability of a system to improve performance as the number of slaves rises. When employing a parallel tech-
nique, the consumption rate of the cluster is displayed.

(3)Sp =
Ts

Tp

Figure 2.  Comparison of ROC curve for SUSY dataset for all alogrithms under consideration.
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Equation 4 is for scalability. Speedup is denoted by Sp, and the number of slaves by p. J is a positive integer usu-
ally less than or equal to one but as Sp could be greater than p, J can sometimes be more than one. Scalability 
improves as it approaches one. A parallel program’s scalability curve exhibits a diminishing trend as the number 
of slaves rises beyond the ideal limit. Table 5 represents the Performance analysis of the proposed model with 
an increasing number of cores.

Figures 6, 7 and 8 depicts the ROC curve obtained for SUSY, HEPMASS and HIGGS dataset with respect 
to increasing number of cores. The ROC (Receiver Operating Characteristic) curve is an evaluation metric 
commonly used in classification tasks to assess the performance of a model in distinguishing between different 
classes. These metrics measure the model’s ability to correctly classify instances across various threshold values.

Figure 9 illustrates the scalability of our proposed model, showcasing how it improves as the number of cores 
increases. The graph clearly indicates that scalability continues to increase until six cores are utilized. However, 
beyond this point, the scalability trend begins to decline. This decline occurs when the overhead of distributing 
the model outweighs the benefits gained from increased efficiency in distributed processing. In essence, the 
graph demonstrates that there is an optimal point where further increases in the number of cores may not yield 
significant scalability improvements due to the associated distribution overhead.

Conclusion
An in-depth discussion of the benefits and significant drawbacks of the ANN evolved using GA has been pro-
vided in this paper. A distributed GA model was adopted to train the neural network. Accuracy, AUC & ROC, 
Time Taken, Speedup and Scalability were taken as measures to evaluate the performance of the model. It is 
discovered that the accuracy and AUC & ROC do not considerably improve when the algorithm is executed 

(4)J =
Sp

p

Figure 3.  Comparison of ROC curve for HEPMASS dataset for all alogrithms under consideration.
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in distributed mode but are still on par with the traditional methods. This happens due to the similarity in the 
implementation of the proposed method and the traditional methods. Increasing the number of nodes will affect 
the computation time required, but it will not change how the algorithm is performed. When the distributed GA 
is used, there is a prominent improvement in the execution times. The execution time improved by almost 80% 
in the case of most datasets. The speedup and scalability trends tend to increase as the number of cores used to 
distribute the model increases up until an optimum value. After that the speedup and scalability does not show 
considerable improvement due to the distribution overhead. The optimum number of nodes identified for the 
proposed model is 6 nodes. The proposed method proved the utilization of GA in a distributed paradigm sig-
nificantly improved the speedup and scalability, which can also be adapted to many other learning algorithms 
for Bigdata.

Figure 4.  Comparison of ROC curve for HIGGS dataset for all alogrithms under consideration.

Table 3.  Time taken comparison (in seconds).

SUSY HEPMASS HIGGS

BP-ANN 23,360 42,307 43,280

ACO-ANN 21,042 40,357 39,614

PSO-ANN 18,360 41,269 33,258

ABC-ANN 16,989 38,657 36,875

GA-ANN 17,280 36,100 37,820

DENN 2960 5050 6129
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Table 4.  Training time comparison for partial training data (in seconds).

No. of intanses GA-ANN DENN

SUSY

   10,000 19.27 17.82

   50,000 186.21 32.02

   100,000 369.75 69.34

HEPMASS

   10,000 37.95 15.11

   50,000 194.76 35.23

   100,000 384.22 79.15

HIGGS

   10,000 38.41 18.24

   50,000 182.05 37.33

   100,000 376.52 96.53

Figure 5.  Speedup trend for three datasets considered with an increasing number of cores.
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Table 5.  Performance analysis of the proposed model with an increasing number of cores.

Number of nodes Time taken (in seconds) Accuracy

SUSY

   2 11562.14 78.63

   4 5542.22 78.62

   6 2960.07 78.63

HEPMASS

   2 20726.05 90.30

   4 10469.32 90.69

   6 5050.12 90.69

HIGGS

   2 22100.16 67.30

   4 11257.34 67.29

   6 6129.4 67.30

Figure 6.  ROC curve for SUSY dataset with increasing number of cores.
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Figure 7.  ROC curve for HEPMASS dataset with increasing number of cores.
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Figure 8.  ROC curve for HIGGS dataset with increasing number of cores.
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Data availability
The datasets analysed during the current study are available in the UCI machine learning repository. In particular, 
SUSY Data Set available online at https:// archi ve. ics. uci. edu/ ml/ datas ets/ SUSY, HEPMASS Data Set available 
online at http:// archi ve. ics. uci. edu/ ml/ datas ets/ hepma ss and HIGGS Data Set available online at https:// archi 
ve. ics. uci. edu/ ml/ datas ets/ HIGGS.
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