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Mother optimization algorithm: 
a new human‑based metaheuristic 
approach for solving engineering 
optimization
Ivana Matoušová 1*, Pavel Trojovský 1, Mohammad Dehghani 1, Eva Trojovská 1 & 
Juraj Kostra 2

This article’s innovation and novelty are introducing a new metaheuristic method called mother 
optimization algorithm (MOA) that mimics the human interaction between a mother and her children. 
The real inspiration of MOA is to simulate the mother’s care of children in three phases education, 
advice, and upbringing. The mathematical model of MOA used in the search process and exploration 
is presented. The performance of MOA is assessed on a set of 52 benchmark functions, including 
unimodal and high‑dimensional multimodal functions, fixed‑dimensional multimodal functions, and 
the CEC 2017 test suite. The findings of optimizing unimodal functions indicate MOA’s high ability in 
local search and exploitation. The findings of optimization of high‑dimensional multimodal functions 
indicate the high ability of MOA in global search and exploration. The findings of optimization of 
fixed‑dimension multi‑model functions and the CEC 2017 test suite show that MOA with a high ability 
to balance exploration and exploitation effectively supports the search process and can generate 
appropriate solutions for optimization problems. The outcomes quality obtained from MOA has 
been compared with the performance of 12 often‑used metaheuristic algorithms. Upon analysis and 
comparison of the simulation results, it was found that the proposed MOA outperforms competing 
algorithms with superior and significantly more competitive performance. Precisely, the proposed 
MOA delivers better results in most objective functions. Furthermore, the application of MOA on 
four engineering design problems demonstrates the efficacy of the proposed approach in solving 
real‑world optimization problems. The findings of the statistical analysis from the Wilcoxon signed‑
rank test show that MOA has a significant statistical superiority compared to the twelve well‑known 
metaheuristic algorithms in managing the optimization problems studied in this paper.

In the realm of science, problems that have multiple feasible solutions are referred to as optimization problems. 
Therefore, finding the best feasible solution among all the available solutions for a problem is called the opti-
mization  process1. Mathematically, any optimization problem can be represented using three key components: 
decision variables, constraints, and objective  functions2. Problem-solving methods for addressing optimization 
problems can be categorized into two main groups: deterministic and stochastic  techniques3. Deterministic 
methods effectively solve simple, linear, convex, continuous, differentiable, and low-dimensional optimization 
problems. However, they can become inefficient when dealing with complex optimization problems and may 
get stuck in local optima instead of finding the global optimum  solution4. Optimization problems in science, 
engineering, and real-world applications often have nonlinear, nonconvex, discontinuous, nondifferentiable, and 
high-dimensional characteristics. The limitations and challenges of deterministic approaches have prompted 
researchers to develop stochastic methods for solving optimization problems. These stochastic approaches offer 
a more flexible and robust framework that can better handle the complexity and uncertainty of these types of 
 issues5. It employs a random search in the problem-solving space and uses random operators to provide appro-
priate solutions for optimization problems. Metaheuristic algorithms have many advantages, including simple 
concepts, easy implementation, and the ability to efficiently solve nonlinear, nonconvex, discontinuous, nondiffer-
entiable, high-dimensional, and NP-hard problems, as well as problems in nonlinear and unknown search spaces. 

OPEN

1Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec 
Králové, Czech Republic. 2Faculty of Chemical Technology, Institute of Applied Physics and Mathematics, 
University of Pardubice, 532 10 Pardubice, Czech Republic. *email: ivana.matousova@uhk.cz

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-37537-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10312  | https://doi.org/10.1038/s41598-023-37537-8

www.nature.com/scientificreports/

These advantages have made metaheuristic methods popular among  researchers6. In metaheuristic algorithms, 
the optimization process randomly generates a set of candidate solutions. These solutions are then improved 
iteratively based on specific update steps until the best solution is found. Finally, this best solution is used to solve 
the optimization  issue7. One important thing to note about metaheuristic algorithms is that, unlike determinis-
tic approaches, there is no guarantee that they will find the globally optimal solution. The reason for this is the 
stochastic nature of these algorithms, which rely on a random search to explore the problem space. However, 
even if the optimal global solution is not found, the solutions obtained from metaheuristic algorithms are usu-
ally still acceptable as quasi-optimal because they tend to be close to the optimal global solution. Metaheuristic 
techniques are used to solve optimization problems by searching the problem-solving space globally and  locally8. 
Global search, or exploration, involves comprehensively scanning the search space to discover the main optimal 
area and prevent getting stuck in local optima. Local search, or exploitation, involves achieving better solutions 
around the obtained solutions. Metaheuristic algorithms must be able to balance exploration and exploitation 
during the search process, to bring usable solutions for optimization problems. This balance is the key to the 
success of metaheuristic algorithms in achieving suitable solutions for optimization  problems9.

The difference in updating steps and the search process can lead to varying results when implementing 
metaheuristic algorithms on the same optimization problem. Hence, when comparing the performance of mul-
tiple metaheuristic algorithms on an issue, the one that performs the search process more effectively and pro-
vides a better solution will outperform others. Researchers have developed numerous metaheuristic algorithms 
to solve optimization problems more effectively. These methods have found applications in various fields such 
as dynamic  scheduling10, construction of multi-classifier  systems11,12, clustering  approach13–15, IoT-based com-
plex  problems16,17, parameter  estimation18–20, modeling of nonlinear  processes21,22, energy carriers and electrical 
 engineering23–27, wave  solutions28–31, and higher-order nonlinear dynamical  equation32.

The central inquiry in investigating metaheuristic algorithms is whether the existing multitude of algorithms 
designed thus far is sufficient or if there is a continued need to develop newer algorithms. The No Free Lunch 
(NFL)  theorem33 answers this open issue by stating that the superior performance of a particular metaheuristic 
algorithm in solving a specific set of optimization problems does not necessarily ensure that the same algorithm 
will perform similarly well in solving other optimization problems. One metaheuristic algorithm may succeed in 
converging to the optimal global solution for a particular optimization problem but may fail to do so for another 
issue. Therefore, it cannot be assumed that a given metaheuristic algorithm will successfully solve any optimiza-
tion problem. The NFL states that no single metaheuristic algorithm is the best optimizer for all optimization 
problems. This theorem motivates researchers to develop new metaheuristic algorithms that effectively solve 
specific optimization problems. For instance, the authors of this paper were inspired by the NFL theorem to 
design a new metaheuristic algorithm that can solve optimization problems in various scientific and real-world 
applications.

The innovation and novelty of this paper are in introducing a new metaheuristic algorithm called mother 
optimization algorithm (MOA) to solve optimization problems in different sciences. This paper’s principal 
achievements are:

• MOA is to simulate the interactions between a mother and her children in three phases: education, advice, 
and upbringing.

• The MOA’s performance is assessed by testing it on 52 standard benchmark functions, including unimodal, 
high-dimensional multimodal, fixed-dimensional multimodal, and CEC 2017 test suite.

• MOA has demonstrated significantly better performance when solving various optimization problems from 
the CEC 2017 test suite compared to twelve commonly used metaheuristic algorithms.

• MOA’s effectiveness in solving real-world optimization problems was tested by applying it to four engineering 
design problems.

The structure of the remaining sections in the paper is as follows: a literature review is presented in the 
“Literature review” section, followed by the introduction and modeling of the proposed MOA approach in the 
“Mother optimization algorithm” section. The discussion, advantages, and limitations of MOA are provided 
in the “Discussion” section. Simulation studies and results are summarized in the “Simulation analysis and 
results” section, while the efficiency of MOA in handling real-world applications is evaluated in the “MOA for 
real-world applications” section. Finally, conclusions are drawn, and suggestions for future work are provided 
in the “Conclusion and future works” section.

Literature review
Metaheuristic algorithms are designed and developed with inspiration from various natural phenomena, the 
behavior of living organisms, biological sciences, physical laws, rules of games, human interactions, and other 
evolutionary phenomena. Based on the main design idea, metaheuristic algorithms can be classified into five 
groups: swarm-based, evolutionary-based, physics-based, game-based, and human-based approaches.

Swarm-based metaheuristic techniques draw inspiration from the collective behavior of social animals, plants, 
insects, and other organisms to develop powerful optimization methods. Particle swarm optimization (PSO)34, 
ant colony optimization (ACO)35, artificial bee colony (ABC)36, and firefly algorithm (FA)37 are among the most 
widely recognized swarm-based metaheuristic algorithms.
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PSO was inspired by the swarm movement of birds and fish in search of food, while ACO was inspired by 
the ability of ants to identify the shortest path between the nest and food sources. ABC algorithm is inspired by 
the foraging behavior of honey bees in the colony. In contrast, the flashing behavior of fireflies and their opti-
cal communication have served as a basis for creating the FA algorithm. Among the natural behaviors of living 
organisms, searching for food, foraging, hunting strategy, and migration are intelligent processes that inspired 
models of many swarm-based metaheuristic algorithms such as grey wolf optimization (GWO)38, emperor 
penguin optimizer (EPO)39, pelican optimization algorithm (POA)40, rat swarm optimization (RSO)41, marine 
predators algorithm (MPA)42, African vultures optimization algorithm (AVOA)43, mutated leader algorithm 
(MLA)44, coati optimization algorithm (COA)45, tunicate swarm algorithm (TSA)46, termite life cycle optimizer 
(TLCO)47, two stage optimization (TSO)48, artificial hummingbird algorithm (AHA)49, fennec fox optimization 
(FFA)50, white shark optimizer (WSO)51, and reptile search algorithm (RSA)52.

Metaheuristic algorithms based on evolutionary principles have drawn inspiration from biological sciences, 
genetics, and the idea of natural selection. Genetic algorithm (GA)53 and differential evolution (DE)54 are the 
most famous Evolutionary-based metaheuristic methods that have been used to solve many optimization prob-
lems. GA and DE are developed based on modeling the reproduction process, Darwin’s evolutionary theory, 
survival of the fittest, concepts of genetics and biology, and the application of random selection, crossover, 
and mutation operators. Some other evolutionary-based metaheuristic algorithms are artificial immune system 
(AIS)55, biogeography-based optimizer (BBO)56, cultural algorithm (CA)57, evolution strategy (ES)58, and genetic 
programming (GP)59.

Metaheuristic algorithms based on physics have been designed by drawing inspiration from concepts, phe-
nomena, laws, and forces in physics. Simulated Annealing (SA), for example, is a well-known physics-based 
metaheuristic algorithm that was inspired by the annealing phenomenon of metals in which the metal is melted 
under heat and then slowly cooled to form an ideal  crystal60. Algorithms such as gravitational search algorithm 
(GSA)61 have been designed based on inspiration from physical forces, particularly the gravitational force. The 
concept of abnormal oscillations in water turbulent flow was the basis for the turbulent flow of water-based 
optimization (TFWO)62. Concepts from cosmology have inspired algorithms such as multi-verse optimizer 
(MVO)63, black hole (BH)64, and galaxy-based search algorithm (GbSA)65. Some other physics-based algorithms 
are magnetic optimization algorithm (MOA)66, artificial chemical reaction optimization algorithm (ACROA)67, 
ray optimization (RO)  algorithm68, and small world optimization algorithm (SWOA)69.

Metaheuristic algorithms inspired by the rules and behaviors of players, coaches, and referees in individual 
and group games have been proposed as game-based metaheuristic algorithms. League championship algorithm 
(LCA)70, football game based optimizer (FGBO)71, and volleyball premier league (VPL)72 are examples of game-
based metaheuristic algorithms that simulate the rules and behavior of football and volleyball league matches, 
respectively.

The main inspiration behind the puzzle optimization algorithm (POA)73 design has been the skill and accu-
racy required to assemble puzzle pieces. The strategy used by players to throw darts and score points has been 
the primary source of inspiration for designing the Darts Game Optimizer (DGO)74.

Inspiration from human interactions, communication, thoughts, and relationships in personal and social life 
has led to the development of human-based metaheuristic algorithms. One such algorithm is teaching–learn-
ing based optimization (TLBO), which simulates educational interactions between teachers and students in the 
 classroom75. Teaching–learning-studying-based optimizer (TLSBO)76 is a method that enhances TLBO by adding 
a new strategy called “studying strategy”, in which each member uses the information from another randomly 
selected individual to improve its position. Dynamic group strategy TLBO (DGSTLBO)77 is an improved TLBO 
algorithm that enables each learner to learn from the mean of his corresponding group. Distance-fitness learn-
ing TLBO (DFL-TLBO)78 variant that employs a brand-new distance-fitness learning (DFL) strategy to enhance 
searchability. Learning cooking skills in training courses has inspired the design of the chef-based optimization 
algorithm (CBOA)79. The election based optimization algorithm (EBOA) has been inspired by the concept of 
elections and voting, with the aim of designing an algorithm that mimics the voting process to find optimal 
 solutions80. Driving training-based optimization (DTBO)81, coronavirus herd immunity optimizer (CHIO)82, 
political optimizer (PO)83, brain storm optimization (BSO)84, and war strategy optimization (WSO)85 are among 
the other human-based metaheuristic algorithms that have been proposed, inspired by various aspects of human 
behavior and social interactions.

As far as the literature review suggests, no metaheuristic algorithm has been developed so far that models the 
interactions among humans in the context of mothers’ care for children. The high level of intelligence involved 
in a mother’s care of her children presents a promising opportunity for the design of a novel metaheuristic 
algorithm. This paper aims to fill the research gap by proposing a novel metaheuristic algorithm that models 
human interactions between mothers and their children. The details of this new algorithm will be presented in 
the following section.

Mother optimization algorithm
This section will introduce the mother optimization algorithm (MOA) and its mathematical model. This section 
aims to present MOA and its underlying mathematical framework comprehensively. By delving into the algorithm’s 
details and mathematical representation, readers will gain insights into MOA’s inner workings and principles.
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Introducing the mother optimization algorithm (MOA). The first place of education in society is 
undoubtedly the family, and the mother is the essential educational element in raising  children86. A mother 
passes her meaningful life experiences and skills to her children, who develop their abilities based on her  advice87.

Among the most significant types of interactions between a mother and her children are the three processes 
of (i) education, (ii) advice, and (iii) upbringing. Therefore, the proposed MOA uses mathematical modeling of 
caring and educational behaviors.

Mathematical model of MOA. The proposed MOA is a population-based metaheuristic algorithm that 
solves optimization problems through an iterative process. The algorithm’s population consists of candidate 
solutions represented as vectors in the problem space. The population is modeled as a matrix by Eq. (1) and 
initialized using Eq.  (2) at the start of the optimization process. Each member of the population determines 
the values of decision variables based on its position in the problem search space, and the search power of the 
population is used to find the optimal solution.

where X is the population matrix of the proposed MOA, N  is the number of population members, m is the 
number of decision variables, Xi =

(

xi,1, . . . , xi,j , . . . , xi,m
)

 is the i  th candidate solution, xi,j is its j th variable 
the function rand(0, 1) generates a random uniform number from the interval [0, 1]. The j th decision variable’s 
lower and upper bounds are respectively represented by lbj and ubj.

Each member of the population in MOA is a potential solution to the problem being optimized, and the 
objective function of the problem can be computed based on the values proposed by each population member 
for the decision variables. In mathematical terms, the values of the objective function can be represented as a 
vector using Eq. (3).

where F is the vector of values of the objective function and Fi is the value of the objective function for the i th 
candidate solution.

The objective function values provide a measure of the quality of the solutions generated by the population 
members. The best and worst population members can be identified based on the best and worst values of the 
objective function, respectively. As the population members’ positions are updated in each iteration, the best 
population member also needs to be updated accordingly. Finally, at the end of the algorithm’s iterations, the 
best population member solves the problem.

In the design of MOA, the algorithm population is updated in three phases based on the mathematical mod-
eling of the interaction of raising children by the mother, which is discussed below.

Phase 1: education (exploration phase). The first phase, called “Education,” of population update in 
the proposed MOA approach is inspired by children’s education. It aims to increase global search and explora-
tion capabilities by making significant changes in the position of the population members. The mother in the 
MOA design is considered the best member of the population, and her behavior in training her children is mod-
eled to simulate the education phase. In this phase, a new position for each member is created using Eq. (4). If 
the objective function value improves in the new position, it is accepted as the corresponding member’s position, 
as shown in Eq. (5).
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where Mj is its j th dimension of the position of the mother, xi,j is the j th dimension of the position of the i th 
population member Xi , XP1

i  is the new position calculated for the i  th population member based on the first 
phase of the MOA, xP1i,j  is its j th dimension, FP1i  is its objective function value, the function rand(0, 1) generates 
a random uniform number in the interval [0, 1] , and  rand(2) is the random function that uniformly generates 
a random number from the set {1, 2}.

Phase 2: advice (exploration phase). One of the primary duties of mothers in raising their children is to 
counsel them and not enable them to misbehave. This action of the mother in the children’s advice is employed 
in the design of the second phase of population update in the MOA. The advice phase leads to an increase in the 
MOA’s capability in global search and exploration by making significant changes in the location of the popula-
tion members. In MOA design, for each member of the population, the position of other population members 
with a greater value of the objective function than it has is considered deviant behavior that should be avoided. 
The set of bad behavior BBi for each member is determined by comparing the objective function value using 
Eq. (6). For each Xi , a member is uniformly randomly selected from the constructed set of bad behaviors BBi . 
First, a new position is created for each member using Eq.  (7) to simulate keeping the child away from bad 
behavior. Subsequently, if it improves the objective function’s value, this new position replaces the corresponding 
member’s previous position, by Eq. (8).

where BBi is the set of bad behavior for the i th population member, SBBi is the selected bad behavior for the i th 
population member, SBBi,j is its j th dimension, XP2

i  is the new position calculated for the i th population member 
based on second phase of the proposed MOA, xP2i,j  is its j th dimension, FP2i  is its objective function value, the 
function rand(0, 1) generates a random uniform number in the interval [0, 1] , and rand(2) is the random function 
that uniformly generates a random number from the set {1, 2}.

Phase 3: upbringing (exploitation phase). Mothers use various forms of encouraging children to 
improve their skills in the education process. The upbringing leads to an increase in the ability of local search 
and exploitation in the MOA phase by making small changes in the position of the population members. To 
simulate the upbringing phase, first, a new position is created for each member of the population based on the 
modeling of children’s personality development using Eq. (9). If the objective function value improves in the new 
position, the corresponding member’s previous position is replaced with the new one, as specified in Eq. (10).

where XP3
i  is the new position calculated for the i th population member based on third phase of the proposed 

MOA, xP3i,j  is its j th dimension, FP3i  is its objective function value, the function rand(0, 1) generates a random 
number in the interval [0, 1] , and t  is the actual value of the iteration counter.

Description of the repetition process, pseudo‑code, and flowchart of MOA. After completing 
each iteration of the MOA algorithm, all population members are updated based on Phases 1 to 3—this process 
of updating the population according to Eqs. (4) to (10) continues until the final iteration. Throughout the 
algorithm, the best candidate solution is continuously updated and saved. Once the full implementation of the 
algorithm is completed, MOA presents the best candidate solution as the solution to the problem. The steps of 
the proposed MOA are depicted in a flowchart in Fig. 1 and pseudocode in Algorithm 1.
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{
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i
, F
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i

≤ Fi ,

Xi , else,

(6)BBi = {Xk , Fk > Fi ∧ k ∈ {1, 2, . . . ,N}}, where i = 1, 2, . . . ,N ,

(7)xP2i,j = xi,j + rand(0, 1) · (xi,j − rand(2) · SBBi,j),
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{
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i
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Xi , else,
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Input informa�on of op�miza�on problem. 

Set parameters of  and . Set 1 and 1. 

Create and evaluate the ini�al popula�on. 

Update mother’s posi�ons  based on best member. 

Start MOA. 

Calculate  using Eq. (4) and update  using Eq. (5). 

Determine  set using Eq. (6). 

Select  using Eq. (7). 

Calculate  using Eq. (9) and update  using Eq. (10). 

Calculate  using Eq. (7) and update  using Eq. (8). 

Output the best quasi-op�mal solu�on of the objec�ve func�on found by MOA. 

End MOA. 

Yes 

Yes 
No 

No 

1

1

 1

Figure 1.  Flowchart of MOA.
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Algorithm 1. Pseudo-code of MOA.

Start MOA.
1. Input all information connected with the optimization problem.
2. Set the number of iterations and the number of members of the population .
3. Generate the initial population at random based on Eq. (2).
4. Evaluate the initial population.
5. For = 1:

6. Update the mother's position based on the best member of the population
7. For = 1:

8. Phase 1: Education.
9. Calculate new position of the th population member based on Eq. (4).
10. Update the th population member using Eq. (5).
11. Phase 2: Advice.
12. Specify the bad behavior set for the th population member based on Eq. (6).
13. Choose at random one bad behavior from the set to advise the th population member.
14. Calculate new position of the th population member based on Eq. (7).
15. Update the th population member using Eq. (8).
16. Phase 3: Upbringing.
17. Calculate a new position of the th population member based on Eq. (9)
18. Update the th population member using Eq. (10).
19. end
20. Save the best proposed solution so far.
21. end
22. Output the best obtained proposed solution.
End MOA.

Computational complexity of MOA. In this subsection, the MOA computational complexity analysis 
is discussed. MOA initialization for an optimization problem has a complexity equal to O(Nm), where N is the 
number of population members and m is the number of decision variables of the problem. In each iteration, 
MOA population members are updated in three phases. The MOA update process has a complexity equal to 
O(3NmT) , where T is the maximal number of iterations of the algorithm. Therefore, the total computational 
complexity of MOA is equal to O(Nm(1+ 3T)).

Simulation analysis and results
In this section, the proposed MOA’s performance in solving optimization problems is evaluated by testing its effi-
ciency on fifty-two standard benchmark functions, including unimodal (F1 to F7), high-dimensional multimodal 
(F8 to F13), and fixed-dimensional multimodal (F14 to F23)  types88, as well as the CEC 2017 test suite (C17–F1, 
and C17–F3 to C17–F30)89. The quality of the results obtained from MOA is compared with twelve well-known 
metaheuristic algorithms, including GA, PSO, GSA, GWO, MVO, WOA, TSA, MPA, AVOA, WSO, and RSA. 
The control parameters are adjusted as specified in Table 1. To optimize functions F1 to F23, MOA and each 
competitor algorithm are used in twenty independent runs with 50,000 function evaluations (i.e., FEs = 50, 000 ). 
For solving the CEC 2017 test set, the proposed MOA and the competitor algorithms are employed in fifty-one 
independent runs, each containing 1 10, 000 ·m function evaluations (i.e., FEs = 10000 ·m ), where m is the 
number of problem variables set to 10. The population size of MOA is considered equal to 30 members. Six 
statistical indicators, including mean, best, worst, standard deviation, median, and rank, are used to report the 
optimization results. The mean index is used as a ranking criterion for metaheuristic algorithms in optimizing 
each benchmark function. Experiments have been implemented on the software MATLAB R2022a using 64-bit 
Core i7 processor with 3.20 GHz and 16 GB main memory.

Evaluation of unimodal benchmark functions. Table 2 presents the results of MOA and twelve com-
petitor algorithms on seven unimodal functions F1 to F7, which are selected to evaluate the ability of metaheuris-
tic algorithms in local search and exploitation. This evaluation aims to determine the algorithm’s ability to find 
the global optimum. The results show that MOA has achieved convergence to the global optimum for functions 
F1 to F6 with high exploitation ability. Additionally, MOA has performed the best among the competitor algo-
rithms in solving F7. The analysis of the optimization results indicates that MOA has demonstrated superior 
performance in solving unimodal functions F1 to F7 due to its high ability in exploitation.

Evaluation of high dimensional multimodal benchmark functions. Table 3 reports the optimiza-
tion results of six high-dimensional multimodal functions (F8 to F13) using MOA and other competitor algo-
rithms. The aim of selecting these functions was to evaluate the ability of metaheuristic algorithms in global 
search and exploration. The results show that MOA has outperformed the other algorithms and has been able 
to provide the global optimal for F9 and F11 functions. Additionally, MOA is the best optimizer for benchmark 
functions F8, F10, F12, and F13. It is observed that the proposed MOA approach, which has high power in explo-
ration, has provided better results and superior performance in solving high-dimensional multimodal functions 
compared to the competitor algorithms.
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Evaluation of fixed‑dimensional multimodal benchmark functions. The authors evaluated the 
performance of the proposed MOA and other metaheuristic algorithms on ten fixed-dimension multimodal 
functions (F14 to F23). The goal was to investigate the algorithms’ ability to balance exploration and exploita-
tion during the search process. The optimization results obtained using MOA and the competitor algorithms 
are reported in Table 4. Based on the simulation results, MOA is the best optimizer for F14, F15, F21, F22, and 
F23 functions. For functions F16 to F20, MOA has a similar mean performance compared to some competing 
algorithms. However, MOA has more favorable values for the std index, indicating a more effective performance 
in solving these functions. Overall, the analysis of the simulation results indicates that MOA, with its high abil-
ity to balance exploration and exploitation, performs better in solving fixed-dimension multimodal functions 
compared to the competitor algorithms.

Figure 2 shows boxplots of the performance results of MOA and other competing algorithms on functions F1 
to F23. The interpretation of the boxplot diagrams is as follows in the functions F1 to F6, F9, and F11. MOA has 
converged to the global optimum with a standard deviation equal to zero in different executions. This indicates 
that the proposed algorithm is robust in handling these functions. Also, MOA performed more effectively in 
dealing with other benchmark functions such as F7, F8, F10, F12, and F23. In addition to providing better values 
for statistical indicators, it can be seen that the boxplot diagrams of these functions have a smaller area, less dis-
persion of results in different executions, and a better mean value compared to competitor algorithms. Figure 3 
shows the convergence curves of MOA and competitor algorithms in solving functions F1 to F23. The conver-
gence curves show that MOA with a suitable convergence speed, during successive iterations of the algorithm, 
provided a convenient local search in functions F1 to F7 with the priority of converging to the optimal solution 
and also without stopping at the local optimum in multimodal functions F8 to F23, the process of optimization 
and search in the problem-solving space continues.

CEC 2017 test suite evaluation. This subsection evaluates MOA’s efficiency in handling the CEC 2017 
test suite, which consists of 30 standard benchmark functions (C17–F1 to C17–F30). Results of MOA and com-
petitor algorithms on this suite are reported in Table 5. The boxplot diagrams are shown in Fig. 4 and the con-

Table 1.  Assigned values to the control parameters of competitor algorithms.

Algorithm Parameter Value

GA

Type Real coded

Selection Roulette wheel (Proportionate)

Crossover Whole arithmetic ( Probability = 0.8 , α ∈ [−0.5, 1.5])

Mutation Gaussian ( Probability = 0.05)

PSO

Topology Fully connected

Cognitive and social constant (C1,C2) = (2, 2)

Inertia weight Linear reduction from 0.9 to 0.1

Velocity limit 10% of the dimension range

PSO Alpha , G0,Rnorm,Rpower 20, 100, 2, 1

TLBO
TF : the teaching factor TF = round[(1+ rand)]

Random number rand rand is a random number from the interval [0, 1]

GWO Convergence parameter (a) a : Linear reduction from 2 to 0

MVO
Wormhole existence probability ( WEP) Min(WEP) = 0.2 and Max(WEP) = 1

Exploitation accuracy over the iterations ( p) p = 6

WOA

Convergence parameter a a : Linear reduction from 2 to 0

Parameters r  and l
r  is a random vector in [0, 1]

l  is a random number in [−1, 1]

TSA
Pmin and Pmax 1, 4

c1, c2, c3 Random numbers lie in the range [0, 1].

MPA

Constant number P = 0.5

Random vector R is a vector of uniform random numbers from [0, 1]

Fish aggregating devices ( FADs) FADs = 0.2

Binary vector U = 0 or 1

RSA

Sensitive parameter α α = 0.1

Sensitive parameter β β = 0.01

Evolutionary Sense ( ES) ES are randomly decreasing values between 2 and − 2

AVOA

L1 , L2 (L1, L2) = (0.8, 0.2),

w w = 2.5

P1 , P2,P3 (P1, P2, P3) = (0.6, 0.4, 0.6)

WSO
Fmin and Fmax (Fmin , Fmax) = (0.07, 0.75)

τ , a0, a1, a2 (τ , a0, a1, a2) = (4.125, 6.25, 100, 0.0005)
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vergence curves of metaheuristic algorithms’ performance are drawn in Fig. 5. MOA is the top-performing opti-
mizer for C17–F1, C17–F3 to C17–F6, C17–F8 to C17–F21, and C17–F23 to C17–F30, except for C17–F2 due to 
its unstable behavior. Overall, the analysis of the optimization results shows that MOA provides better outcomes 
for most of the benchmark functions and has superior performance compared to competitor algorithms in han-
dling the CEC 2017 test suite. The boxplot diagrams are interpreted in this way, especially in functions C17–F1, 
C17–F3, C17–F4, C17–F6, C17–F9, C17–F11 to C17–F23, C17–F27, C17–F28, and C17–F30. That MOA with a 
very low standard deviation and a smaller box area in different implementations has been able to provide more 
effective and robust performance in handling these functions. The analysis of boxplot diagrams intuitively shows 
that MOA has provided superior performance compared to competitor algorithms by delivering better results 
for statistical indicators such as mean and standard deviation. The convergence curves show that in dealing with 

Table 2.  Evaluation results of unimodal functions.

F MOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F1

Mean 0 65.84207 0 0 1.92E−49 4.65E−47 1.40E−151 0.149486 1.77E−59 2.52E−74 1.33E−16 0.100856 30.4715

Best 0 5.289861 0 0 3.80E−52 1.44E−50 9.30E−171 0.105404 1.49E−61 5.86E−77 5.35E−17 0.000486 17.90903

Worst 0 238.6714 0 0 1.66E−48 3.30E−46 2.70E−150 0.201096 7.71E−59 2.59E−73 3.73E−16 1.396346 56.87106

Std 0 58.09538 0 0 4.33E−49 1.10E−46 6.60E−151 0.030559 2.35E−59 6.78E−74 7.88E−17 0.342137 11.51854

Median 0 45.37455 0 0 4.16E−50 4.27E−48 2.20E−159 0.150377 1.07E−59 1.69E−75 1.13E−16 0.00971 28.17077

Rank 1 11 1 1 5 6 2 9 4 3 7 8 10

F2

Mean 0 2.1377 1.10E−276 0 6.96E−28 2.11E−28 2.50E−105 0.258914 1.35E−34 6.76E−39 5.48E−08 0.89461 2.785606

Best 0 0.661815 1.30E−306 0 1.84E−29 2.02E−30 7.90E−118 0.159915 4.87E−36 8.81E−40 3.48E−08 0.045236 1.743611

Worst 0 7.438052 2.20E−275 0 4.70E−27 1.82E−27 2.70E−104 0.364146 7.90E−34 2.44E−38 1.23E−07 2.490822 3.80275

Std 0 1.953299 0 0 1.20E−27 5.83E−28 7.60E−105 0.069347 2.16E−34 6.14E−39 2.06E−08 0.795644 0.599756

Median 0 1.528931 6.50E−290 0 3.51E−28 1.97E−29 3.40E−108 0.26808 6.50E−35 4.97E−39 5.12E−08 0.58358 2.738814

Rank 1 11 2 1 7 6 3 9 5 4 8 10 12

F3

Mean 0 1784.524 0 0 2.51E−12 1.18E−10 19,939.26 15.95736 2.17E−14 3.84E−24 475.0243 387.7434 2166.814

Best 0 1039.407 0 0 6.18E−19 1.37E−21 2062.816 5.9683 2.35E−19 2.20E−29 245.7179 21.74649 1422.763

Worst 0 3539.57 0 0 1.43E−11 1.95E−09 34,653.75 48.89083 4.04E−13 3.60E−23 1185.13 1024.368 3455.476

Std 0 691.1359 0 0 4.83E−12 4.80E−10 9420.548 11.85101 9.93E−14 1.19E−23 242.5098 317.5327 704.235

Median 0 1556.732 0 0 1.83E−13 1.07E−13 20,303.94 11.86739 4.66E−16 4.04E−26 399.9344 292.7514 2098.599

Rank 1 9 1 1 4 5 11 6 3 2 8 7 10

F4

Mean 0 17.2787 3.20E−265 0 2.98E−19 0.004418 51.76951 0.546571 1.23E−14 1.83E−30 1.234645 6.273603 2.826566

Best 0 11.90291 0 0 3.01E−20 9.65E−05 0.903667 0.26566 6.55E−16 5.81E−32 9.89E−09 2.287977 2.214252

Worst 0 23.8119 4.50E−264 0 9.60E−19 0.035792 91.61802 0.962084 5.73E−14 8.11E−30 4.922767 13.34688 3.988745

Std 0 3.178756 0 0 2.52E−19 0.008746 32.60275 0.211601 1.61E−14 2.64E−30 1.527107 2.754864 0.514049

Median 0 17.75492 2.00E−282 0 2.58E−19 0.001468 55.36903 0.530514 6.34E−15 6.52E−31 0.906041 5.876589 2.780694

Rank 1 11 2 1 4 6 12 7 5 3 8 10 9

F5

Mean 0 10,788.6 1.43E−05 12.98563 23.30066 28.44887 27.28239 96.12534 26.55501 26.76115 44.00585 4607.322 594.79

Best 0 1345.963 1.39E−06 8.70E−29 22.78581 25.64537 26.69534 27.6041 25.54099 25.5631 25.85872 26.25471 228.5792

Worst 0 92,623.17 5.90E−05 28.96122 24.02522 28.86278 28.70663 377.5262 27.12889 28.72392 167.0769 89,987.2 2254.801

Std 0 22,093.25 1.59E−05 16.23233 0.427845 0.867651 0.636008 111.7016 0.579436 1.030818 48.79555 22,146.34 467.867

Median 0 5604.085 9.38E−06 1.22E−28 23.27164 28.79376 27.05974 29.98803 26.20545 26.30152 26.32007 86.01194 475.0975

Rank 1 13 2 3 4 8 7 10 5 6 9 12 11

F6

Mean 0 100.8059 4.97E−08 6.451426 1.80E−09 3.678225 0.081492 0.150852 0.660188 1.260143 1.05E−16 0.063382 34.11331

Best 0 16.93604 7.10E−09 3.659595 8.07E−10 2.55026 0.01051 0.079154 0.246482 0.232888 5.52E−17 1.90E−06 15.59683

Worst 0 382.1118 1.36E−07 7.242753 4.80E−09 4.782888 0.326421 0.24986 1.251026 2.162628 1.81E−16 0.541189 62.70425

Std 0 105.1108 3.62E−08 1.13166 1.03E−09 0.763317 0.111874 0.052161 0.337545 0.547394 4.08E−17 0.163552 14.91716

Median 0 69.50695 4.61E−08 6.878069 1.60E−09 3.792199 0.031576 0.159996 0.726589 1.216208 9.47E−17 0.002055 31.6505

Rank 1 13 4 11 3 10 6 7 8 9 2 5 12

F7

Mean 2.54E−05 9.00E−05 6.25E−05 3.01E−05 0.000546 0.004338 0.001277 0.011603 0.00083 0.001528 0.052756 0.183957 0.010578

Best 2.35E−06 1.06E−05 8.71E−07 2.47E−06 0.000111 0.001492 2.02E−05 0.003967 0.000182 9.00E−05 0.01411 0.068948 0.003029

Worst 6.89E−05 0.000339 0.000261 0.000133 0.000898 0.009963 0.005394 0.022546 0.001955 0.002944 0.095479 0.41094 0.021917

Std 2.18E−05 9.85E−05 8.07E−05 3.80E−05 0.000236 0.002577 0.001591 0.005542 0.000514 0.000968 0.027476 0.086987 0.005305

Median 1.83E−05 6.37E−05 4.01E−05 1.54E−05 0.000533 0.003717 0.000817 0.011304 0.000844 0.001505 0.05178 0.177553 0.010168

Rank 1 4 3 2 5 9 7 11 6 8 12 13 10

Sum rank 7 72 15 20 32 50 48 59 36 35 54 65 74

Mean rank 1 10.28571 2.142857 2.857143 4.571429 7.142857 6.857143 8.428571 5.142857 5 7.714286 9.285714 10.57143

Total ranking 1 12 2 3 4 8 7 10 6 5 9 11 13
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the unimodal functions C17–F1 and C17–F3, it has converged towards the global optimum with high ability in 
exploitation and local search at a suitable speed. In dealing with functions C17–F4 to C17–F30, it is evident that 
MOA moves towards better solutions based on the appropriate ability in exploration during successive itera-
tions, and this process continues until the final iterations.

Statistical analysis. This subsection presents a statistical analysis comparing the performance of MOA 
with competitor algorithms to determine the significance of MOA’s superiority. The Wilcoxon signed-rank  test90, 
a non-parametric statistical analysis used to detect significant differences between the means of two data sam-
ples, is employed to achieve this. The test uses a “ p-value” index to determine whether there is a significant dif-
ference between the two data samples or not.

Table 6 presents the results of the Wilcoxon signed-rank test conducted on the performance of MOA and 
its competitor algorithms. The test is used to determine if there is a significant difference between the means of 
two data samples. A p-value less than 0.05 indicates that MOA has statistically significant superiority over the 
corresponding algorithm.

Table 3.  Evaluation results of high-dimensional multimodal functions.

F MOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F8

Mean  − 12,498.6  − 7056.73  − 12,470.7  − 5443.28  − 9690.26  − 6145.54  − 11,066.5  − 7837.61  − 6086.06  − 5605.29  − 2790.97  − 6553.37  − 8425.58

Best  − 12,622.8  − 9003.98  − 12,569.5  − 5663.03  − 10,477.6  − 7324.31  − 12,569.5  − 9191.67  − 6868.8  − 7033.72  − 3983.07  − 8247.98  − 9684.08

Worst  − 11,936.3  − 6088.83  − 11,897.5  − 4917.06  − 9094.02  − 4377.98  − 7744.88  − 6885.32  − 5055.53  − 4558.05  − 2158.1  − 4996.61  − 7034.54

Std 209.8199 808.5881 215.5843 248.2681 407.5597 803.5663 1910.15 802.0021 530.3933 670.6257 545.6289 823.9522 705.9341

Median  − 12,577.8  − 6978.37  − 12,569.4  − 5497.94  − 9722.23  − 6104.11  − 12,041.4  − 7715.63  − 6079.35  − 5620.58  − 2702.87  − 6698.93  − 8403.34

Rank 1 7 2 12 4 9 3 6 10 11 13 8 5

F9

Mean 0 24.60552 0 0 0 172.951 0 97.73189 1.70E−14 0 28.47705 67.64668 54.62655

Best 0 14.60502 0 0 0 89.6551 0 52.73406 0 0 13.9155 39.75856 23.20916

Worst 0 45.90466 0 0 0 287.8962 0 149.1313 1.14E−13 0 48.7042 114.4475 76.82396

Std 0 9.487691 0 0 0 56.15377 0 27.73931 3.57E−14 0 10.09094 20.74215 15.20074

Median 0 22.66603 0 0 0 166.5089 0 96.98589 0 0 26.34004 65.0035 52.56182

Rank 1 3 1 1 1 8 1 7 2 1 4 6 5

F10

Mean 8.88E−16 5.286092 8.88E−16 8.88E−16 4.26E−15 1.24125 4.08E−15 0.577321 1.67E−14 4.44E−15 8.20E−09 2.724506 3.571525

Best 8.88E−16 3.379557 8.88E−16 8.88E−16 8.88E−16 7.99E−15 8.88E−16 0.1005 7.99E−15 4.44E−15 4.66E−09 1.691756 2.87908

Worst 8.88E−16 8.190507 8.88E−16 8.88E−16 4.44E−15 3.37008 7.99E−15 2.512673 2.22E−14 4.44E−15 1.44E−08 5.052015 4.637325

Std 0 1.344712 0 0 8.75E−16 1.727866 2.51E−15 0.745512 3.91E−15 8.92E−31 2.57E−09 0.944349 0.436664

Median 8.88E−16 5.174299 8.88E−16 8.88E−16 4.44E−15 2.22E−14 4.44E−15 0.194121 1.51E−14 4.44E−15 7.72E−09 2.731187 3.625951

Rank 1 11 1 1 3 8 2 7 5 4 6 9 10

F11

Mean 0 1.714441 0 0 0 0.008834 0 0.399276 0.001338 0 7.200806 0.185081 1.471998

Best 0 1.102774 0 0 0 0 0 0.253894 0 0 2.992647 0.002365 1.286807

Worst 0 3.281444 0 0 0 0.020527 0 0.53545 0.018805 0 12.62514 0.874973 1.724133

Std 0 0.597359 0 0 0 0.006928 0 0.090116 0.004936 0 2.99544 0.251541 0.136367

Median 0 1.599383 0 0 0 0.008985 0 0.416101 0 0 7.303819 0.122234 1.446261

Rank 1 7 1 1 1 3 1 5 2 1 8 4 6

F12

Mean 1.57E−32 3.266433 2.58E−09 1.316298 2.03E−10 5.786999 0.020076 0.913727 0.039839 0.071258 0.209827 1.499557 0.27462

Best 1.57E−32 0.952182 4.03E−10 0.768409 5.18E−11 1.035821 0.001225 0.000998 0.01255 0.024086 4.74E−19 0.000107 0.06078

Worst 1.57E−32 7.381298 7.82E−09 1.644259 3.81E−10 14.12186 0.136764 3.844197 0.086697 0.135 0.930839 5.214001 0.650191

Std 3.09E−48 2.013998 1.82E−09 0.334527 1.06E−10 4.271963 0.044038 1.317485 0.023485 0.023064 0.338436 1.415344 0.152637

Median 1.57E−32 2.889094 2.39E−09 1.388009 2.05E−10 4.300599 0.005778 0.419859 0.037873 0.068621 0.080118 1.283982 0.264159

Rank 1 12 3 10 2 13 4 9 5 6 7 11 8

F13

Mean 1.35E−32 3596.082 1.00E−08 3.12E−31 0.002496 2.714174 0.21439 0.032742 0.513307 1.100895 0.056604 3.604014 2.705127

Best 1.35E−32 13.78381 1.15E−09 6.52E−32 9.94E−10 2.010439 0.037166 0.006436 4.68E−05 0.587903 4.65E−18 0.009563 1.290667

Worst 1.35E−32 62,099.16 3.80E−08 5.43E−31 0.025288 3.710223 0.699644 0.091535 0.94917 1.539663 0.957417 12.57304 3.93629

Std 3.09E−48 15,251.83 9.66E−09 2.48E−31 0.006984 0.613784 0.202038 0.027288 0.283844 0.254715 0.235205 3.336838 0.830601

Median 1.35E−32 44.18622 6.52E−09 4.00E−31 2.82E−09 2.532635 0.165632 0.02361 0.516634 1.113503 1.78E−17 3.302492 2.864354

Rank 1 13 3 2 4 11 7 5 8 9 6 12 10

Sum rank 6 53 11 27 15 52 18 39 32 32 44 50 44

Mean rank 1 8.833333 1.833333 4.5 2.5 8.666667 3 6.5 5.333333 5.333333 7.333333 8.333333 7.333333

Total ranking 1 11 2 5 3 10 4 7 6 6 8 9 8
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F MOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F14

Mean 0.998004 1.097319 1.097121 3.105171 1.009791 8.639238 2.568192 0.998016 3.692491 0.998017 3.558763 3.593207 1.048628

Best 0.998004 0.998004 0.998004 0.998035 0.998004 1.991037 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

Worst 0.998004 1.991037 2.980121 12.65883 1.233486 15.48955 10.75342 0.998239 10.75342 0.998239 11.85901 12.65883 1.991043

Std 0 0.336821 0.48842 3.365082 0.058023 5.560947 3.243534 5.80E−05 4.107423 5.79E−05 3.031942 4.170141 0.244469

Median 0.998004 0.998004 0.998004 2.223887 0.998004 11.70612 0.998004 0.998004 2.980121 0.998004 2.889812 1.991037 0.998004

Rank 1 7 6 9 4 13 8 2 12 3 10 11 5

F15

Mean 0.000307 0.001357 0.000356 0.001123 0.001207 0.016411 0.000809 0.002645 0.003363 0.000595 0.002351 0.002497 0.015374

Best 0.000307 0.000307 0.000308 0.000712 0.000309 0.000308 0.000312 0.000308 0.000308 0.000311 0.000886 0.000307 0.000783

Worst 0.000307 0.020345 0.000732 0.002879 0.001674 0.110173 0.002251 0.020344 0.020345 0.00125 0.006954 0.020345 0.066852

Std 2.80E−19 0.00493 0.000111 0.000515 0.000603 0.033049 0.000541 0.006677 0.008068 0.000442 0.001506 0.006745 0.017858

Median 0.000307 0.000309 0.000312 0.001022 0.0016 0.00087 0.000686 0.000681 0.000309 0.000326 0.002169 0.000309 0.01426

Rank 1 7 2 5 6 13 4 10 11 3 8 9 12

F16

Mean  − 1.03163  − 1.03163  − 1.03163  − 1.02941  − 1.02929  − 1.03005  − 1.03163  − 1.03163  − 1.03163  − 1.03162  − 1.03163  − 1.03163  − 1.03162

Best  − 1.03163  − 1.03163  − 1.03163  − 1.03161  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163

Worst  − 1.03163  − 1.0316  − 1.0316  − 1.00003  − 1.00093  − 1.00003  − 1.0316  − 1.0316  − 1.0316  − 1.0316  − 1.0316  − 1.0316  − 1.0316

Std 2.02E−16 7.63E−06 7.61E−06 0.007703 0.00761 0.007786 7.61E−06 7.61E−06 7.61E−06 7.73E−06 7.61E−06 7.61E−06 8.79E−06

Median  − 1.03163  − 1.03163  − 1.03163  − 1.03129  − 1.0316  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03163

Rank 1 7 3 11 12 10 4 6 5 9 2 3 8

F17

Mean 0.397887 0.397888 0.397888 0.410581 0.398401 0.397925 0.397888 0.397888 0.397889 0.39796 0.397888 0.744291 0.465955

Best 0.397887 0.397887 0.397887 0.398542 0.397887 0.39789 0.397887 0.397887 0.397887 0.397892 0.397887 0.397887 0.397887

Worst 0.397887 0.397891 0.397891 0.485175 0.401154 0.398205 0.397892 0.397891 0.397891 0.398172 0.397891 2.788791 1.750826

Std 0 1.12E−06 1.05E−06 0.021411 0.001054 7.51E−05 1.29E−06 1.05E−06 1.38E−06 7.43E−05 1.05E−06 0.780869 0.333276

Median 0.397887 0.397887 0.397887 0.403771 0.397974 0.397908 0.397888 0.397888 0.397888 0.397949 0.397887 0.397888 0.397907

Rank 1 4 2 10 9 7 5 3 6 8 2 12 11

F18

Mean 3 3.003162 3.003163 5.775177 6.161661 11.49645 3.003188 3.003162 3.003175 3.003163 3.003162 3.003162 7.301761

Best 3 3.000014 3.000014 3.000058 3.013933 3.000021 3.000014 3.000014 3.000018 3.000015 3.000014 3.000014 3.000042

Worst 3 3.027001 3.027001 31.28671 30.00128 91.94642 3.027003 3.027002 3.027013 3.027004 3.027001 3.027001 34.91828

Std 1.29E−15 7.01E−03 7.01E−03 9.372117 7.007912 28.84276 7.00E−03 7.01E−03 7.01E−03 7.01E−03 7.01E−03 7.01E−03 11.60624

Median 3 3.000564 3.000564 3.002285 3.563655 3.001789 3.000572 3.000564 3.000586 3.000564 3.000564 3.000564 3.003009

Rank 1 2 6 10 11 13 9 5 8 7 4 3 12

F19

Mean  − 3.86278  − 3.86264  − 3.86264  − 3.83682  − 3.72483  − 3.86224  − 3.86029  − 3.86264  − 3.86112  − 3.86154  − 3.86264  − 3.86264  − 3.86248

Best  − 3.86278  − 3.86278  − 3.86278  − 3.85881  − 3.86278  − 3.86274  − 3.86276  − 3.86278  − 3.86278  − 3.86268  − 3.86278  − 3.86278  − 3.86278

Worst  − 3.86278  − 3.86221  − 3.86221  − 3.7791  − 3.2931  − 3.85594  − 3.85473  − 3.86221  − 3.85493  − 3.85487  − 3.86221  − 3.86221  − 3.86165

Std 2.51E−15 1.51E−04 1.51E−04 0.025252 0.151444 0.001642 0.003166 1.51E−04 0.002863 0.002512 1.51E−04 1.51E−04 0.000418

Median  − 3.86278  − 3.86265  − 3.86265  − 3.84403  − 3.72574  − 3.86259  − 3.86162  − 3.86264  − 3.86258  − 3.86219  − 3.86265  − 3.86265  − 3.86261

Rank 1 2 3 10 11 6 9 4 8 7 2 2 5

F20

Mean  − 3.322  − 3.30339  − 3.26776  − 2.76501  − 2.53258  − 3.25433  − 3.24918  − 3.2736  − 3.2583  − 3.24203  − 3.32121  − 3.26389  − 3.2276

Best  − 3.322  − 3.3219  − 3.32153  − 3.06881  − 3.22483  − 3.32105  − 3.32147  − 3.3219  − 3.32189  − 3.31539  − 3.3219  − 3.3219  − 3.32071

Worst  − 3.322  − 3.20238  − 3.20188  − 1.67045  − 1.78365  − 3.08912  − 3.08873  − 3.20163  − 3.08302  − 3.01276  − 3.32046  − 3.13648  − 2.99698

Std 4.89E−16 0.047927 0.066814 0.343733 0.37135 0.078284 0.092315 0.066035 0.083885 0.088403 3.71E−04 0.082662 0.085962

Median  − 3.322  − 3.32122  − 3.3206  − 2.83526  − 2.58954  − 3.26037  − 3.31743  − 3.32109  − 3.3206  − 3.29115  − 3.32126  − 3.32096  − 3.23604

Rank 1 3 5 12 13 8 9 4 7 10 2 6 11

F21

Mean  − 10.1532  − 8.40566  − 10.1506  − 5.0577  − 7.55876  − 5.92684  − 9.3836  − 8.88417  − 9.38852  − 6.85344  − 7.19449  − 5.62575  − 6.26153

Best  − 10.1532  − 10.1531  − 10.1532  − 5.06029  − 10.1515  − 10.1294  − 10.1525  − 10.1531  − 10.153  − 9.41091  − 10.1532  − 10.153  − 9.7366

Worst  − 10.1532  − 2.68523  − 10.1481  − 5.0552  − 5.0552  − 2.61057  − 5.0555  − 5.05519  − 5.05878  − 3.24733  − 2.68523  − 2.6332  − 2.38845

Std 2.29E−15 3.461007 2.26E−03 2.26E−03 2.261818 3.562346 2.054666 2.479705 2.049661 2.286936 3.807097 3.174503 2.985975

Median  − 10.1532  − 10.1501  − 10.1509  − 5.05804  − 7.90122  − 5.00071  − 10.1478  − 10.1489  − 10.1495  − 7.31253  − 10.1481  − 5.10141  − 7.0612

Rank 1 6 2 13 7 11 4 5 3 9 8 12 10

F22

Mean  − 10.4029  − 10.0185  − 10.4006  − 5.09067  − 8.0897  − 6.88561  − 8.1085  − 8.43435  − 10.4001  − 7.94995  − 10.1272  − 6.38464  − 7.37259

Best  − 10.4029  − 10.4029  − 10.4029  − 5.09298  − 10.4005  − 10.3389  − 10.4025  − 10.4026  − 10.4027  − 10.0595  − 10.4029  − 10.4027  − 9.98289

Worst  − 10.4029  − 2.75928  − 10.3976  − 5.08767  − 5.08767  − 1.83607  − 1.84121  − 2.77181  − 10.3962  − 4.05144  − 4.93328  − 2.75499  − 2.67923

Std 3.86E−15 1.882915 2.31E−03 2.31E−03 2.306028 3.864814 3.359301 3.078154 0.002406 1.842456 1.347229 3.8203 2.110814

Median  − 10.4029  − 10.4004  − 10.4016  − 5.09163  − 9.04577  − 7.4937  − 10.3939  − 10.3982  − 10.4011  − 8.38282  − 10.4008  − 5.11069  − 7.86286

Rank 1 5 2 13 8 11 7 6 3 9 4 12 10

Continued
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Discussion
This section discusses the proposed MOA approach’s results, performance, advantages, disadvantages, and other 
aspects. The MOA algorithm is a population-based metaheuristic algorithm that can provide suitable solutions 
for optimization problems based on random searches in the problem-solving space. This random search process 
must be managed at both local and global levels in a way so that by balancing them during the search process, 
the algorithm can: first, based on the global search, thoroughly scans the problem-solving space in all regions 
to avoid getting stuck in local optima, Second, based on local search, with careful scanning around promising 
solutions, converge towards better solutions.

Unimodal functions F1 to F7, as well as C17–F1 and C17–F3 from CEC 2017 test suite, because they do not 
have local optima, are suitable options to evaluate the ability of local search and exploitation of metaheuristic 
algorithms. These types of functions have only one extremum, and the primary goal of their optimization is to 
challenge the ability of metaheuristic algorithms to converge to the global optimum. The optimization results 
of these functions show that MOA with high exploitation ability has converged to the global optimum in func-
tions F1 to F6, and MOA has converged to solutions very close to the global optimum in handling functions 
F7, C17–F1, and C17–F3. The high-dimensional multimodal functions F8 to F13 have many local extrema 
besides the original optimum. For this reason, these functions are suitable options for measuring the ability of 
metaheuristic algorithms in global search and exploration. The optimization results show that MOA can identify 
the main optimal area of these functions, especially in handling F9 and F11 functions, which is clearly evident 
by presenting the global optimum. Fixed-dimension multimodal functions F14 to F23 and functions C17–F4 
to C17–F30 from the CEC 2017 test suite challenge the ability of metaheuristic algorithms to balance explora-
tion and exploitation. The optimization results of these functions show that MOA, with a high ability to balance 
exploration and exploitation, has achieved suitable solutions for these benchmark functions. The analysis of 
the simulation results indicates the high ability of MOA in exploration, exploitation, and balancing during the 
search process. The significant statistical superiority of MOA’s performance compared to competing algorithms 
in handling benchmark functions has been confirmed by the Wilcoxon signed-rank test statistical analysis.

The proposed MOA approach has several advantages for global optimization problems. The first advantage 
of MOA is that there is no control parameter in the design of this algorithm, and therefore there is no need to 
control the parameters in any way. The second advantage of MOA is its high effectiveness in dealing with various 
optimization problems in various sciences and complex high-dimensional problems. The third advantage of the 
MOA is its excellent ability to balance exploration and exploitation in the search process, which allows MOA 
high-speed convergence to provide suitable values for decision variables in optimization tasks, especially in com-
plex problems. The fourth advantage of the MOA is its powerful performance in handling real-world optimization 
applications. Against these advantages, the proposed MOA approach also has limitations. The first limitation 
of MOA, similar to all metaheuristic algorithms, is that there is no guarantee of achieving the global optimum 
using it due to the random search nature. The second limitation of MOA is that, based on the NFL theorem, there 
is always a possibility that newer metaheuristic algorithms will be designed to perform better than MOA. The 
third limitation of MOA is that it cannot be claimed that MOA is the best optimizer for all optimization tasks.

MOA for real‑world applications. This section evaluates the performance of MOA in solving real-world 
optimization problems. Specifically, the proposed MOA approach is implemented on four engineering design 
optimization problems: tension/compression spring (TCS) design, welded beam (WB) design, speed reducer 
(SR) design, and pressure vessel (PV) design. The mathematical model and full description of these real-world 
applications are provided for TCS and WB in Ref.91, for SR in Ref.92,93, and for PV in Ref.94.

The TCS problem is a design challenge in real-world applications to minimize the weight of the tension/
compression spring. The schematic of this design is shown in Fig. 6. Its mathematical model is as follows:

Subject to:

Consider : X = [x1, x2, x3] = [d,D, P],

Minimize : f (x) = (x3 + 2)x2x
2
1 .

F MOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

F23

Mean  − 10.5364  − 10.535  − 10.535  − 5.1325  − 9.15341  − 7.41676  − 8.58402  − 9.46154  − 10.5346  − 8.08721  − 10.2862  − 6.42356  − 6.36296

Best  − 10.5364  − 10.5363  − 10.5363  − 5.13379  − 10.4492  − 10.4786  − 10.5357  − 10.5363  − 10.5361  − 9.69136  − 10.5363  − 10.5362  − 10.1794

Worst  − 10.5364  − 10.531  − 10.531  − 5.12847  − 5.12848  − 2.42786  − 1.68387  − 5.13182  − 10.5306  − 4.27265  − 5.55955  − 2.42803  − 2.38964

Std 3.05E−15 1.62E−03 1.62E−03 1.63E−03 1.62432 3.822669 3.591775 2.42765 0.001644 1.82832 1.226031 4.236135 2.871335

Median  − 10.5364  − 10.5354  − 10.5354  − 5.13289  − 9.54713  − 10.2895  − 10.5331  − 10.535  − 10.5349  − 8.68008  − 10.5354  − 3.84095  − 6.89094

Rank 1 2 3 13 7 10 8 6 4 9 5 11 12

Sum rank 10 45 34 106 88 102 67 51 67 74 47 81 96

Mean rank 1 4.5 3.4 10.6 8.8 10.2 6.7 5.1 6.7 7.4 4.7 8.1 9.6

Total ranking 1 3 2 12 9 11 6 5 6 7 4 8 10

Table 4.  Evaluation results of fixed-dimensional multimodal functions.
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g1(x) = 1−
x32x3

71, 785x41
≤ 0, g2(x) =

4x22 − x1x2

12, 566(x2x
3
1)

+
1

5108x21
− 1 ≤ 0,

g3(x) = 1−
140.45x1

x22x3
≤ 0, g4(x) =

x1 + x2

1.5
− 1 ≤ 0.

Figure 2.  Boxplot of performance of MOA and competitor algorithms in solving F1 to F23.
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With

The WB problem is a real-world application in engineering to minimize the welded beam’s fabrication cost. 
The schematic of this design is shown in Fig. 7. Its mathematical model is as follows:

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.

Consider : X = [x1, x2, x3, x4] = [h, l, t, b].

Figure 3.  Convergence curves of performance of MOA and competitor algorithms in solving F1 to F23.
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MOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBBO GSA PSO GA

C17–F1

Mean 100 5394.774 2584.206 8.45E+09 1.21E+10 1.40E+09 3,986,948 7696.359 1,628,024 70,760,095 1009.284 512.6094 20,891,254

Std 1.70E−05 4824.026 2058.003 2.26E+09 2.78E+09 1.92E+09 1,921,895 3456.125 3,105,598 20,023,090 894.4369 599.4761 6,388,837

Rank 1 5 4 12 13 11 8 6 7 10 3 2 9

C17–F3

Mean 300 714.2679 309.564 16,206.04 10,517.4 6424.538 3461.475 300.63 1012.924 840.153 12,588.77 704.8032 32,647.85

Std 8.88E−11 587.2788 13.90441 1266.019 502.0492 3929.786 3742.191 0.026746 982.2947 83.36937 3647.85 798.7056 12,440.17

Rank 1 5 3 12 10 9 8 2 7 6 11 4 13

C17–F4

Mean 400 404.5583 410.9666 758.4671 1319.753 596.518 477.568 405.7309 418.0512 419.7812 406.4237 406.4037 417.646

Std 6.61E−08 3.025907 10.68977 261.2167 257.4962 160.2902 69.68358 0.553739 18.8305 11.46374 0.903474 4.885053 4.077261

Rank 1 2 6 12 13 11 10 3 8 9 5 4 7

C17–F5

Mean 510.9445 516.297 556.3801 569.3022 589.9184 562.0992 538.6935 515.9167 511.8005 538.334 553.9128 523.5634 533.7623

Std 3.589474 6.77867 28.12457 8.576477 20.89884 13.14489 7.84281 5.005719 0.262822 1.709557 11.49747 6.081188 13.64295

Rank 1 4 10 12 13 11 8 3 2 7 9 5 6

C17–F6

Mean 600.0006 602.4926 628.775 649.7447 647.3203 630.2 633.6467 601.853 604.1786 609.0722 626.265 616.5693 611.0825

Std 0.000106 0.860338 9.189882 2.173688 5.364324 17.72122 8.792381 0.482336 3.679604 2.634279 4.898564 15.56608 2.467292

Rank 1 3 9 13 12 10 11 2 4 5 8 7 6

C17–F7

Mean 722.5537 717.8004 772.8716 804.1864 806.7154 816.0238 787.9268 733.2755 741.7064 759.9908 718.6036 739.647 736.9667

Std 2.754451 4.781629 25.46749 1.845387 16.60913 47.97126 20.7484 8.666463 14.8834 8.088253 2.978781 21.3286 8.489258

Rank 3 1 9 11 12 13 10 4 7 8 2 6 5

C17–F8

Mean 807.9597 808.342 830.7956 861.9027 849.5741 853.9328 847.0794 821.9172 814.5836 827.503 828.5749 825.8607 822.2984

Std 1.794737 2.784854 7.991045 7.146276 8.289771 8.886527 6.094778 8.90872 4.107739 7.875534 1.849425 9.832576 6.346926

Rank 1 2 9 13 11 12 10 4 3 7 8 6 5

C17–F9

Mean 900 934.7615 1032.844 1524.469 1660.832 1460.543 1567.801 902.0541 918.4551 936.127 901.8 903.1904 908.5115

Std 3.38E−08 42.78457 41.39303 160.7065 151.4411 373.8084 228.8343 0.283973 32.41159 25.45011 3.39E−10 1.677232 2.09728

Rank 1 7 9 11 13 10 12 3 6 8 2 4 5

C17–F10

Mean 1379.646 1447.938 2207.952 2783.489 2603.223 2001.444 1822.235 1715.447 1795.333 1910.522 2771.759 2296.61 1622.572

Std 211.5795 183.5644 262.6804 187.626 144.3814 333.4632 489.0606 207.1481 362.1194 65.28343 379.626 474.1321 237.995

Rank 1 2 9 13 11 8 6 4 5 7 12 10 3

C17–F11

Mean 1101.505 1126.225 1139.428 5295.611 1465.28 2458.247 1194.559 1142.959 1138.129 1141.094 1124.307 1133.553 3397.024

Std 1.269139 9.260828 9.105299 3684.331 118.8349 2220.135 27.0935 15.47838 10.55471 11.15396 1.071719 21.2361 4127.228

Rank 1 3 6 13 10 11 9 8 5 7 2 4 12

C17–F12

Mean 1264.785 7405.993 1,857,668 4.16E+08 3.58E+08 3,075,549 3,660,804 542,782.3 1,736,256 3,029,406 535,746.2 2,052,605 780,029.6

Std 70.77641 3912.516 2,797,316 2.34E+08 2.40E+08 3,901,116 3,798,891 394,130.1 2,859,725 1,931,222 231,872.9 4,002,080 1,163,873

Rank 1 2 7 13 12 10 11 4 6 9 3 8 5

C17–F13

Mean 1305.286 1409.721 9255.56 48,319,984 156,456.4 10,757.24 11,271.56 8876.265 7332.801 7770.462 12,151.13 4002.806 17,472.09

Std 3.253005 90.92971 4795.622 34,341,047 157,875.7 4081.353 7174.125 11,669.59 3592.36 2998.318 3192.702 2832.82 14,149.47

Rank 1 2 7 13 12 8 9 6 4 5 10 3 11

C17–F14

Mean 1404.229 1421.431 4072.795 4152.507 1530.82 3434.022 3926.646 1454.569 4830.939 1556.091 5458.992 4799.976 5105.294

Std 3.247945 11.51847 3603.152 2123.556 18.62335 2180.291 1742.542 13.11094 544.8514 52.93744 2301.977 2247.15 2318.283

Rank 1 2 8 9 4 6 7 3 11 5 13 10 12

C17–F15

Mean 1500.466 1535.347 5460.987 18,776.29 9913.155 8510.701 6231.2 2098.377 4279.24 1792.491 16,658.93 7685.853 3158.503

Std 0.306769 15.28199 4238.325 6994.636 3414.155 8222.153 3525.437 701.4475 2099.798 61.61513 5065.939 7184.434 2632.158

Rank 1 2 7 13 11 10 8 4 6 3 12 9 5

C17–F16

Mean 1601.334 1682.445 1839.092 2166.835 2069.018 1978.16 1846.775 1765.09 1780.596 1705.695 2236.048 1987.966 1794.031

Std 0.862582 90.70794 143.5491 134.8703 95.39254 218.5485 86.6392 53.87892 182.4643 62.21953 173.939 149.8748 121.6675

Rank 1 2 7 12 11 9 8 4 5 3 13 10 6

C17–F17

Mean 1720.654 1752.533 1758.496 1883.424 1845.692 1935.246 1814.364 1781.303 1811.675 1764.276 1799.808 1769.258 1757.12

Std 1.727903 13.4588 26.30422 19.61517 58.69379 179.5958 43.64423 48.94268 77.40438 15.90544 87.01531 29.14751 5.458565

Rank 1 2 4 12 11 13 10 7 9 5 8 6 3

C17–F18

Mean 1800.479 1826.583 15,205.55 23,378,880 64,940,626 30,319.65 7958.805 21,783.12 23,306.93 36,215.28 16,254.63 15,543.93 10,589.09

Std 0.05863 13.9203 13,293.05 35,070,642 71,191,750 22,370.64 6062.679 3533.925 16,748.96 26,025.44 6315.797 12,751.68 4398.01

Rank 1 2 5 12 13 10 3 8 9 11 7 6 4

C17–F19

Mean 1900.702 1913.364 12,247.17 436,755.4 5810.262 6837.111 195,324.4 2191.603 4790.23 2138.956 34,704.01 8236.65 7779.356

Std 0.427842 4.436735 12,323.19 665,048.8 4103.845 5830.044 362,945.7 477.0055 4690.01 116.1022 12,672.72 6067.069 5444.44

Rank 1 2 10 13 6 7 12 4 5 3 11 9 8

Continued
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Subject to:

where

Minimize : f (x) = 1.10471x21x2 + 0.04811x3x4(14.0+ x2).

g1(x) = τ(x)− 13, 600 ≤ 0, g2(x) = σ(x)− 30, 000 ≤ 0,

g3(x) = x1 − x4 ≤ 0, g4(x) = 0.10471x21 + 0.04811x3x4(14+ x2)− 5.0 ≤ 0,

g5(x) = 0.125− x1 ≤ 0, g6(x) = δ(x)− 0.25 ≤ 0,

g7(x) = 6000− pc(x) ≤ 0,

τ(x) =
√

(

τ
′)2 +

(

2ττ
′) x2

2R
+ (τ ")2, τ

′
=

6000
√
2x1x2

, τ " =
MR

J
,

MOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBBO GSA PSO GA

C17–F20

Mean 2019.37 2033.266 2128.562 2238.568 2272.277 2181.009 2230.301 2040.996 2082.269 2106.398 2375.093 2156.253 2062.366

Std 2.038897 17.8688 73.47092 41.157 70.45386 109.4213 53.19774 23.40831 61.72129 58.81 116.6622 32.31973 24.6195

Rank 1 2 7 11 12 9 10 3 5 6 13 8 4

C17–F21

Mean 2200 2290.676 2276.057 2293.084 2386.818 2356.454 2320.465 2297.017 2320.752 2307.248 2365.539 2305.033 2279.787

Std 1.53E−05 54.79291 78.02373 63.24152 10.28605 14.65714 48.88532 59.71873 3.55571 64.48889 11.63849 63.6209 67.40391

Rank 1 4 2 5 13 11 9 6 10 8 12 7 3

C17–F22

Mean 2300.224 2314.731 2303.994 3227.993 2897.683 2509.825 2294.944 2308.56 2314.187 2322.982 2304.701 2688.169 2322.792

Std 0.269337 2.09113 17.45317 275.5742 327.6667 156.3429 23.63552 1.362762 11.15749 6.493858 0.197655 452.8454 2.661702

Rank 2 7 3 13 12 10 1 5 6 9 4 11 8

C17–F23

Mean 2609.635 2645.396 2634.253 2721.782 2722.347 2717.131 2650.59 2632.575 2632.437 2638.587 2743.695 2645.144 2663.978

Std 1.438651 31.51647 16.5902 24.45716 25.37687 43.37295 12.56156 9.526387 7.560925 7.277304 13.57048 11.51228 9.999389

Rank 1 7 4 11 12 10 8 3 2 5 13 6 9

C17–F24

Mean 2525.171 2752.267 2782.752 2879.698 2860.669 2733.065 2768.282 2758.003 2741.52 2771.078 2583.9 2729.385 2662.547

Std 49.73738 12.17657 25.28246 37.66572 65.12911 138.6968 7.684337 16.12647 4.073424 5.870153 155.243 149.9454 139.651

Rank 1 7 11 13 12 5 9 8 6 10 2 4 3

C17–F25

Mean 2823.318 2929.341 2929.746 3329.029 3593.552 3069.786 2948.464 2926.491 2951.622 2975.276 2948.103 2930.041 2957.947

Std 147.0641 27.09739 28.65288 18.79409 167.5398 136.9743 37.65274 27.34272 9.693107 37.40484 1.475713 23.64338 4.929348

Rank 1 3 4 12 13 11 7 2 8 10 6 5 9

C17–F26

Mean 2850.001 2978.809 3100.499 4206.394 4338.354 4215.225 3639.395 3154.31 3147.103 2965.251 3495.814 2931.491 3059.523

Std 57.04117 36.98457 166.3879 274.9528 212.5982 509.8201 522.609 492.1441 477.1277 29.70273 797.1836 95.12112 124.777

Rank 1 4 6 11 13 12 10 8 7 3 9 2 5

C17–F27

Mean 3089.072 3109.201 3109.83 3166.048 3158.607 3203.216 3137.305 3097.661 3122.623 3100.337 3241.464 3141.599 3135.664

Std 0.149314 5.414357 1.041531 15.62356 23.56992 74.88506 47.23808 2.351952 37.48225 1.910065 23.03608 29.93848 8.581193

Rank 1 4 5 11 10 12 8 2 6 3 13 9 7

C17–F28

Mean 3100 3222.248 3338.191 3742.684 3784.47 3392.824 3284.774 3352.963 3343.541 3356.946 3485.345 3253.957 3402.522

Std 5.84E−05 118.6261 152.8046 153.8028 95.02999 114.2564 93.65222 87.87781 70.86424 116.2291 23.7622 168.9478 159.4454

Rank 1 2 5 12 13 9 4 7 6 8 11 3 10

C17–F29

Mean 3146.525 3164.963 3255.733 3444.153 3428.231 3307.865 3443.656 3227.828 3208.231 3222.719 3499.493 3253.765 3229.476

Std 9.568595 10.20158 70.90286 168.1615 66.62771 76.32693 150.8572 115.446 62.07687 18.88763 261.2242 35.07659 35.98322

Rank 1 2 8 12 10 9 11 5 3 4 13 7 6

C17–F30

Mean 3400.543 5051.404 1,157,840 11,308,633 9,698,406 6,490,475 446,360.4 731,716.7 758,536.2 393,431.9 1,719,866 557,081.9 2,860,703

Std 8.742004 1539.75 574,969.4 6,783,947 7,381,265 7,219,521 470,854.1 830,971.6 730,272.4 695,987.5 2,062,222 730,458.6 2,660,945

Rank 1 2 8 13 12 11 4 6 7 3 9 5 10

Sum rank 32 94 192 343 330 288 241 134 175 187 244 180 199

Mean rank 1.103448 3.241379 6.62069 11.82759 11.37931 9.931034 8.310345 4.62069 6.034483 6.448276 8.413793 6.206897 6.862069

Total rank 1 2 7 13 12 11 9 3 4 6 10 5 8

Table 5.  Evaluation results of CEC 2017 test suite.
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Figure 4.  Boxplot of performance of MOA and competitor algorithms in solving CEC 2017 test suite.



18

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10312  | https://doi.org/10.1038/s41598-023-37537-8

www.nature.com/scientificreports/

With

The SR problem is an engineering subject whose design goal is to minimize the weight of the speed reducer. 
The schematic of this design is shown in Fig. 8. Its mathematical model is as follows:
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0.1 ≤ x1, x4 ≤ 2 and 0.1 ≤ x2, x3 ≤ 10.
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Figure 4.  (continued)
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Figure 5.  Convergence curves of performance of MOA and competitor algorithms in solving CEC 2017 test 
suite.
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With

The PV problem is a real-world application to minimize the total cost of the design. This design is shown in 
Fig. 9. Its mathematical model is as follows:

g9(x) =
x1

12x2
− 1 ≤ 0, g10(x) =

1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0.

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5 ≤ x7 ≤ 5.5.

Figure 5.  (continued)

Table 6.  Wilcoxon signed-rank test results.

Compared algorithms Unimodal High-multimodal Fixed-multimodal CEC 2017 test suite

MOA vs. WSO 1.85E−24 1.97E−21 3.06E−34 2.04E−18

MOA vs. AVOA 3.02E−11 4.99E−05 2.09E−34 3.69E−21

MOA vs. RSA 4.25E−07 1.63E−11 1.44E−34 1.97E−21

MOA vs. MPA 3.01E−24 1.04E−14 2.09E−34 1.97E−21

MOA vs. TSA 3.01E−24 1.31E−20 1.44E−34 1.97E−21

MOA vs. WOA 2.44E−24 6.13E−11 1.44E−34 3.98E−21

MOA vs. MVO 2.02E−24 1.97E−21 1.44E−34 2.18E−21

MOA vs. GWO 2.02E−24 5.34E−16 1.44E−34 2.54E−21

MOA vs. TLBO 2.02E−24 6.98E−15 1.44E−34 1.97E−21

MOA vs. GSA 2.02E−24 1.97E−21 2.09E−34 5.41E−20

MOA vs. PSO 2.02E−24 1.97E−21 2.09E−34 3.76E−20

MOA vs. GA 2.02E−24 1.97E−21 1.44E−34 1.97E−21

Figure 6.  Schematic of the TCS design.
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Subject to:

With

Consider : X = [x1, x2, x3, x4] = [Ts,Th,R, L],

Minimize : f (x) = 0.6224x1x3x4 + 1.778x2x
2
3 + 3.1661x21x4 + 19.84x21x3.

g1(x) = −x1 + 0.0193x3 ≤ 0, g2(x) = −x2 + 0.00954x3 ≤ 0,

g3(x) = −πx23x4 −
4

3
πx33 + 1, 296, 000 ≤ 0, g4(x) = x4 − 240 ≤ 0.

Figure 7.  Schematic of the WB design.

Figure 8.  Schematic of the SR design.

Figure 9.  Schematic of the PV design.
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Table 7 presents the optimization results for four engineering design problems, namely tension/compression 
spring (TCS), welded beam (WB), speed reducer (SR), and pressure vessel (PV), using MOA and competitor 
algorithms. Figure 10 shows the boxplot diagrams resulting from the performance of MOA and competitor 
algorithms in solving these four problems. The simulation results show that MOA achieved the best objective 
function values for all four issues: 2996.348 for TCS, 5882.901 for WB, 1.724852 for SR, and 0.012665 for PV. The 
statistical indicators also support MOA’s superiority over competing algorithms. Thus, it can be concluded that 
the proposed MOA approach is an effective optimizer for real-world optimization problems.

Conclusion and future works
The novelty and innovation of this article are in introducing a new metaheuristic algorithm called Mother Opti-
mization Algorithm (MOA), inspired by the interactions between a mother and her children in three phases: 
education, advice, and upbringing. First, the implementation of MOA is explained, and its steps are mathemati-
cally modeled. Then, the proposed approach is evaluated on 52 benchmark functions, including unimodal, high-
dimensional multimodal, fixed-dimensional multimodal, and CEC 2017 test suite. The optimization results of 
unimodal functions showed that MOA has high exploitation ability and local search in converging towards the 
global optimum. The optimization results of high-dimensional multimodal functions showed that MOA with 
high exploration and global search ability could discover the main optimal area in the problem-solving space 
by avoiding getting stuck in local optima. The optimization results of fixed-dimensional multimodal and CEC 
2017 test set demonstrate the high efficiency of MOA in solving optimization problems by maintaining a balance 
between exploration and exploitation strategies. Furthermore, the performance of MOA is compared to twelve 
well-known metaheuristic algorithms, and it is shown to outperform most of them in terms of providing more 
appropriate solutions. Finally, MOA is tested on four engineering design problems, and the results indicate its 
effectiveness in handling real-world applications. The statistical analysis obtained from the Wilcoxon signed-
rank test showed that MOA has a significant statistical superiority in the competition with twelve well-known 
compared metaheuristic algorithms in handling the optimization problems studied in this paper.

The proposed MOA approach opens up several research possibilities for further studies. One of the most 
promising research areas is the development of binary and multi-objective versions of the proposed approach. 
Another potential direction for future work is the application of MOA to optimization problems in various fields 
and real-world scenarios.

0 ≤ x1, x2 ≤ 100 and 10 ≤ x3, x4 ≤ 200.

Table 7.  Evaluation results of real-world applications.

DP MOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA

TCS

Mean 2996.348 2996.35 3001.338 3228.269 2996.348 3029.188 3248.642 3031.532 3004.404 4.90E+13 3505.394 1.30E+14 8.83E+13

Best 2996.348 2996.348 2996.351 3093.198 2996.348 3012.411 3008.371 3004.927 2999.069 4504.467 3266.506 4752.969 4315.817

Worst 2996.348 2996.367 3008.343 3327.121 2996.348 3045.978 4500.267 3063.778 3011.167 2.24E+14 4125.528 6.32E+14 6.25E+14

Std 9.43E−13 0.004326 3.937294 58.52092 8.00E−06 8.243755 409.5635 16.30123 3.323438 5.95E+13 213.9233 1.81E+14 1.43E+14

Median 2996.348 2996.349 3001.263 3218.466 2996.348 3028.778 3129.077 3032.788 3004.336 2.54E+13 3469.71 3.70E+13 4.92E+13

Rank 1 3 4 8 2 6 9 7 5 11 10 13 12

WB

Mean 5882.901 5882.913 6238.696 10,460.35 5882.901 6211.23 7701.624 6456.848 6059.174 28,155.59 20,951.89 41,692.38 31,626.02

Best 5882.901 5882.901 5882.908 6585.53 5882.901 5908.842 6341.473 5926.502 5889.127 13,439.96 6749.396 14,907.8 12,869.83

Worst 5882.901 5883.136 7172.714 18,955.69 5882.901 7227.766 10,119.28 7130.798 7047.823 42,670.02 44,562.53 87,257.71 56,777.36

Std 1.89E−12 0.053087 375.6734 2769.787 2.92E−05 391.0596 1189.411 335.6614 340.3287 8594.949 10,085.92 20,472.23 10,444.33

Median 5882.901 5882.901 6168.259 10,090.05 5882.901 5980.143 7256.607 6431.211 5905.019 27,378.62 20,033.44 35,015.73 30,429.89

Rank 1 3 6 9 2 5 8 7 4 11 10 13 12

SR

Mean 1.724852 1.724852 1.744873 2.259737 1.724852 1.742252 2.38973 1.74478 1.727052 2.51E+13 2.300867 6.71E+13 5.60E+12

Best 1.724852 1.724852 1.724895 1.916195 1.724852 1.732511 1.791035 1.729229 1.725501 1.974231 1.769807 2.653772 2.554918

Worst 1.724852 1.724852 1.797824 3.780976 1.724852 1.748606 4.271542 1.775473 1.730851 4.24E+14 2.573375 8.13E+14 1.09E+14

Std 6.90E−16 2.38E−09 0.022106 0.398892 2.35E−08 0.005107 0.731538 0.013222 0.00159 9.56E+13 0.199567 1.95E+14 2.45E+13

Median 1.724852 1.724852 1.736808 2.176518 1.724852 1.743128 2.030166 1.741371 1.726389 4.765774 2.312585 5.045862 4.938982

Rank 1 2 7 8 3 5 10 6 4 12 9 13 11

PV

Mean 0.012665 0.012666 0.012983 0.017313 0.012665 0.012908 0.013404 0.01667 0.012716 0.017862 0.019409 3.57E+13 0.023509

Best 0.012665 0.012665 0.012667 0.01303 0.012665 0.012711 0.012687 0.01289 0.012688 0.017327 0.014155 0.017262 0.017901

Worst 0.012665 0.012671 0.013992 0.085576 0.012665 0.013275 0.015204 0.017548 0.012735 0.018413 0.024197 3.57E+14 0.031971

Std 9.85E−19 1.21E−06 0.000377 0.016373 3.06E−09 0.000142 0.000858 0.001416 1.08E−05 0.000328 0.003262 1.11E+14 0.003669

Median 0.012665 0.012665 0.012837 0.013207 0.012665 0.012915 0.013092 0.01729 0.01272 0.017807 0.019092 0.017262 0.022746

Rank 1 3 6 9 2 5 7 8 4 10 11 13 12

Sum rank 4 11 23 34 9 21 34 28 17 44 40 52 47

Mean rank 1 2.75 5.75 8.5 2.25 5.25 8.5 7 4.25 11 10 13 11.75

Total ranking 1 3 6 8 2 5 8 7 4 10 9 12 11
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