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Landscape‑scale mapping of soil 
fungal distribution: proposing 
a new NGS‑based approach
Daniel Janowski 1,2* & Tomasz Leski 1

Soil fungi play an indispensable role in the functioning of terrestrial habitats. Most landscape‑scale 
studies of soil fungal diversity try to identify the fungal taxa present at a study site and define the 
relationships between their abundance and environmental factors. The specific spatial distribution of 
these fungi over the site, however, is not addressed. Our study’s main objective is to propose a novel 
approach to landscape‑scale mapping of soil fungi distribution using next generation sequencing 
and geographic information system applications. Furthermore, to test the proposed approach and 
discuss its performance, we aimed to conduct a case study mapping the spatial distribution of soil 
fungi on the Wielka Żuława island. The case study was performed on the Wielka Żuława island in 
northern Poland, where soil samples were collected every 100 m in an even grid. The fungal taxa 
and their relative abundance in each sample were assessed using the Illumina platform. Using the 
data obtained for the sampled points, maps of soil fungi spatial distribution were generated using 
three common interpolators: inverted distance weighted (IDW), B‑spline, and ordinary Kriging. The 
proposed approach succeeded in creating maps of fungal distribution on Wielka Żuława. The most 
abundant groups of soil fungi were Penicillium on the genus level, Aspergillaceae on the family level, 
and ectomycorrhizal fungi on the trophic group level. Ordinary Kriging proved to be the most accurate 
at predicting relative abundance values for the groups of fungi significantly spatially autocorrelated at 
the sampled scale. For the groups of fungi not displaying spatial autocorrelation at the sampled scale, 
IDW provided the most accurate predictions of their relative abundance. Although less accurate at 
predicting exact relative abundance values, B‑spline performed best in delineating the spatial patterns 
of soil fungi distribution. The proposed approach to landscape‑scale mapping of soil fungi distribution 
could provide new insights into the ecology of soil fungi and terrestrial ecosystems in general. 
Producing maps of predicted fungal distribution in landscape‑scale soil fungi diversity studies would 
also facilitate the reusability and replicability of the results. Outside the area of research, mapping 
the distribution of soil fungi could prove helpful in areas such as agriculture and forestry, nature 
conservation, and urban planning.

Soil microorganisms are a crucial component of terrestrial ecosystems. They are fundamental in sustaining soil 
fertility, nutrient cycling, and plant  growth1,2. Although bacteria dominate soil microbial  communities3,4, the 
importance of fungi cannot be  overstated2,5. One of the essential roles unique to soil fungi is forming mycorrhizal 
symbiosis with  plants6. Several fungal saprotrophs specialize in decomposing recalcitrant organic compounds 
(e.g., lignin) that are not readily available to bacterial  decomposers7,8. Fungi are also more effective than bacteria 
in carbon  sequestration9. Despite the undeniable importance of microorganisms, they are relatively understudied, 
and aspects of their ecology remain  unclear10.

Studying the distribution of soil fungi on different scales provides invaluable insight into soil ecology. In 
recent years we saw several studies of the global-scale distribution of soil  fungi4,11–13. These studies helped 
reveal how large-scale effects (e.g., climate) shape fungal biogeography and increased our understanding of 
typical environmental preferences characterizing important fungal groups. While global-scale studies provide 
widely applicable insights, they do not reveal the fungal diversity and distribution patterns on  regional14,15 and 
 landscape16,17 scales. Understanding the landscape scale is particularly important for sustainable land use and 
conserving rare and endangered  species18.

Rather than mapping fungi, landscape-scale studies of soil fungal diversity often concentrate on the observed 
correlations and  trends16,17,19. In addition to the local soil fungal communities, selected environmental variables 
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are measured to investigate whether they show significant effects on the recorded fungal distribution. If these 
observations have external validity, they advance the general understanding of soil fungal ecology. However, this 
approach reveals nothing about the actual distribution of soil fungi in the researched landscape. A continuous 
map of the local distribution of fungi would have several benefits. First, it might be useful for organizing future 
research at the same site. It would ease the replication crisis in ecology by enabling researchers to confirm each 
other’s findings more  easily20,21. It might facilitate spotting any previously overlooked connections between 
the distribution of soil fungi and environmental factors. It could serve as a valuable tool in studying complex 
ecological networks involving soil fungi, e.g., mycorrhizal  networks19,22. Finally, it would be invaluable for the 
conservation efforts of endangered fungi and some mycorrhizal plants.

Of course, it would not be practical to collect samples from each point of a studied landscape. However, 
mapping a continuous variable can be achieved through spatial interpolation. Interpolation involves using math-
ematical models to predict unknown variable values based on a finite number of known data points. Many spatial 
interpolation methods based on different mathematical models have been  developed23. Commonly used methods 
include nearest- and natural-neighbor interpolations, inverse distance weighting (IDW), variations of Kriging 
interpolation, and variations of spline interpolation. It is not always clear which interpolation method is best 
for a given environmental variable; this depends on the patterns in that variable’s distribution and the sampling 
design, among others. Thus, comparing the effectiveness of interpolation methods is an important element of 
optimizing environmental variables mapping  protocols24–27.

Our primary objective is to present a new method for local-scale distribution mapping of soil fungi. This 
approach combines Next Generation Sequencing (NGS) metabarcoding and geographic information system 
(GIS) applications involving spatial interpolation. The method can be used to map the distribution of one 
selected, studied group of fungi, as well as multiple groups or soil fungi in general. Our approach was tested 
in situ, and example fungal distribution maps were developed based on Wielka Żuława island, Poland’s largest 
inland island. Finally, we discuss the drawbacks of our approach and some possible adaptations and workarounds.

Materials and methods
Study site and sampling. To prepare example local-scale distribution maps of soil fungi, a case study was 
carried out on Wielka Żuława island on the Jeziorak lake in the Warmia-Masuria region in Poland (Fig. 1A). 
From across the island, 90 samples were collected in a regular square  grid28 at 100-m intervals (Fig. 1B). Each 
sample comprised of soil mixed from three sampling points 1 m apart from each other, forming an equilateral 

Figure 1.  The study site and sampling grid. (A) The location of the Wielka Żuława island (star) in the Warmia-
Masuria region (green) in Poland. Map created in QGIS (v3.28.1-Firenze; https:// www. qgis. org/). (B) A satellite 
image of the Wielka Żuława island overlayed with the sampling grid applied in the case study. Consecutive 
samples (red dots) in the grid were collected at 100 m distance. Satellite image: ©2019 CNES/Airbus; ©2019 
Google (https:// maps. google. com).

https://www.qgis.org/
https://maps.google.com
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triangle with its center on the grid node. A 2 × 10 cm cylindrical soil core was collected at each of these sampling 
points. To prevent sample cross-contamination, the sampling tools were sterilized using ethyl alcohol and a blow 
torch following the collection of each sample. Samples were placed in separate zip-lock plastic bags and stored 
in -20 centigrade until further processing. During sample collection, the surrounding vegetation type and tree 
species were recorded for each sample (Appendix 1). All sampling took place in June 2021.

Soil chemical analysis. Soil chemical analysis was performed independently for each of the 90 samples. 
Soil pH was measured in soil–water suspension using a Mettler Toledo FE20 benchtop pH meter. Kjeldahl N was 
measured using a FOSS TECATOR 2300 Kjeltec Analyzer Unit (application note AN 300). Total C and organic C 
were measured using a LECO RC612 Multiphase Determinator. Dionex ICS-1100 Ion Chromatography System 
was used to analyze N–NO3, N–NH4, and P (Olsen). For N–NO3, Dionex Seven Anion Standard II was used 
to calibrate, and the Dionex IonPac™ AS9-HC column was used for analysis. For N–NH4, Dionex Six Cation 
Standard II was used to calibrate, and the Dionex IonPac™ CS12A column was used for analysis. For P (Olsen), 
the Dionex IonPac™ AS9-HC column was used for analysis. Cation content (K, Mg, Ca) was measured using 
the Varian AA280FS spectrometer (Fast Sequential Atomic Absorption Spectrometer 280; Varian, Australia). 
The analyses were verified using certified reference materials: ISE sample 995 and ISE sample 859. Soil chemical 
analyses were conducted at the Laboratory of Ecochemistry and Environmental Engineering, Institute of Botany, 
Polish Academy of Sciences.

Sample analysis. The DNeasy PowerSoil (Qiagen) kit was used to extract and purify total soil DNA from 
each sample. The primers gITS7 (5′-GTG ART CAT CGA RTC TTT G-3′) and ITS4 (5′-TCC TCC GCT TAT 
TGA TAT GC-3′) were used for the PCR reactions to amplify the standard fungal barcoding gene  ITS229,30. Three 
independent PCR amplifications were conducted for each sample. The products of the three PCRs were then 
brought together to form a library from each sample for the following analyses. The 90 libraries were sequenced 
in paired-end mode on the high-throughput Illumina MiSeq platform (minimal run length: 2 × 250 base pairs). 
The sequencing was conducted by Novogen (novogen-layers.com). The Illumina sequencing results were depos-
ited in the Sequence Read Archive (https:// www. ncbi. nlm. nih. gov/ sra), accession numbers: SRR24200866–
SRR24200782 under the BioProject PRJNA956702.

Data analysis. The sequencing results were filtered to remove low-quality and chimeric sequences. The 
cleaned sequences were grouped to form operational taxonomic units (OTUs) based on a ≥ 97% identity thresh-
old. FLASH (v1.2.7; http:// ccb. jhu. edu/ softw are/ FLASH/), UCHIME (http:// www. drive5. com/ usear ch/ manual/ 
uchime_ algo. html), QIIME (v1.7.0; http:// qiime. org/ scrip ts/ split_ libra ries_ fastq. html)31 and Uparse (Uparse 
v7.0.1090; http:// drive5. com/ uparse/) platforms were used to perform these  operations32–34.

The taxonomic position of the resulting OTUs was established by comparing each OTU representative 
sequence with reference sequences using the blastall (v2.2.25) algorithm and the UNITe (v8.2) database (https:// 
unite. ut. ee/)35. Phylogenetic relationships between the OTU representative sequences were established after align-
ing the sequences using the MUSCLE algorithm (v3.8.31; http:// www. drive5. com/ muscle/)36. The OTUs count 
was normalized based on a standard corresponding to the sample containing the lowest number of sequences. 
Finally, each OTU was assigned to a trophic mode and guild using the FunGuild  platform37. Correlations between 
soil chemical variables, between the abundance of individual fungal guilds, and between fungal guilds and soil 
properties were calculated based on Spearman’s rank correlation coefficient in R (v4.2.2) using the ‘corrplot’ 
 package38.

Map preparation. The local-scale distribution of individual fungal groups was represented as 2-D histo-
grams and georeferenced raster grids. The 2-D histograms were created in Excel by assigning the measured 
sequence counts for individual groups of fungi to the respective sampling points, with the X and Y axes repre-
senting the relative location (Appendix 1). Spatial autocorrelation in the data sets was evaluated by calculating 
the global Moran’s  I39. The neighboring cells were assigned the weight (w) of 1, and remote cells the weight of 0 
based on the rook’s definition of contiguity (the same weight matrix was used for all tested fungal groups); n rep-
resents the number of all cells and x represents the measured values. The significance of the calculated Moran’s I 
was assessed using the Monte Carlo permutation test (1000 permutations).

In QGIS (v3.28.1-Firenze; https:// www. qgis. org/)  software40, a shapefile layer was created, with all sampling 
locations added as 90 individual points. The sequence counts for individual groups of fungi at each sampling 
location were assigned to the respective points as their point attributes. The shapefile layer was used as a basis 
for spatial interpolations. Three methods of raster grid interpolation were tested in preparing the distribution 
maps: IDW, multilevel B-spline, and Kriging interpolation (ordinary Kriging; the variogram function was fit-
ted for each set of data independently based on the indicated determination value). The cell size was set for all 
interpolation algorithms to 0.0001°, resulting in 190 columns and 162 rows. All interpolations were performed 
using SAGA (v8.4.1) GIS  software41. All the resulting georeferenced raster grids were imported to QGIS software 
for further management, editing, and analysis.

The effects of reduced sampling effort (RSE) on the resulting fungi distribution maps were tested by inter-
polating maps based on a limited number of sample data points. In all these simulations, the remaining points 
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formed regular grids. Three levels of RSE were simulated: low (using half of the samples; 1/2 N), medium (using 
a quarter of the samples; 1/4 N), and high (using 1/9 of the samples). Two sets of maps were created for both 
low- and medium-level RSE simulations, each set using a different selection of data points.

Map validation. To evaluate the number, size, and shape of similar fungi abundance patches in the inter-
polated maps, tested raster grids were segmented using k-means clustering. Using QGIS, the tested raster grids 
were set to the ‘single-band grey’ setting, representing all values on a monochromatic grey scale. K-means clus-
tering of the prepared maps was performed in MATLAB (v9.13.0, R2022b; https:// www. mathw orks. com) soft-
ware using the ‘imsegkmeans’ function (https:// www. mathw orks. com/ help/ images/ ref/ imseg kmeans. html)42. 
All tested maps were segmented for k = 2 (dividing them into two categories of regions) and k = 3 (three catego-
ries of regions). The performance of interpolations was evaluated by calculating their root mean square error 
(RMSE). Each tested interpolation was repeated using 80% of randomly selected data points, and the n measured 
(x) and interpolated values ( ̂x ) at the remaining points were collected using the Point Sampling Tool QGIS 
plugin (v0.5.4)43 compared using the following equation:

To evaluate the accuracy of RSE simulations as compared to the maps prepared based on all available data 
points, difference raster grids were prepared. Difference raster grids were calculated by subtracting individual 
simulated RSE raster grids from the analogous raster grid interpolated from all available points. For each result-
ing difference raster grid, the average value, standard deviation (SD), and the sum of squares were calculated. 
The arithmetic operations on raster grids were performed in QGIS software.

The distribution patterns of selected fungal groups were compared with the basic features of the Wielka 
Żuława landscape. The raster grids were set to 40% opacity and superimposed on a general-use map of the island 
(OpenStreetMaps; https:// www. opens treet map. org).

Results
Soil analyses revealed high differences in chemical properties among the sampling points (Table 1). The average 
pH was strongly acidic (5.28), with 68.9% of samples being strongly acidic (pH < 5.5). Most of the analyzed soil 
chemical variables were positively correlated (Appendix 2). The exception to this was phosphorus, which nega-
tively correlated with nitrogen (Kjeldahl and  NH4) and carbon (total and organic). The main types of vegetation 
on the island were mature trees (predominately ECM species) and grasses (Appendix 1).

Sequencing was successful for 85 out of the 90 samples. No data were obtained for samples 43, 67, 68, 73, and 
84. Most distinct fungal OTUs (1573) were identified from sample 49, while sample 75 contained the lowest num-
ber of OTUs (358) (Fig. 2). Overall, the fungi identified on the Wielka Żuława island comprised 10,387 OTUs, 
965 genera, 373 families, 158 orders, and 12 phyla. The fungi were classified into 32 trophic guilds. While both 
the most abundant genus (Penicillium) and the most abundant family (Aspergillaceae) are both predominately 
saprotrophic, overall, the most abundant trophic guild recorded were ectomycorrhizal (ECM) fungi. The most 
abundant genus of ECM fungi was Russula (Table 2).

Most fungal trophic guilds were discovered to form clusters based on the positive correlations in their distri-
bution (Fig. 3). These clusters, however, did not contain ECM fungi, the most dominant guild. The distribution 
of ECM fungi correlated negatively with the distribution of several of the other trophic guilds, particularly the 
guilds forming the largest cluster. Stem saprotrophs and nematophagous fungi showed no significant correla-
tions to the other guilds in their distribution. Only half of the fungal trophic guilds’ distribution was significantly 
correlated with the measured soil chemical variables. Notably, ECM fungi distribution was not found to corelate 
with any soil parameters. Of soil chemical variables, pH and Ca were found to be significantly correlated with 
the distribution of the highest number of fungal trophic guilds (7 guilds each; Appendix 2).

Positive spatial autocorrelation was found in four out of the ten most abundant trophic guilds (Table 2). The 
highest spatial autocorrelation characterized the distribution of fungal endophytes (I = 0.237, p < 0.001). Two 
out of ten most abundant families (Pyronemataceae and Nectriaceae) and two out of ten most abundant genera 
(Exophiala and Mortierella) displayed significant spatial autocorrelation on the sampled scale.

The B-spline interpolation consistently produced the highest RMSE values. The IDW method produced the 
lowest RMSE values for the fungal groups that did not display significant spatial autocorrelation on the sampled 
scale. The Kriging interpolation produced the lowest RMSE values for the fungal groups with spatially autocor-
related distribution (Table 3). However, the Kriging interpolation is the only of the tested methods to return 
altered values for the sampling points used for interpolation.

RMSE =

√

∑n
i=1

(

x̂i − xi
)2

n

Table 1.  Lowest, average, and highest values of measured soil chemical variables recorded from the study 
samples.

N (Kjeldahl) (%) Ctot. (%) Corg. (%) N-NO3 (ppm) N-NH4 (ppm) K (ppm) Mg (ppm) Ca (ppm) P (Olsen) (ppm) pH

Lowest value 0.052 0.520 0.492 0.019 0.544 21.03 16.35 82.42 0.479 4.12

Average 0.290 4.991 4.816 8.327 4.979 101.57 148.60 1511.70 13.787 5.28

Highest value 1.939 30.877 30.727 213.266 74.356 394.05 1256.15 13,058.30 51.789 7.22

https://www.mathworks.com
https://www.mathworks.com/help/images/ref/imsegkmeans.html
https://www.openstreetmap.org
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The method most accurate at delineating discrete regions of similar relative abundance of fungi was B-spline 
(Fig. 4). Using the IDW algorithm resulted in maps with no continuity between the data points in regions of 
similar abundance. This limited continuity is more apparent in maps stratified into discrete regions using k-means 
clustering. Kriging-based maps portray major features of fungal distribution (i.e., large high- vs. low-abundance 
regions) but omit smaller patches. Using B-spline allows for the successful preparation of distribution maps for 
any discrete group of soil fungi on any level of organization (Fig. 5).

The resolution of detected fungal distribution features was affected by RSE (Fig. 6). For all tested RSE simula-
tions, the two major regions of high ECM fungi abundance (on the island’s west coast and at the base of the pen-
insula in the north) were detected. Distribution patches smaller than the distance between the sampling points 
were either missed or exaggerated (e.g., the region of high ECM fungi abundance on the northern peninsula) 
depending on the sampling grid positioning. With a larger distance between sampling points, the potential role 
of sampling grid positioning increases. This is illustrated by comparing distribution maps interpolated from all 
collected samples with the RSE maps (Fig. 7). For ECM fungi, sums of squares for difference raster grids were 
comparable for maps prepared based on low (1/2 N) RSE (i–ii: 1.4e+7 and i–iii: 1.2e+7), but differed by a factor 
of two for maps prepared based on medium (1/4 N) RSE (i–iv: 1.3e+7 and i–v: 3.0e + 7).

Overlaying the fungi distribution maps and the OpenStreetMap of the Wielka Żuława island reveals relation-
ships between the landscape features and the abundance of mapped fungi. Most of the high-abundance patches 
of ECM fungi overlapped with the forested parts of the island, indicated on the OpenStreetMap by dark green 
(Fig. 8A). Two patches of high ECM fungi abundance were placed outside the forested region as indicated by 
the OpenStreetMap. Analyzing the distribution of the five most abundant fungal families comprising ECM 
fungi revealed Pyronemataceae as the main contributor to one of these patches (Fig. 8B), with the other families 
largely found in the forest regions.

Discussion
Environmental conditions and soil fungi at the study site. The environmental conditions observed 
at the Wielka Żuława island are typical for this part of Europe. The average soil pH in Europe is acidic, except for 
the Mediterranean region, where most soils are  alkalic44. In Poland, most soils have a pH below 5.545. Examining 
the spatial distribution of the measured soil chemical variables suggests some degree of differentiation between 
the island coast and the island center (Appendix 1). The recorded tree species composition on the island is con-
sistent with the forests characteristic of the Warmia-Masuria  region46. Comparing the soil chemical variables 
and the recorded vegetation at the sampling points reveals some tentative relationships. Regions of high phos-

Figure 2.  A 2-D histogram illustrating the number of distinct fungal OTUs detected from each soil sample.
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phorus concentration conspicuously overlap with regions dominated by grasses, with few or no trees. Regions 
of low calcium concentration largely coincided with the distribution of Pinus sylvestris, the only conifer species 
on the island.

The observed environmental variables provided limited insight into the soil fungal community on the Wielka 
Żuława island. Half of the fungal trophic guilds (including the most abundant guild, ECM fungi) did not sig-
nificantly correlate with the soil chemical variables. Moreover, the significant correlations were characterized 
by relatively low correlation coefficients. The two soil chemical variables significantly correlated with the largest 
number of fungal trophic guilds, pH and Ca, are known to be important predictors of fungal diversity. A study 
by Tedersoo et al.47 indicated soil pH as the primary driver of soil fungal diversity in the Baltic region of Europe. 
The same study found calcium concentration to be the second most important soil chemical variable affecting 
fungal distribution, outweighing such variables as P, K, Mg, C, and N concentrations. Although the role of soil 
chemistry in shaping the local soil fungi communities is significant, the low correlation coefficients between the 
soil chemical variables and the abundance of individual fungal groups suggests that other factors shaping the 
community may also be at play. Identifying and understanding these factors can (at least in part) be achieved by 
mapping the soil fungi and analyzing their distribution.

Use of interpolation in landscape‑scale fungi distribution mapping. Using interpolation to map 
spatial variables is a well-established approach in fields like  geology24,26,48 or  meteorology27,49, also applied in 
some areas of  ecology25,50,51. In continuous variables, the values change gradually, and thus the neighboring val-
ues are not independent of one another. This spatial  autocorrelation26 enables predicting the values of a studied 
variable based on the observed surrounding values. The influence of a variable’s value at one point on its values 

Table 2.  Most abundant groups of soil fungi on the genus, family, and trophic guild levels recorded in the case 
study. For each group, the spatial autocorrelation coefficient Morran’s I and its significance p is provided (N.S. 
not significant).

Rank Name Moran’s I p

Genus

 1. Penicillium 0.080 N.S

 2. Russula 0.025 N.S

 3. Inocybe 0.027 N.S

 4. Oidiodendron 0.000 N.S

 5. Exophiala 0.156  < 0.05

 6. Tomentella –0.007 N.S

 7. Saitozyma 0.090 N.S

 8. Mortierella 0.195  < 0.01

 9. Cortinarius 0.058 N.S

 10. Trechispora -0.044 N.S

Family

 1. Aspergillaceae 0.051 N.S

 2. Russulaceae 0.015 N.S

 3. Myxotrichaceae 0.000 N.S

 4. Inocybaceae 0.027 N.S

 5. Herpotrichiellaceae 0.123 N.S

 6. Pyronemataceae 0.238  < 0.01

 7. Thelephoraceae –0.002 N.S

 8. Trimorphomycetaceae 0.090 N.S

 9. Nectriaceae 0.156  < 0.05

 10. Hymenogastraceae –0.051 N.S

Trophic Guild

 1. Ectomycorrhizal (ECM) 0.143  < 0.05

 2. Undefined saprotroph 0.021 N.S

 3. Wood saprotroph –0.006 N.S

 4. Dung saprotroph 0.006 N.S

 5. Plant pathogen 0.102 N.S

 6. Endophyte 0.237  < 0.001

 7. Fungal parasite 0.129  < 0.05

 8. Animal pathogen 0.150  < 0.05

 9. Soil saprotroph 0.083 N.S

 10. Ericoid mycorrhizal 0.009 N.S
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Figure 3.  Hierarchically clustered Spearman’s rank correlation matrix of the soil fungi trophic groups identified 
on the Wielka Żuława island. Only significant correlations are presented.

Table 3.  Root mean square error (RMSE) of the tested interpolation methods for the ten most abundant 
trophic guilds of soil fungi recorded in the case study.

Rank Name IDW BS K Significant spatial autocorrelation

1. Ectomycorrhizal (ECM) 0.239 0.282 0.237 Yes

2. Undefined saprotroph 0.137 0.157 0.140 No

3. Wood saprotroph 0.150 0.172 0.171 No

4. Dung saprotroph 0.154 0.167 0.159 No

5. Plant pathogen 0.076 0.098 0.080 No

6. Endophyte 0.056 0.072 0.055 Yes

7. Fungal parasite 0.054 0.075 0.053 Yes

8. Animal pathogen 0.054 0.073 0.052 Yes

9. Soil saprotroph 0.110 0.113 0.112 No

10. Ericoid mycorrhizal 0.034 0.044 0.035 No
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at other points usually decreases with distance and, as such, can only be observed on certain  scales51. The level of 
soil fungal biomass is known to be a continuous variable spatially autocorrelated on the landscape  scale50. Stud-
ies of ECM fungi based on ECM root tips indicated spatial autocorrelation of the species community composi-
tion on spatial scales varying from 2.6 to 25 m, depending on the study site and the fungal  species52. However, 
the free mycelium and  rhizomorphs53,54 may grow outward from the root tips extending for  meters55,56. Conse-
quently, the scale at which the ECM fungi in soil display spatial autocorrelation should noticeably exceed the 
scale at which spatial autocorrelation is observed for the ECM root tips. Other groups, such as saprotrophic and 
pathogenic fungi, may form continuous hyphal patches much larger than these of ECM  fungi56.

At the spatial scale sampled in the case study, significant spatial autocorrelation was observed only for the 
minority of tested groups of soil fungi. This could be caused either by a large error in the sampled values or 
the spatial autocorrelation relevant only on a scale smaller than the minimum distance between the collected 
 samples25,57. The latter seems to be the case here. The strong correlation between soil fungi relative abundance 
and the read counts of respective barcodes in Illumina  metasequencing58 suggests the reliability of the values 
observed for the sampled points. However, the minimum separation distance between samples in the case study 
was 100 m, exceeding the scale of observable autocorrelation for individual ECM fungal species mentioned 
above. Accordingly, on the genus level, significant spatial autocorrelation was observed only for predominately 
pathogenic Exophiala59 and predominately saprotrophic Mortierella60. While Pyronemataceae, one of the fami-
lies for which significant spatial autocorrelation was observed on the sampled scale, does include ECM taxa, 
most of its species are  saprotrophic61. Most groups of fungi spatially autocorrelated on the sampled scale were 
on the trophic guilds’ level, interestingly including ECM fungi. This could be explained by the smaller, discrete 
patches of individual fungal taxa belonging to the same guild displaying a level of functional  redundancy62 and 
responding to the environmental conditions in similar ways. As a result, they form larger, ‘effective’ patches that 
display significant spatial autocorrelation on the sampled scale. It is important to note that while observing and 
characterizing the spatial autocorrelation is necessary for Kriging interpolation, IDW and B-spline methods may 
be used just with the assumption of the interpolated variable being spatially  autocorrelated57.

Each of the compared interpolation methods presented a distinct set of advantages and disadvantages. Based 
on the RMSE scores, IDW and Kriging were the best predictors of soil fungi relative abundance values. While 
Kriging interpolation performed better for groups of fungi displaying spatial autocorrelation on the sampled 
scale, IDW performance for these fungi was similar, differing by only 1–3%. For the groups of fungi where spatial 
autocorrelation on the sampled scale was not observed, IDW performed much better than Kriging interpolation. 
This observation is consistent with Schloeder et al.24, who suggested that in the case of sparsely distributed data 
on soil properties, IDW and Kriging performance are comparable. B-spline, followed by Kriging (for the groups 
of fungi in which spatial autocorrelation was observed at the sampled scale), outperformed IDW in terms of 
depicting patches and regions of the fungi distribution, especially for stratified maps. This is also consistent with 
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Figure 4.  The number of ectomycorrhizal (ECM) fungi reads in the collected samples (sampled values) on 
the Wielka Żuława island and ECM fungi distribution maps prepared with inverse distance weighted (IDW), 
B-spline, and Kriging interpolation methods. Stratified maps prepared with k-means clustering for k = 2 (relative 
high- and low-abundance) and k = 3 (relative high-, medium-, and low-abundance) illustrate the relative high 
(yellow), medium (cyan), and low (blue) abundance regions delineated with each interpolation method.
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the characteristics of IDW interpolation, which makes predictions only based on the variable value and distance 
from a known data point, not considering the values of the surrounding  points26,48,57. Overall, each interpolation 
method seems to be best suited for different applications. IDW is most suitable for predicting the fungi relative 
abundance at unsampled points if the studied soil fungi communities do not display spatial autocorrelation on 
the sampled scale or if it is uncertain whether they do. B-spline is most suitable for predicting and visualizing the 
spatial patterns of fungal distribution. Kriging interpolation outperforms IDW in predicting the fungi relative 
abundance values and predicting the spatial patterns of fungal distribution if the spatial autocorrelation can be 
characterized on the sampling scale.

Uses for landscape‑scale mapping of soil fungi. In conventional studies of soil fungal ecology at the 
landscape scale, only a limited number of samples are collected. Similarly, only selected environmental variables 
are being measured. Both the distribution of samples and the selection of measured environmental variables 
tend to be informed by the study objectives and hypotheses. Studies focusing on the effects of specific environ-
mental variables may collect the samples alongside these studied variables’  gradients63–66. If the research objec-
tives are investigating the ecological relationships between soil fungi and other organisms, e.g., selected plants, 
the samples may be collected from the vicinity of these  plants19,22. In cases where general characterization of the 
soil fungal communities in a studied landscape is needed, sampling often is unrelated to the landscape features 
and effectively pseudo-random67–69. This conventional, ‘purposeful’ approach to sampling design is effective in 
answering the original questions posed in the respective studies. However, it can limit the potential reusability 
of the collected data.

Mapping the distribution of soil fungi in a landscape facilitates post-hoc testing for correlations between the 
fungal distribution and environmental variables. Studies implementing conventional sampling designs may lack 
data on the fungal abundance across environmental variable gradients that were not considered when the study 
was designed. Even if a wide range of values is measured and reflected in the gathered samples for a variable that 
the study did not initially attempt to focus on, that variable may be correlated with one for which the study was 
planned (e.g., soil water content and soil organic matter similarly distributed in the samples of Aučina et al.65 or 
soil pH overlapping with the tree community composition in the study of Wilgan et al.19). Separating the effects 
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Figure 5.  B-spline interpolated soil fungi distribution maps of most abundant fungal groups on the Wielka 
Żuława island on the trophic guild, family, and genus levels. (A) ectomycorrhizal; (B) undefined saprotrophs; 
(C) wood saprotrophs; (D) Aspergillaceae; (E) Russulaceae; (F) Myxotrichaceae; (G) Penicillium; (H) Russula; 
(I) Inocybe.
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of multiple environmental variables correlated with each other could be strenuous if possible. If the relative 
abundance of soil fungal groups is known for each specific point of a landscape, that abundance can be juxtaposed 
with independently tested environmental variables. Moreover, if the fungi distribution map is superimposed on 
other maps illustrating the local landscape features, potential factors affecting the fungal distribution which were 
not previously considered could be noticed. All this may be done either by the researchers who first prepared 
the distribution map or by any different group.
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Figure 6.  Reduced sampling effort (RSE) simulations of the ectomycorrhizal (ECM) fungi distribution 
mapping. The 2-D histograms indicate the samples used for subsequent interpolations. B-spline interpolated 
distribution maps were stratified with k-means clustering for k = 2 (relative high- and low-abundance) and k = 3 
(relative high-, medium-, and low-abundance) to illustrate the relative high (yellow), medium (cyan), and low 
(blue) abundance regions indicated in each RSE simulation. (i) map interpolated with all available data (N; 
distance between consecutive data points = 100 m); (ii and iii) maps interpolated with 1/2 of the available data 
(1/2 N; distance between consecutive data points = 141 m); (iv and v) maps interpolated with 1/4 of the available 
data (1/4 N; distance between consecutive data points = 200 m); (vi) map interpolated with 1/9 of the available 
data (1/9 N; distance between consecutive data points = 300 m).
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Compared to studies implementing the conventional sampling design, soil fungi distribution maps can be 
more easily used by other researchers. In some cases, analyzing the effects of landscape features and environ-
mental variables omitted by the team that prepared the map would not even require revisiting the study site. 
The mapped data of fungal abundance could be compared with other maps and satellite  images70 of the study 
site to identify previously overlooked factors shaping the local distribution of soil fungi. The ability to perform 
additional studies on a given site without subsequent visits may be relevant when visiting the site is  dangerous71 
or disturbs the local  environment72,73. Additionally, producing landscape-scale maps of soil fungi distribution 
makes it easier to make landscape-scale environmental studies of soil fungi replicable and  verifiable20,21. Even if 
the precise location of sampling points in the study which is being verified is not available, a repeated mapping 
of the same landscape should reveal similar features in the distribution of individual fungal groups.

Landscape-scale maps of soil fungal distribution have numerous potential practical applications. They could 
be used in designing effective nature conservation areas. Soil fungi are essential for the functioning of local 
 habitats3,5, and knowing their distribution may be useful in determining the size and shape of the conservation 
area. Moreover, some rare fungal taxa are potentially worth preserving  themselves74, and their distribution should 
be considered. Maps of soil fungi distribution could also be used to better understand and manage urban green 
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 spaces75. The importance of urban green spaces in cities around the world is well  recognized76. The local fungal 
communities, which include pathogenic and symbiotic fungi, play an essential role in the condition of these 
green  spaces77,78. Other areas where maps of landscape-scale fungi distribution may be helpful are planning and 
evaluating the impact of local infrastructure projects, agriculture, or forestry.

Potential issues and solutions. Probably the biggest issue limiting the applicability of the proposed 
methodology is its cost. Compared to conventional sampling designs, the number of samples required for 
landscape-scale mapping of the soil fungi distribution is notably higher. While the conventional approach will 
remain a cheaper alternative, the per-sample costs in molecular studies are continually  decreasing30. As a result, 
the proposed mapping method will become increasingly available to diverse research teams around the world. 
Moreover, the costs of soil fungi distribution mapping can be optimized by adjusting the sampling intensity. The 
presented case study on Wielka Żuława indicates that the distance between collected samples in the sampling 
grid affects the map resolution and the size of detectable fungi distribution patches. Accordingly, adjusting that 
distance while preparing individual maps should happen considering the map’s purpose. This could range from 
increasing the sampling intensity (in applications concerned with the fine-scale details of soil fungi distribution 
or the precise distribution of fungal groups displaying spatial autocorrelation only on small spatial scales) to 
decreasing it (in applications where only the general features of the fungi distribution, i.e., the spatial arrange-
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Figure 8.  The distribution of ectomycorrhizal (ECM) fungi on the Wielka Żuława island juxtaposed with 
the landscape of the island and the distribution of fungal families including ECM taxa. (A) An overlay of 
the ECM fungi distribution map and OpenStreetMap of Wielka Żuława. Most of the regions of high ECM 
fungi distribution overlap with forested areas (dark green on the OpenStreetMap layer). (B) Distribution 
maps of ECM fungi and the 5 most abundant fungal families to include ECM taxa: Russulaceae, Inocybaceae, 
Pyronemataceae, Thelephoraceae, and Hymenogasteraceae. Red contours indicate regions of high ECM fungi 
distribution outside of the forested areas. Comparing the distribution maps of all ECM fungi and of individual 
families reveals that Pyronemataceae are the main contributor to the indicated regions.
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ment of stratified regions of individual fungal groups, are needed). A similar approach of reducing the sampling 
intensity depending on the intended use for the interpolated maps was also suggested in other fields, e.g., map-
ping lake  sediments48.

Molecular studies of fungal communities and their diversity are susceptible to several forms of bias. First, 
the effectiveness of DNA isolation and amplification varies between individual fungal  taxa30,79–81. As a result, 
some recalcitrant taxa may be relatively underrepresented in the libraries prepared for downstream sequencing 
applications. One solution that could partially addresses this issue is to use single-molecule real-time sequenc-
ing platforms, avoiding the PCR amplification stage. However, employing these platforms may be expensive; 
compared to Illumina sequencing used in the present study, PacBio could cost up to ten times more per base 
 pair30. Next, distinct fungal taxa are known to contain different numbers of barcode gene repetitions in their 
 genomes30,58,82. Using the proportion of barcode gene reads in a sample as a direct proxy for the fungal relative 
abundance can, in some cases, lead to over- or underestimations of the community share of certain fungi. This 
issue can be addressed if the estimated relative abundance of fungi is corrected for the number of barcode gene 
repetitions in individual taxa. Studies indicate that such a corrected number of reads is an accurate predictor of 
fungal relative  abundance82,83. Finally, it is important to remember that the proposed method produces maps of 
relative rather than absolute abundance. To convert to absolute abundance, additional measures of total fungal 
biomass (e.g., ergosterol  concentration50,84) should also be collected. Relative abundance maps are most accurate 
for individual groups of fungi and visualize patches of their (relative) low and high abundance. Comparing the 
mapped relative abundance between distinct groups of fungi may lead to important insights, but the aforemen-
tioned biases should be recognized during these insights’ interpretation.

In the present study, three widely used interpolation algorithms were compared for fungi distribution map 
preparation. Although the B-spline interpolation method produces practical results, the authors see future poten-
tial in replacing any classical interpolation methods with machine learning  solutions85. A neural network trained 
specifically with data on landscape-level fungi distribution could potentially produce more accurate results 
compared to a general-use interpolation algorithm. Collecting suitable training data and developing a neural 
network for this purpose would be an interesting future development.

Data availability
The datasets generated and analyzed during the current study are available in the Sequence Read Archive (SRA) 
repository. (BioProject PRJNA956702 https:// www. ncbi. nlm. nih. gov/ sra/ PRJNA 956702. Acession numbers: 
SRR24200866–SRR24200782).
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