
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports

A novel neural network model
with distributed evolutionary
approach for big data classification
K. Haritha 1*, S. Shailesh 2, M. V. Judy 1, K. S. Ravichandran 3, Raghunathan Krishankumar 4 &
Amir H. Gandomi 5,6*

The considerable improvement of technology produced for various applications has resulted in
a growth in data sizes, such as healthcare data, which is renowned for having a large number of
variables and data samples. Artificial neural networks (ANN) have demonstrated adaptability and
effectiveness in classification, regression, and function approximation tasks. ANN is used extensively
in function approximation, prediction, and classification. Irrespective of the task, ANN learns from
the data by adjusting the edge weights to minimize the error between the actual and predicted
values. Back Propagation is the most frequent learning technique that is used to learn the weights
of ANN. However, this approach is prone to the problem of sluggish convergence, which is especially
problematic in the case of Big Data. In this paper, we propose a Distributed Genetic Algorithm based
ANN Learning Algorithm for addressing challenges associated with ANN learning for Big data. Genetic
Algorithm is one of the well-utilized bio-inspired combinatorial optimization methods. Also, it is
possible to parallelize it at multiple stages, and this may be done in an extremely effective manner
for the distributed learning process. The proposed model is tested with various datasets to evaluate
its realizability and efficiency. The results obtained from the experiments show that after a specific
volume of data, the proposed learning method outperformed the traditional methods in terms of
convergence time and accuracy. The proposed model outperformed the traditional model by almost
80% improvement in computational time.

Artificial Neural Networks are built from a collection of connected units or nodes known as artificial neurons,
which are roughly modelled after the neurons in the biological brain. Warren McCulloch, Walter Pitts, and
Donald Hebb introduced the concept of an artificial neural network (ANN) in the 1940s1. In the beginning, it
was a means of simulating intelligent behavior by modelling the interconnected circuits of neurons in the brain.
Nodes in an ANN include an input layer, hidden layer(s), and an output layer. There are connections between
each node, or artificial neuron, and each one has a threshold and weight associated with it. Any node whose
output exceeds the predefined threshold value is activated and begins providing data to the subsequent layer of
the network. If this condition is not met, no data is sent to the next network layer.

When training a neural network, the standard approach involves randomly selecting a starting point and
then following the gradient till reaching the top of the hill. This method is known as gradient decent algorithm.
For objective functions with a single peak, such as the cost function in linear regression, this method is highly
effective and efficient. However, in most real-world scenarios, we have a tremendously complicated problem
described as landscapes made up of many peaks and valleys. Such algorithms fail due to their intrinsic ten-
dency to become stuck at the local optima. Another flaw is the inefficiency of differential operation. Hidden
layers in multilayer networks typically employ sigmoid transfer functions. Because they compress an infinite
input range into a finite output range, these functions are commonly referred to as “squashing” functions. The
defining feature of a sigmoid function is that its slope tends to zero as the input is big. For example, if you are
using steepest descent to train a multilayer network with sigmoid functions, you might run into trouble if the

OPEN

1Department of Computer Applications, Cochin University of Science and Technology, Cochin, Kerala,
India. 2Department of Computer Science, Cochin University of Science and Technology, Cochin, Kerala,
India. 3Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham,
Coimbatore, India. 4Information Technology Systems and Analytics Area, Indian Institute of Management
Bodh Gaya, Bodh gaya, Bihar 824234, India. 5Faculty of Engineering and Information Technology, University of
Technology Sydney, Sydney, NSW, Australia. 6University Research and Innovation Center (EKIK), Óbuda University,
Budapest 1034, Hungary. *email: haritha.kaladharan68@gmail.com; gandomi@uts.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-37540-z&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

magnitude of the gradient changes less and less as the input size grows; this would result in increasingly minor
adjustments to the weights and biases, even though they are still well off their optimal values. In contrast, Genetic
Algorithms (GAs) are potent optimization techniques that provide a fast search strategy for a large problem
space. Replacing the gradient descent with a GA might be useful in avoiding the above-mentioned issues. Also,
Genetic Algorithms have many advantages over other global optimization schemes, such as Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA) etc. Genetic algorithms use
a population-based approach, allowing for diverse solutions to be explored while converging towards promising
regions. This characteristic makes GA well-suited for tackling complex optimization problems, as GA explores
the search space extensively, ensuring a diverse set of potential solutions is considered. Also, The parallel nature
of GA allows for simultaneous evaluation and evolution of multiple solutions, enabling faster convergence
and improved scalability. GA possesses inherent robustness against local optima due to its population-based
nature and the mechanisms of selection, crossover, and mutation. This characteristic allows GA to escape from
suboptimal solutions and continue searching for better solutions globally. Genetic Algorithms have been suc-
cessfully applied to a wide range of optimization problems, including feature selection, parameter tuning, and
classification tasks in literature.

This study intends to employ GA to train the neural networks. The GA is widely used in many subfields of
management science, operational research, and industrial engineering since it is one of the most well-known
metaheuristic algorithms. If the iterative processes required by the genetic operators can be implemented in a
parallel and distributed computer architecture, GAs would be more effective in solving large-scale optimiza-
tion issues. In order to harness the power and efficiency of GA evolution when training ANNs, this research
suggests incorporating the popular GA into the widely-used Apache Spark distributed computing framework.
The major contribution of our work lies in the integration of a neural network model and a distributed evolu-
tionary approach, specifically tailored for big data classification. While both neural networks and evolutionary
algorithms have been extensively studied independently, our research presents a novel approach by combining
these two domains to enhance the accuracy and scalability of classification tasks involving large datasets using
Apache Spark framework.

Literature review
Neural networks are powerful tools for solving complex systems due to their ability to learn and recognize
patterns from data. By training on large datasets, Neural Networks can approximate complex functions, make
predictions, optimize processes, and detect anomalies. Their versatility and capacity for learning make them
valuable in a wide range of applications, including pattern recognition, forecasting, optimization, and control
of complex systems. There are numerous existing methods available to effectively model complex systems. Iqbal
et al. conducted an analysis of a computer virus epidemic model using fractional order differential equations2.
Iqbal et al. also conducted an analysis on the stochastic form of the Newell–Whitehead–Segel equation3. Kazeem
et al. utilized the exponential matrix algorithm, differential transformation algorithm, and Runge–Kutta method
to simulate temperature distribution in heating tanks4. Liaqat et al. introduces a conformable Shehu transform
decomposition method (CSTDM), a novel algorithm for solving quantum mechanical models with high accu-
racy and efficiency5. Shahzad et al. investigated fluid flow through double disks, considering various boundary
conditions and incorporating the effects of microorganisms and thermal parameters6. Another study presents a
mathematical model of non-integer order through the fractal fractional Caputo operator to analyze the develop-
ment of Ebola virus infections7.

There are also numerous existing works where neural networks have been utilized to analyze and understand
complex systems. Basma et al. introduces the numerical performances of the fractional kind of food supply
(FKFS) model using fractional derivatives and stochastic scaled conjugate gradient neural networks8. Sabir et al.
introduced a stochastic solver based on the Levenberg-Marquardt backpropagation neural networks (LMBNNs)
for the nonlinear host-vector-predator model9. The COVID-19 spreading model is investigated using artificial
neural networks with Levenberg-Marquardt backpropagation training by Umar et al10. Another work by Umar
et al. introduces a numerical computing technique using artificial neural networks optimized with particle swarm
optimization and active-set algorithms to solve the nonlinear corneal shape model11.

Neuroevolution is the term used to refer to the process of applying evolutionary algorithms for the opti-
mization of neural networks12,13. Recent years have garnered the attention of researchers in the possibilities of
integrating the search power of evolutionary computation (EC) with the learning capabilities of artificial neural
networks (ANN) for a variety of applications14. Traditionally, Backpropagation (BP) has been the most common
algorithm used to train multilayer feed-forward neural networks. As a means of reducing the network’s error,
BP employs a gradient descent rule. However, BP has certain constraints. Since it excels mainly at exploiting the
existing solution, it tends to converge to local optima, which might lead to subpar classification accuracy. It also
has issues with both convergence speed and scalability15. Researchers are increasingly adopting metaheuristic
algorithms with global search capabilities to build optimum weights and biases in ANNs, since these can surpass
the limitations of conventional approaches. GA, a form of search heuristic, takes its cue from Darwin’s theory of
evolution through natural selection, in which only the strongest and most adaptable survive to pass their genes on
to future generations16. Er and Liu suggested a hybrid approach employing GA with BP to improve MLP Neural
Network (MLPNN) parameters in 200917. Singh and De developed an MLP-GA-based approach to incoming
traffic in the year 2017, with the intention of detecting application layer DDoS attacks18. A strategy for optimiz-
ing the hyper-parameters of an MLPNN through a GA was proposed in 2018 by Itano, Sousa, and Hernandez19.
In 2020, Ecer et al. put forward an approach to predict stock price movement direction through integrated MLP
methodologies, multilayer perceptron-genetic algorithm (MLP-GA) and multilayer-particle swarm optimization
(MLP-PSO)20. In21–26, training an MLP with GA and comparing its findings to those obtained via BP were carried

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

out. Training ANN algorithms is a computationally expensive task, thus limiting its usage in processing big and
complex problems. Therefore, it is desirable to implement ANNs on a parallel or distributed platform to boost
performance. Calvert proposed a technique in 2005 to anticipate and evaluate the performance of distributed
ANN algorithms by looking at how well they handle the relatively straightforward mathematical operations
required to build the network27. To improve the accuracy of identifying students with learning disabilities, Wu
et al. suggested parallelizing and optimizing a genetic-based ANN classifier in 201028. In 2012, Casas suggested
a method for parallelizing the backpropagation algorithm used to train a network that predictions the SP 500
Index. Parallelizing the backpropagation technique to operate on four processors concurrently reduced train-
ing time by 61%29. In 2012, Gonzalez et al. proposed a multi-step ahead TSF (Time Series Forecasting) using a
fully automatic Evolutionary ANN (EANN) system using two parallel programming standards: Message Passing
Interface (MPI) and Open Multi-Processing (OpenMP)30. In this study, a distributed processing framework for
GA-evolved neural network classifier has been explored, as well as the effectiveness of this framework in big data
classification problems. A comprehensive review and recent advances of EC in ANN and other machine-learning
algorithms can be found in Telikani et al.31.

Distributed evolutionary neural network
Overall architecture. This study proposes a metaheuristic method to train the neural networks (Fig. 1).
GA is used to determine suboptimal values of weight coefficients and bias for the Artificial Neural Network.
With an input layer, two hidden layers, and an output layer, our ANN model has a total of four layers. A distrib-
uted GA Architecture is employed to train the neural networks to improve the model’s effectiveness in handling
large datasets.

Training neural networks with GA. Weight training for an ANN using a GA entails three stages. The first
step is to determine the chromosome representation of connection weights for the GA population; the second
step is to evaluate the fitness of these connection weights by testing the efficacy of the weights in an ANN and
computing the mean square error; and the third step is to apply the evolutionary process of GA, which includes
selection, crossover, and mutation. Evolution ceases when fitness exceeds a specified value or the population
converges. The Genetic Learning of ANN weights can be described using the following stages:

 (i) Each chromosome in the population represents the weight matrix of the neural network. The population
is initialized in such a way that each chromosome is initialized with a random set of integers as genes.
The population size and size of a chromosome is initialized as hyper-parameters.

 (ii) Evaluate each set of the connection weights by passing them through the feed-forward ANN model to
make a prediction and compute the total mean square error between the predicted and target outputs.
Total MSE (Equation (1)) is used to estimate the fitness of an individual chromosome.

 (iii) In the next phase, based on their fitness values, the best chromosomes are selected as parents for repro-
duction in the new population. This aids the model to converge or move to optimal solutions. A selection
method based on a roulette wheel is adopted16. The population of the current generation is represented
on a roulette wheel, with each chromosome occupying a slot in proportion to its fitness.

 (iv) The crossover and/or mutation operators are then applied to parent chromosomes to generate offsprings
and increase genetic variability, forming the next generations. This study uses a single-point crossover,
in which a random combination point is chosen for both parents’ chromosomes. The chromosomal seg-
ments after these combination locations are exchanged, producing two new offsprings. After applying
crossovers, mutation is applied on randomly selected chromosomes based on the mutation rate32. If the
stopping condition is met the fittest individual in the population is returned; otherwise, the evolution
continues.

Distributing genetic operators using map reduce. This section describes the distribution of genetic
operators of GA for weight training of ANN as depicted in Fig. 1. The data is split into 80% for training and 20%
for testing purposes. The proposed Apache Spark is utilized to distribute the GA. Distributed GA generates an
initial population of solutions at random and distributes them as an RDD across multiple partitions. Using the
parallelize method, the initialized population is parallelized into populationRDD and then divided into seg-
ments, with each segment being assigned to a separate node in the distributed environment for processing. After
mapping the parallel population segments with a fitness function, each segment of the population is evaluated in
parallel. The fitness of each particle in the population is calculated using mean-squared error. The fitness value
of each chromosome is evaluated on different workers where the chuck of the population that has the particular
chromosome resides. Following that, the driver program collects the results and performs genetic operators on
them. In the context of the spark driver execution, the parallelize() method of Spark is used to convert the ini-
tial population into a populationRDD that comprises pairs of chromosome identifiers and their corresponding
chromosomes, < chromosome_id, chromosome>. The training data is partitioned across the nodes using the
parallelize() method. After that, a map transformation of spark is executed as map(evaluateFitness()) is applied
to the populationRDD and the training data to compute the fitness score of each chromosome in the popula-
tion and to turn populationRDD into fitnessValueRDD, which contains pairs of <fitness, chromosome> entries.
The training data is distributed across the nodes into different partitions, and the driver program executes the

(1)MSE =

n∑

i=1

(Yi − Ŷi)

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

evaluateFitness() function on the cluster in parallel on different worker nodes to compute the fitness values of
each partition of the training data. When the evaluation phase concludes, and the collect() operation initiates the
collection of these pairs to the driver. Next, the fitnessValueRDD is parallelized using the parallelize() function
of Spark where it is divided into subpopulations. Then the mapPartitions(geneticEvolution()) transformation,
is invoked where the geneticEvolution() function is performed in parallel on each worker node which con-
tains different partitions of the fitnessValueRDD. In the function geneticEvolution() three genetic operators are
applied, selection(), crossover() and mutation() functions and a evolutionRDD is produced in the end, which

Figure 1. Overall architecture of proposed distributed evolutionary neural network.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

contains the evolved chromosome <chromosome_id, chromosome> pairs. In selection(), a roulette wheel selec-
tion mechanism is used to select the best individuals for reproduction in the next generation, crossover() uses
the selected best individuals from selection() for reproduction and produces better offspring and mutation()
is then performed on the produced offsprings so that the model converges to a solution faster. To perform
crossover, all the selected chromosomes are sampled and stored into two even list RDDs, which are parallelized
using the parallelize() function and key-value pairs of two random chromosomes in the two lists are formed.
A map() function is used to perform single-point crossover over the key-value pairs, <chromosome, chromo-
some>, one by one and the crossoverRDD is produced. After the crossover is complete, the gene loci of randomly
selected chromosomes are traversed using map() with the mutation factor specified as a hyperparameter, and
then a negation operation is done on the gene loci to produce a new chromosome. As a result of mutation, the
evolvedRDD is generated and saved in the system’s memory. Once all the genetic operators have been applied,
and evolvedRDD is produced, the map(.best_chromo()) transformation is applied to convert evolvedRDD into
bestChromosomeRDD, which is a <key,value> pair, where the key is the chromosome_id and value is the fitness
value of the fittest chromosome in the partition. At last, the collect() method compiles the top performers from
each worker to determine the optimal solution, which is then used to train the feed-forward neural network.

Coordinated learning process. The GA generates numerous potential solutions to the issue at hand and
then refines them over the course of several generations. Every solution contains all of the parameters that might
contribute to producing better results. When applied to ANN, weights in each layer contribute to achieving high
accuracy. As a result, a single solution obtained using GA will contain all of the weights used by ANN. Our ANN
model consists of a total of four layers, which are comprised of an input layer, two hidden layers, and an output
layer.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Implementation and tools
The experiment was carried out on a high-performance Hadoop cluster consisting of one Name node server and
two Data node servers with a total of 768GB RAM and 144 core processor. Apache Spark 3.3.0 is supported by
the cluster. Apache Spark is a free and open-source distributed data processing engine that is scalable, rapid, and
allows massive data processing established by UC Berkeley, which permits distributed application developers
to program in Java, Python, Scala, and R. PySpark is its Python API. Not only does it provide the Python APIs
needed to develop Spark applications, but it also gives access to the interactive PySpark shell for analyzing the
data in a distributed environment.

Results and discussions
Benchmark datasets. Three datasets, HEPMASS, SUSY, AND HIGGS, are used to evaluate the perfor-
mance of the proposed Distributed Evolutionary Neural Network. The datasets were obtained from the UCI
Machine Learning Repository. The HEPMASS data set contains sophisticated physics experiments designed to
search for exotic particles as well as a bi-classification task. The “SUSY” data discriminate between a signal pro-
cess that generates super-symmetric particles and a background activity that does not correspond to the occur-
rence. Data referred to as “HIGGS” are samples of signals used to assess if they are consistent with the emission
of Higgs Bosons. Each data set’s properties are displayed in Table 1.

Performance evaluation of the proposed model with the existing models. The performance of
the model is evaluated using various performance metrics. These performance measures considered are accu-
racy and area under ROC. Accuracy is the degree to which the projected value closely matches the actual value.
The outcome of a data point might be True Positive, TP (label and prediction are both positive), False Positive,
FP (the label is negative, but the prediction is positive), True Negative, TN (label and prediction are both nega-
tive) and False Negative, FN (the label is positive but prediction is negative). The accuracy metric is described
as follows:

Table 2 depicts the comparison of accuracy values obtained for GA-based ANN, which works in a normal mode,
and the proposed distributed evolutionary neural network.

Both GA-ANN and DENN give comparable results in terms of accuracy values, with DENN producing
slightly better performance. It can be observed that the effect of the distributed environment does not have a nega-
tive impact on the performance of accuracy but, rather, leads to a marginal improvement in the accuracy values.

In addition to measuring accuracy, the area under ROC (Receiver Operating Characteristic) curve is assessed
as well. The receiver operating characteristic (ROC) plot compares the true positive rate (TPR) to the false positive
rate (FPR) at various thresholds for classifying the data. The area under the receiver operating characteristic curve
(ROC) is a metric that depends on how effectively the classifier can differentiate between the two binary classes.
The area’s value varies from 0 to 1. The greater the ROC area, the more accurate the prediction. Figures 2, 3 and 4
depicts the results of ROC curve and the Area under ROC curve values for all the algorithms under consideration.

As with the case with accuracy, it can be observed that there is just a marginal improvement in the case of Area
under ROC Curve metric values. This depicts that the distribution does not considerably impact the accuracy
or AUC measures. More Area under ROC values (usually greater than 0.65) indicates classification confidence.

(2)A =
(TP + TN)

(TP + TN + FP + FN)

Table 1. Details of datasets.

Dataset Number of instances Number of attributes Size (GB)

SUSY33 5,000,000 18 2.23

HEPMASS34 10,500,000 28 4.82

HIGGS35 11,000,000 28 5.74

Table 2. Accuracy comparison.

SUSY HEPMASS HIGGS

BP-ANN 69.33 72.78 59.24

ACO-ANN 74.62 86.5 60.27

PSO-ANN 77.69 89.13 62.88

ABC-ANN 73.25 88.71 63.9

GA-ANN 76.54 90.16 64.25

DENN 78.63 90.69 67.30

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Impact on training time. Taking into consideration the execution time, it can be observed that the use of
the distributed environment in DENN accelerates the learning performance of the classifier by more than 75%
in all the datasets considered when compared with GA-ANN executed in normal mode (Table 3). These results
were obtained when the whole of the dataset was considered for classification.

A similar result also can be seen in Table 4, where distributed environment also improves the speed by around
80% for every scenario in partial training data except for when the number of rows is 10000. For a smaller number
of instances, the overhead of distributing the dataset is higher; hence a significant improvement in the execution
time cannot be observed.

Speedup trend. Another metric used to evaluate the performance of the proposed model is speedup. The
increase in speed of a parallel algorithm relative to its serial equivalent is known as speedup. It is an essential
method for determining the efficiency of parallel processing and the impact of parallelization. Assuming the
duration of the serial algorithm (single node) is Ts and the duration of the parallel algorithm (many nodes) is Tp,
the speedup can be represented using the Eq. (3).

The higher the speed, the greater the parallel efficiency and performance. Figure 5 depicts the speedup trends
observed for the datasets taken into consideration, SUSY, HEPMASS and HIGGS, for an increasing number of
cores.

It can be observed that until four cores the speedup trend is similar for all three datasets, and after four cores
HEPMASS dataset has the highest speedup factor, followed by HIGGS and then the SUSY datasets.

Scalability analysis. Scalability is also used to evaluate the performance of the proposed model. Scalability
is the ability of a system to improve performance as the number of slaves rises. When employing a parallel tech-
nique, the consumption rate of the cluster is displayed.

(3)Sp =
Ts

Tp

Figure 2. Comparison of ROC curve for SUSY dataset for all alogrithms under consideration.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Equation 4 is for scalability. Speedup is denoted by Sp, and the number of slaves by p. J is a positive integer usu-
ally less than or equal to one but as Sp could be greater than p, J can sometimes be more than one. Scalability
improves as it approaches one. A parallel program’s scalability curve exhibits a diminishing trend as the number
of slaves rises beyond the ideal limit. Table 5 represents the Performance analysis of the proposed model with
an increasing number of cores.

Figures 6, 7 and 8 depicts the ROC curve obtained for SUSY, HEPMASS and HIGGS dataset with respect
to increasing number of cores. The ROC (Receiver Operating Characteristic) curve is an evaluation metric
commonly used in classification tasks to assess the performance of a model in distinguishing between different
classes. These metrics measure the model’s ability to correctly classify instances across various threshold values.

Figure 9 illustrates the scalability of our proposed model, showcasing how it improves as the number of cores
increases. The graph clearly indicates that scalability continues to increase until six cores are utilized. However,
beyond this point, the scalability trend begins to decline. This decline occurs when the overhead of distributing
the model outweighs the benefits gained from increased efficiency in distributed processing. In essence, the
graph demonstrates that there is an optimal point where further increases in the number of cores may not yield
significant scalability improvements due to the associated distribution overhead.

Conclusion
An in-depth discussion of the benefits and significant drawbacks of the ANN evolved using GA has been pro-
vided in this paper. A distributed GA model was adopted to train the neural network. Accuracy, AUC & ROC,
Time Taken, Speedup and Scalability were taken as measures to evaluate the performance of the model. It is
discovered that the accuracy and AUC & ROC do not considerably improve when the algorithm is executed

(4)J =
Sp

p

Figure 3. Comparison of ROC curve for HEPMASS dataset for all alogrithms under consideration.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

in distributed mode but are still on par with the traditional methods. This happens due to the similarity in the
implementation of the proposed method and the traditional methods. Increasing the number of nodes will affect
the computation time required, but it will not change how the algorithm is performed. When the distributed GA
is used, there is a prominent improvement in the execution times. The execution time improved by almost 80%
in the case of most datasets. The speedup and scalability trends tend to increase as the number of cores used to
distribute the model increases up until an optimum value. After that the speedup and scalability does not show
considerable improvement due to the distribution overhead. The optimum number of nodes identified for the
proposed model is 6 nodes. The proposed method proved the utilization of GA in a distributed paradigm sig-
nificantly improved the speedup and scalability, which can also be adapted to many other learning algorithms
for Bigdata.

Figure 4. Comparison of ROC curve for HIGGS dataset for all alogrithms under consideration.

Table 3. Time taken comparison (in seconds).

SUSY HEPMASS HIGGS

BP-ANN 23,360 42,307 43,280

ACO-ANN 21,042 40,357 39,614

PSO-ANN 18,360 41,269 33,258

ABC-ANN 16,989 38,657 36,875

GA-ANN 17,280 36,100 37,820

DENN 2960 5050 6129

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Table 4. Training time comparison for partial training data (in seconds).

No. of intanses GA-ANN DENN

SUSY

 10,000 19.27 17.82

 50,000 186.21 32.02

 100,000 369.75 69.34

HEPMASS

 10,000 37.95 15.11

 50,000 194.76 35.23

 100,000 384.22 79.15

HIGGS

 10,000 38.41 18.24

 50,000 182.05 37.33

 100,000 376.52 96.53

Figure 5. Speedup trend for three datasets considered with an increasing number of cores.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Table 5. Performance analysis of the proposed model with an increasing number of cores.

Number of nodes Time taken (in seconds) Accuracy

SUSY

 2 11562.14 78.63

 4 5542.22 78.62

 6 2960.07 78.63

HEPMASS

 2 20726.05 90.30

 4 10469.32 90.69

 6 5050.12 90.69

HIGGS

 2 22100.16 67.30

 4 11257.34 67.29

 6 6129.4 67.30

Figure 6. ROC curve for SUSY dataset with increasing number of cores.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Figure 7. ROC curve for HEPMASS dataset with increasing number of cores.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Figure 8. ROC curve for HIGGS dataset with increasing number of cores.

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

Data availability
The datasets analysed during the current study are available in the UCI machine learning repository. In particular,
SUSY Data Set available online at https:// archi ve. ics. uci. edu/ ml/ datas ets/ SUSY, HEPMASS Data Set available
online at http:// archi ve. ics. uci. edu/ ml/ datas ets/ hepma ss and HIGGS Data Set available online at https:// archi
ve. ics. uci. edu/ ml/ datas ets/ HIGGS.

Received: 6 April 2023; Accepted: 23 June 2023

References
 1. McCulloch, W., Pitts, W. & Hebb, D. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133.

https:// doi. org/ 10. 1007/ BF024 78259 (1943).
 2. Iqbal, Z. et al. A finite difference scheme to solve a fractional order epidemic model of computer virus. AIMS Math. 8, 2337–2359.

https:// doi. org/ 10. 3934/ math. 20231 21 (2023).
 3. Iqbal, M. S. et al. Numerical simulations of nonlinear stochastic Newell–Whitehead–Segel equation and its measurable properties.

J. Comput. Appl. Math. 418, 114618. https:// doi. org/ 10. 1016/j. cam. 2022. 114618 (2023).
 4. Kazeem Iyanda, F. et al. Numerical simulation of temperature distribution of heat flow on reservoir tanks connected in a series.

Alex. Eng. J. 66, 785–795. https:// doi. org/ 10. 1016/j. aej. 2022. 10. 062 (2023).
 5. Liaqat, M. I., Akgül, A., De la Sen, M. & Bayram, M. Approximate and exact solutions in the sense of conformable derivatives of

quantum mechanics models using a novel algorithm. Symmetryhttps:// doi. org/ 10. 3390/ sym15 030744 (2023).
 6. Shahzad, A. et al. Brownian motion and thermophoretic diffusion impact on Darcy–Forchheimer flow of bioconvective micropolar

nanofluid between double disks with Cattaneo–Christov heat flux. Alex. Eng. J. 62, 1–15. https:// doi. org/ 10. 1016/j. aej. 2022. 07. 023
(2023).

 7. Hasan, A. et al. Epidemiological analysis of symmetry in transmission of the Ebola virus with power law kernel. Symmetryhttps://
doi. org/ 10. 3390/ sym15 030665 (2023).

 8. Souayeh, B., Sabir, Z., Umar, M. & Alam, M. W. Supervised neural network procedures for the novel fractional food supply model.
Fractal Fract.https:// doi. org/ 10. 3390/ fract alfra ct606 0333 (2022).

 9. Sabir, Z., Umar, M., Shah, G. M., Wahab, H. A. & Sánchez, Y. G. Competency of neural networks for the numerical treatment of
nonlinear host–vector–predator model. Comput. Math. Methods Med. 2021, 1–13 (2021).

 10. Umar, M. et al. Numerical investigations through ANNs for solving COVID-19 model. Int. J. Environ. Res. Public Health.https://
doi. org/ 10. 3390/ ijerp h1822 12192 (2021).

 11. Umar, M., Amin, F., Wahab, H. A. & Baleanu, D. Unsupervised constrained neural network modeling of boundary value corneal
model for eye surgery. Appl. Soft Comput. 85, 105826. https:// doi. org/ 10. 1016/j. asoc. 2019. 105826 (2019).

 12. Floreano, D., Dürr, P. & Mattiussi, C. Neuroevolution: From architectures to learning. Evol. Intell. 1, 47–62. https:// doi. org/ 10.
1007/ s12065- 007- 0002-4 (2008).

 13. Stanley, K. O. & Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002).

Figure 9. Scalability analysis of the model.

https://archive.ics.uci.edu/ml/datasets/SUSY
http://archive.ics.uci.edu/ml/datasets/hepmass
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://doi.org/10.1007/BF02478259
https://doi.org/10.3934/math.2023121
https://doi.org/10.1016/j.cam.2022.114618
https://doi.org/10.1016/j.aej.2022.10.062
https://doi.org/10.3390/sym15030744
https://doi.org/10.1016/j.aej.2022.07.023
https://doi.org/10.3390/sym15030665
https://doi.org/10.3390/sym15030665
https://doi.org/10.3390/fractalfract6060333
https://doi.org/10.3390/ijerph182212192
https://doi.org/10.3390/ijerph182212192
https://doi.org/10.1016/j.asoc.2019.105826
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1007/s12065-007-0002-4

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:11052 | https://doi.org/10.1038/s41598-023-37540-z

www.nature.com/scientificreports/

 14. Ni, J. & Yang, S. X. Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments. IEEE
Trans. Neural Netw. 22, 2062–2077. https:// doi. org/ 10. 1109/ TNN. 2011. 21698 08 (2011).

 15. Gori, M. & Tesi, A. On the problem of local minima in backpropagation. IEEE Trans. Pattern Anal. Mach. Intell. 14(1), 76–86
(1992).

 16. Holland, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence (MIT Press, 1975).

 17. Er, M. J. & Liu, F. Parameter tuning of MLP neural network using genetic algorithms. Adv. Intell. Soft Comput. 56, 121–130 (2009).
 18. Singh, K. J. & De, T. MLP-GA based algorithm to detect application layer DDoS attack. J. Inf. Secur. Appl. 36, 145–153. https:// doi.

org/ 10. 1016/j. jisa. 2017. 09. 004 (2017).
 19. Itano, F., De Abreu De Sousa, M. A. & Del-Moral-Hernandez, E. Extending MLP ANN hyper-parameters optimization by using

genetic algorithm. In Proceedings of the International Joint Conference on Neural Networks 2018. https:// doi. org/ 10. 1109/ IJCNN.
2018. 84895 20 (2018).

 20. Ecer, F., Ardabili, S., Band, S. S. & Mosavi, A. Training multilayer perceptron with genetic algorithms and particle swarm optimiza-
tion for modeling stock price index prediction. Entropy 22, 1–20. https:// doi. org/ 10. 3390/ e2211 1239 (2020).

 21. Karimi, H. & Yousefi, F. Application of artificial neural network-genetic algorithm (ANN-GA) to correlation of density in nano-
fluids. Fluid Phase Equilib. 336, 79–83. https:// doi. org/ 10. 1016/j. fluid. 2012. 08. 019 (2012).

 22. Chang, Y. T., Lin, J., Shieh, J. S. & Abbod, M. F. Optimization the initial weights of artificial neural networks via genetic algorithm
applied to hip bone fracture prediction. Adv. Fuzzy Syst.https:// doi. org/ 10. 1155/ 2012/ 951247 (2012).

 23. Sedki, A., Ouazar, D. & El Mazoudi, E. Evolving neural network using real coded genetic algorithm for daily rainfall-runoff fore-
casting. Expert Syst. Appl. 36, 4523–4527. https:// doi. org/ 10. 1016/j. eswa. 2008. 05. 024 (2009).

 24. Seiffert, U. Multiple layer perceptron training using genetic algorithms. In Proceedings of European Symposium on Artificial Neural
Networks (ESANN) 159–164 (2001).

 25. Ding, S., Su, C. & Yu, J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 36, 153–162.
https:// doi. org/ 10. 1007/ s10462- 011- 9208-z (2011).

 26. Koçer, S. & Canal, M. R. Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J. Med. Syst. 35,
489–498. https:// doi. org/ 10. 1007/ s10916- 009- 9385-3 (2011).

 27. Calvert, D. & Guan, J. Distributed artificial neural network architectures. In Proceedings of 19th International Symposium on High
Performance Computing Systems and Applications (HPCS’05) (IEEE, 2005).

 28. Wu, T. K., Huang, S. C., Lin, Y. L., Chang, H. & Meng, Y. R. On the parallelization and optimization of the genetic-based ANN
classifier for the diagnosis of students with learning disabilities. In Conference Proceedings—IEEE International Conference on
Systems, Man and Cybernetics 4263–4269. https:// doi. org/ 10. 1109/ ICSMC. 2010. 56424 86 (2010).

 29. Casas, C. A. Parallelization of artificial neural network training algorithms: A financial forecasting application. In 2012 IEEE
Conference on Computational Intelligence for Financial Engineering and Economics, CIFEr 2012—Proceedings 337–342, https://
doi. org/ 10. 1109/ CIFEr. 2012. 63278 11 (2012).

 30. Gonzalez, B. P., Donate, J. P., Cortez, P., Sánchez, G. G. & De Miguel, A. S. Parallelization of an evolving artificial neural networks
system to forecast time series using OPENMP and MPI. In 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems,
EAIS 2012—Proceedings 186–191. https:// doi. org/ 10. 1109/ EAIS. 2012. 62328 27 (2012).

 31. Telikani, A., Tahmassebi, A., Banzhaf, W. & Gandomi, A. H. Evolutionary machine learning: A survey. ACM Comput. Surv. (CSUR)
54, 1–35 (2021).

 32. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826.
https:// doi. org/ 10. 1073/ pnas. 12265 3799 (2002).

 33. Susy Dataset. https:// archi ve. ics. uci. edu/ ml/ datas ets/ SUSY. Accessed 19 Jan 2023.
 34. HEPMASS Dataset. http:// archi ve. ics. uci. edu/ ml/ datas ets/ hepma ss. Accessed 19 Jan 2023.
 35. HIGGS Dataset. https:// archi ve. ics. uci. edu/ ml/ datas ets/ HIGGS. Accessed 19 Jan 2023.

Author contributions
K.H.—Data collection, data curation, prototype preparation, model design, code, writing and review; S.S.—Data
curation, prototype preparation, model design, code, write and revise; M.V.J.—Prototype preparation, model
design, supervision, write and review; K.S.R.—Table and figure preparation, supervision, writing and editing;
R.K.—Review preparation, presentation, supervision, writing and editing; A.H.G.—Language editing, supervi-
sion, overall review, quality check and edit.

Funding
Open access funding provided by Óbuda University.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.H. or A.H.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1109/TNN.2011.2169808
https://doi.org/10.1016/j.jisa.2017.09.004
https://doi.org/10.1016/j.jisa.2017.09.004
https://doi.org/10.1109/IJCNN.2018.8489520
https://doi.org/10.1109/IJCNN.2018.8489520
https://doi.org/10.3390/e22111239
https://doi.org/10.1016/j.fluid.2012.08.019
https://doi.org/10.1155/2012/951247
https://doi.org/10.1016/j.eswa.2008.05.024
https://doi.org/10.1007/s10462-011-9208-z
https://doi.org/10.1007/s10916-009-9385-3
https://doi.org/10.1109/ICSMC.2010.5642486
https://doi.org/10.1109/CIFEr.2012.6327811
https://doi.org/10.1109/CIFEr.2012.6327811
https://doi.org/10.1109/EAIS.2012.6232827
https://doi.org/10.1073/pnas.122653799
https://archive.ics.uci.edu/ml/datasets/SUSY
http://archive.ics.uci.edu/ml/datasets/hepmass
https://archive.ics.uci.edu/ml/datasets/HIGGS
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A novel neural network model with distributed evolutionary approach for big data classification
	Literature review
	Distributed evolutionary neural network
	Overall architecture.
	Training neural networks with GA.
	Distributing genetic operators using map reduce.
	Coordinated learning process.

	Implementation and tools
	Results and discussions
	Benchmark datasets.
	Performance evaluation of the proposed model with the existing models.
	Impact on training time.
	Speedup trend.
	Scalability analysis.

	Conclusion
	References

