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Multimodal deep learning 
for COVID‑19 prognosis prediction 
in the emergency department: 
a bi‑centric study
Franca Dipaola 1, Mauro Gatti 2, Alessandro Giaj Levra 3,4, Roberto Menè 5,6, Dana Shiffer 3, 
Roberto Faccincani 7, Zainab Raouf 8, Antonio Secchi 8, Patrizia Rovere Querini 8, 
Antonio Voza 3,9, Salvatore Badalamenti 1, Monica Solbiati 10, Giorgio Costantino 10, 
Victor Savevski 11 & Raffaello Furlan 1,3*

Predicting clinical deterioration in COVID-19 patients remains a challenging task in the Emergency 
Department (ED). To address this aim, we developed an artificial neural network using textual (e.g. 
patient history) and tabular (e.g. laboratory values) data from ED electronic medical reports. The 
predicted outcomes were 30-day mortality and ICU admission. We included consecutive patients 
from Humanitas Research Hospital and San Raffaele Hospital in the Milan area between February 
20 and May 5, 2020. We included 1296 COVID-19 patients. Textual predictors consisted of patient 
history, physical exam, and radiological reports. Tabular predictors included age, creatinine, C-reactive 
protein, hemoglobin, and platelet count. TensorFlow tabular-textual model performance indices were 
compared to those of models implementing only tabular data. For 30-day mortality, the combined 
model yielded slightly better performances than the tabular fastai and XGBoost models, with AUC 
0.87 ± 0.02, F1 score 0.62 ± 0.10 and an MCC 0.52 ± 0.04 (p < 0.32). As for ICU admission, the combined 
model MCC was superior (p < 0.024) to the tabular models. Our results suggest that a combined textual 
and tabular model can effectively predict COVID-19 prognosis which may assist ED physicians in their 
decision-making process.

According to data from the World Health Organization (WHO), the new severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2)1 has infected over 532 million individuals globally and caused over 6 million deaths1.

The rapid spread of the virus necessitated an immediate adaptation of the health care system as intensive care 
units (ICUs) quickly reached capacity2. Due to the serious complications associated with Coronavirus Disease 
2019 (COVID-19), accurate resource allocation among hospitalized patients was necessary3.

While risk factors that predispose to serious consequences are now known4, the clinical deterioration of 
infected patients is still challenging to predict5. Therefore, early detection of patients at risk for rapid clinical 
deterioration is essential for patient management and better human and economic resource allocation6.

Machine learning (ML) enabled an effective prediction of outcomes that are not easily comprehended by 
other risk-predicting tools7,8. For example, XGBoost and RegCox algorithms have outperformed the widely used 
HAS-BLED clinical score in predicting the risk of bleeding9. Similarly, an ML model was developed to assess the 
risk of intubation among hospitalized patients with COVID-19 pneumonia10. In that study, model performance 
surpassed the previously validated ROX score, which incorporates oxygen saturation, respiratory rate, and the 
fraction of inspired oxygen to predict the risk of intubation10. Artificial neural networks (ANNs), a subtype 
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of ML technique, have been used to stratify the risk of complex conditions such as syncope in the Emergency 
Department (ED) due to their ability to assess complex and non-linear relationships between predictors and 
clinical outcomes11,12. Additionally, ML-based models have been utilized to predict mortality or ICU admission 
related to COVID-1913–15.

Notably, most of those studies used imaging or laboratory data for outcomes prediction16–20, while only a few 
employed unstructured data obtained from electronic medical records (EMRs).

Natural language processing (NLP) is a useful technique in this context as it permits the analysis of medi-
cal charts written by nurses and clinicians21. This ML technology was already used during the pandemic for 
diagnosis22, radiological report analysis21,23, and patient features extraction18,24. Currently, NLP is mainly used 
for data mining, not outcome prediction17.

The current study hypothesized that integrating structured and unstructured data in an ML-based prediction 
model could provide valuable information on 30-day mortality and ICU admission for patients presenting to 
the ED with SARS-CoV-2 infection.

ANN algorithms combining textual and tabular data analysis of EMRs were developed to predict both out-
comes in COVID-19 patients. Tabular models-based algorithms were used for comparison.

Results
Population characteristics.  To train, validate, and test the ANNs we included 1296 SARS-CoV-2 patients 
who were admitted to the EDs of Humanitas Research Hospital (HRH, n = 509) and San Raffaele Hospital (SRH, 
n = 787). Of these, 252 died either during their hospital stay or within 30 days of discharge, and 158 were trans-
ferred to the ICU (Table 1).

Table 1 displays the baseline characteristics of the two cohorts. The mean age was 63 years, with a male gender 
predominance. In both centers, the average duration of symptoms at the time of ED evaluation was 7 days. The 
most common symptoms were fever, cough, and shortness of breath. The most common comorbidities in both 
cohorts were hypertension, diabetes, cardiovascular disease, and COPD.

Radiological evidence of COVID-19 interstitial pneumonia was present in 76% of the population. The 30-day 
mortality rate was 20%, and the ICU admission rate was 12%. HRH had an older population and a higher mor-
tality rate compared to SRH.

Models performance.  Table 2 summarizes the performance of fastai, TensorFlow and XGBoost models 
in predicting 30-day mortality in the test set. The TensorFlow tabular model showed an area under the curve 
(AUC) of 0.88 ± 0.02, an F1 score of 0.58 ± 0.04, and a Matthew’s correlation coefficient (MCC) of 0.48 ± 0.05. The 
TensorFlow combined model performance had an AUC of 0.87 ± 0.06, an F1 score of 0.62 ± 0.10, and an MCC of 
0.52 ± 0.13, which was slightly higher than the tabular model MCC (p = 0.36), indicating its prediction capability. 
The XGBoost and fastai models performed slightly worse than the TensorFlow models.

For ICU admission prediction, the combined TensorFlow model had highest specificity, F1, and precision 
scores. The TensorFlow combined model MCC was greater than the TensorFlow tabular model (p = 0.024) accord-
ing to a paired t-test (Table 2). The TensorFlow tabular model performed better in terms of recall and AUC. 
The XGBoost model’s performance metrics were slightly worse than those of the TensorFlow and fastai models.

Models calibration.  The calibration of each model was assessed using the expected calibration error (ECE). 
For the TensorFlow models, the mean ECE for predicting death outcome was 0.04 ± 0.006 for the tabular model, 
and 0.12 ± 0.04 for the combined tabular-textual model. For predicting ICU admission outcome, the mean 
ECE was 0.10 ± 0.43 for both tabular and combined models. The XGBoost model had an ECE of 0.10 ± 0.03 for 
30-day mortality outcome and 0.06 ± 0.03 for ICU admission outcome. For the fastai models, the mean ECE 
was 0.10 ± 0.07 for the tabular model predicting death outcome and 0.10 ± 0.06 for the combined tabular-textual 
model. The mean ECE for predicting ICU admission was 0.06 ± 0.03 for the tabular model and 0.12 ± 0.05 for the 
combined tabular-textual model.

Figure 1 displays the receiver operating characteristic (ROC) curves and calibration of the models for predict-
ing 30-day mortality and ICU admission.

Discussion
The present study described the development of an algorithm that used textual and tabular data to predict 30-day 
mortality and ICU admission in patients in the ED for COVID-19.

The use of textual data for prognostic purposes was a novel aspect of this investigation.
The main finding was that combining tabular and textual variables led to better prediction of 30-day mortality 

compared to models using only tabular variables. The TensorFlow tabular-textual model had better performance 
metrics for 30-day mortality prediction, including specificity, precision, F1 score, and MCC, than the tabular 
models. For ICU admission, the combined model had higher precision, specificity, F1 score, and MCC values. 
Both models were adequately calibrated, with low ECE scores.

The methodology for analyzing textual data, i.e. the NLP, is commonly used for entity recognition, literature-
based discovery, and question answering25,26. However, its potential for predicting outcomes in COVID-19 
patients has not been fully explored. For example, Izquierdo et al.24, used NLP to identify COVID-19 patients 
from a general cohort and extract their clinical features. These were fed into a decision tree algorithm which iden-
tified ICU admission as the most relevant risk factor for adverse outcomes. Similarly, Graziani et al.27 explored the 
effects of COVID-19 on a population with COPD and used NLP to identify the population’s main features. Identi-
fied features were then correlated with the patient’s outcome by multivariable analysis and were associated with 
higher hospitalization and mortality rates. Ancochea et al.28 used NLP to identify patient features from EMRs and 
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address the impact of gender on COVID-19 incidence and severity. The primary objective of the aforementioned 
investigations was to identify risk factors that could have influenced patient outcomes. In contrast to previous 
studies, the present study employed NLP analysis of textual data to process potential clinical information and 
predict 30-day mortality and ICU admission for COVID-19 patients. This highlights the importance of includ-
ing textual data in COVID-19 prognosis prediction. Previous research by Silverman et al.29 also demonstrated 
the association between textual data and outcome prediction by using NLP techniques to extract COVID-19 
symptoms and correlate them with in-hospital mortality and mechanical ventilation. These authors observed 
an association between textual data and outcome prediction, highlighting the importance of textual contribu-
tion. Similarly, the TensorFlow tabular-textual algorithm developed in this study was able to manage clinical 
information such as the patient’s medical history, physical examination, specialist consultations, and radiological 
reports, which may provide crucial information related to clinical outcomes. In the past, manual annotations 

Table 1.   Demographic, clinical, radiological features and outcomes of COVID-19 patients by cohort. 
HRH stands for Humanitas Research Hospital; SRH San Raffaele Hospital; bpm beats per minute; SAP 
systolic arterial pressure; DAP diastolic arterial pressure; COPD chronic obstructive pulmonary disease; CT 
computerized tomography. There were missing data involving at least 5% of the studied population as far as 
respiratory rate (for both HRH and SRH), oxygen saturation (HRH) and temperature (SRH).

HRH and SRH cohort
(n = 1296)

HRH cohort
(n = 509)

SRH cohort
(n = 787)

Demographic features

 Age, years, median (IQR) 63 (52–75) 67 (53–77) 61 (51–74)

 Males, n (%) 825 (64) 322 (63) 503 (64)

Vital parameters

 Heart rate, bpm, median (IQR) 90 (80–103) 89 (79–100) 90 (80–104)

 SAP, mm Hg, median (IQR) 130 (115–140) 130 (120–141) 126.5 (115–140)

 DAP, mm Hg, median (IQR) 75 (65–80) 75 (65–80) 75 (65–80)

 Oxygen saturation, median (IQR) 95 (90–97) 95 (90–97) 95 (92–98)

 Respiratory rate, cycles per minute, median (IQR) 18 (16–24) 18 (17–20) 22 (16–30)

 Temperature, °C, median (IQR) 37.1 (36.4–38) 37.0 (36.3–38.0) 37.2 (36.5–38.0)

Symptoms

 Duration from onset, days, median (IQR) 7 (4–10) 7 (2–12) 7 (4–10)

 Fever, n (%) 1052 (81) 420 (83) 632 (80)

 Cough, n (%) 672 (52) 290 (57) 382 (49)

 Shortness of breath, n (%) 618 (48) 261 (51) 357 (45)

 Diarrhea, n (%) 131 (10) 80 (16) 51 (6)

 Fatigue, n (%) 114 (9) 39 (8) 75 (10)

 Anosmia/Dysgeusia, n (%) 72 (6) 34 (7) 38 (5)

 Nausea/Vomiting, n (%) 62 (5) 24 (5) 38 (5)

 Myalgia/Arthralgia, n (%) 57 (4) 19 (4) 38 (5)

 Asymptomatic, n (%) 48 (4) 34 (7) 14 (2)

Comorbidities

 Hypertension, n (%) 508 (40) 219 (43) 289 (37)

 Diabetes, n (%) 219 (17) 101 (20) 118 (15)

 Cardiovascular disease, n (%) 157 (12) 76 (15) 81 (10)

 COPD, n (%) 72 (6) 38 (7) 34 (4)

 Cerebrovascular disease, n (%) 79 (6) 38 (7) 41 (5)

 Chronic kidney disease, n (%) 65 (5) 29 (6) 36 (5)

 Malignancy, n (%) 72 (6) 28 (6) 44 (6)

 Obesity, n (%) 62 (5) 24 (5) 38 (5)

 Asthma, n (%) 48 (4) 13 (3) 35 (4)

 No comorbidities, n (%) 323 (25) 171 (34) 152 (19)

Chest X-ray and CT scan

 Suggestive of COVID-19 pneumonia, n (%) 989 (76) 369 (75) 620 (79)

 X-ray suggestive of COVID-19 pneumonia 48 (13.0) 614 (99.0)

 CT scan suggestive of COVID-19 pneumonia 332 (89.9) 8 (1.3)

Outcomes

 30-day death, n (%) 252 (20) 119 (23) 133 (17)

 ICU admission, n (%) 158 (12) 72 (14) 86 (11)
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Table 2.   Performance metrics of the models in predicting 30-day mortality and ICU admission. Results are 
presented as means and standard deviations of 10 iterations. NPV, negative predictive value; MCC, Matthew’s 
correlation coefficient; AUC​, area under the curve. *p < 0.05 according to a paired t-test.

Specificity Recall Precision NPV F1-score MCC AUC​

30-Day mortality

 TensorFlow tabular model 0.76 ± 0.03 0.76 ± 0.04 0.49 ± 0.03 0.93 ± 0.01 0.58 ± 0.04 0.48 ± 0.05 0.88 ± 0.02

 Fastai tabular model 0.75 ± 0.06 0.77 ± 0.09 0.43 ± 0.04 0.93 ± 0.02 0.55 ± 0.03 0.43 ± 0.04 0.84 ± 0.02

 XGBoost model 0.75 ± 0.06 0.77 ± 0.09 0.43 ± 0.04 0.93 ± 0.02 0.55 ± 0.03 0.43 ± 0.04 0.84 ± 0.02

 TensorFlow tabular-textual model 0.82 ± 0.08 0.77 ± 0.13 0.53 ± 0.12 0.94 ± 0.03 0.62 ± 0.10 0.52 ± 0.13 0.87 ± 0.06

 Fastai tabular-textual model 0.78 ± 0.07 0.74 ± 0.08 0.46 ± 0.06 0.93 ± 0.02 0.56 ± 0.04 0.44 ± 0.04 0.84 ± 0.02

ICU admission

 TensorFlow tabular model 0.72 ± 0.05 0.76 ± 0.10 0.27 ± 0.03 0.96 ± 0.01 0.40 ± 0.03 0.33 ± 0.05* 0.83 ± 0.04

 Fastai tabular model 0.71 ± 0.06 0.70 ± 0.11 0.25 ± 0.03 0.95 ± 0.01 0.37 ± 0.04 0.29 ± 0.05 0.79 ± 0.04

 XGBoost model 0.71 ± 0.06 0.70 ± 0.10 0.25 ± 0.03 0.95 ± 0.01 0.37 ± 0.04 0.29 ± 0.05 0.79 ± 0.04

 TensorFlow tabular-textual model 0.92 ± 0.03 0.53 ± 0.15 0.48 ± 0.01 0.94 ± 0.02 0.49 ± 0.10 0.43 ± 0.11* 0.80 ± 0.07

 Fastai tabular-textual model 0.72 ± 0.08 0.67 ± 0.11 0.25 ± 0.03 0.94 ± 0.01 0.36 ± 0.03 0.28 ± 0.05 0.79 ± 0.04

Figure 1.   Models predictive performance and calibration. Fastai (F) tabular model performance is depicted 
as the purple line; fastai tabular-textual model is the cyan line; the XGBoost (XGB) model is the blue line; the 
TensorFlow (TF) tabular model is depicted as the green line; the TensorFlow model is the red line. (a) Receiver 
operating characteristic (ROC) curves of models for 30-day mortality outcome. (c) ROC curves of different 
models for ICU admission outcome. In both (a) and (c) the black dotted lines indicate the baseline, representing 
predictions of a random classifier. (b) and (d) depict the calibration curves of the models for 30-day mortality 
and ICU admission outcomes, respectively. For the calibration curves the black dotted line represents the model 
ideal calibration.
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were required to optimize such an approach30, but the algorithm developed in this study more efficiently utilized 
the predictive power of textual variables contained in the EMRs without requiring manual revision.

According to the performance metrics presented in Table 2, our combined TensorFlow tabular and textual 
model was more effective than the models that used only tabular data in predicting 30-day mortality for COVID-
19 patients. This finding is consistent with Sung et al.31 who compared the effectiveness of classic ML models with 
NLP-enhanced ML models in predicting acute ischemic stroke prognosis and found that incorporating textual 
predictors (i.e. history of present illness) improved the AUC metric of the algorithm. However, it is important 
to note that stroke is a well-studied disease, whereas COVID-19 was still a novel condition at the time of data 
collection. This could have led to healthcare professionals using more simplified language in their notes and 
radiology reports, resulting in a lower quantity of informative elements suitable for accurate outcome prediction.

The improved specificity observed in the current TensorFlow tabular and textual model, compared to simple 
tabular models, could have important clinical implications. For instance, it may help the ED physician in deter-
mining the optimal timing for initiating positive pressure ventilation32,33 and selecting the most suitable ward 
for the patient’s disposition, such as general medicine, sub-intensive, or ICU, based on the predicted prognosis. 
Additionally, the greater precision values of the combined algorithm, resulting in fewer false positives, may 
help distinguish between patients who require hospital admission and those who are eligible for discharge from 
the ED, contributing to resource allocation optimization. The F1 score and MCC values, which provide a more 
comprehensive evaluation of the algorithm’s prediction, further support these findings. Therefore, integrating 
textual and tabular data may improve the prediction of negative outcomes in COVID-19 patients.

ML algorithms typically employ tabular data to predict outcomes in various diseases, including sepsis and 
upper gastrointestinal bleeding26,27. Since the emergence of SARS-CoV-2, numerous tabular data-based ML 
models have been developed for COVID-19 early recognition, diagnosis, including interstitial pneumonia from 
chest radiography (X-ray) images, and prognosis28,29,31,34–36.

The mean performances of our TensorFlow tabular and XGBoost models were found to be consistent with 
previous literature findings16,37–39. The AUC value of the current TensorFlow tabular model was higher than 
that of Vaid et al., who used a cohort from the initial outbreak in New York City. However, that study focused 
on predicting COVID-19 10-day mortality32. In comparison to the current study findings, Gao et al.33 obtained 
greater AUC, sensitivity, specificity, and an F1 score using a neural network-based algorithm similar to ours, but 
they used more predictors, which may have led to the overfitting of their model40.

The selection of predictors may account for the differences in the prognostic prediction ability of various 
tabular models. In our study, age, plasma creatinine, C-reactive protein, hemoglobin, and platelet values were 
used to develop the TensorFlow tabular model. They were chosen based on previous research findings41–48 and 
their prompt availability in our emergency settings. However, other variables such as myoglobin, ferritin, and 
troponins47,49,50 have also been found to affect COVID-19 prognosis.

Our data were obtained from the EDs of two academic hospitals, which provided a larger cohort for model 
training and validation and improved the algorithm’s applicability to other cohorts. However, we had to overcome 
the challenge of differences in the structure of EMRs and radiological reports, as well as slight variations in lan-
guage use between the two centers. The latter involves variations in the use of single terms and language syntax.

Regarding ICU admission prediction, our results indicate that the TensorFlow tabular-textual model out-
performs those that use simple tabular variables. It is important to highlight the complexity of predicting ICU 
admission, as there are confounding factors that are not necessarily related to disease severity, such as lack of 
available beds and mechanical ventilators, which occurred frequently during the early phase of the first COVID-
19 outbreak in Italy36. Other studies have considered ICU admission as an adverse outcome after COVID-19 
pneumonia. For example, Li et al.51 developed a convolutional neural network with ICU admission being the 
primary COVID-19 outcome. They showed similar but not identical performances compared to the models 
developed in the present study. Differences from our results can be accounted for by the larger proportion of 
patients admitted to the ICU and the different predictors used in their study.

Finally, the low ECE scores for both models suggest that our algorithms perform with high confidence, which 
is crucial for ED physicians in making safe decisions on whether to admit or discharge patients.

Limitations and future perspectives.  A limitation of the present study is that external validation is 
needed to confirm the reliability of the results beyond the two centers where the data was collected. Moreover, 
the interpretability of models is limited due to the intrinsic nature of neural networks, making it impossible to 
establish a causal relationship between predictors and outcomes.

Furthermore, since the current data set was collected during the early phase of the pandemic in northern 
Italy, outcomes prediction is confined to the specific features of the circulating virus and therapies available at 
that time. Additionally, the absence of vaccinated patients in the dataset means that the potential protective effect 
of vaccines is not reflected in the results.

From a clinical perspective, it is believed that applying the same algorithms to data collected during different 
waves of COVID-19 could provide valuable information on vaccine efficacy and the evolution of the disease 
with new variants. In the future, combining textual and tabular data analysis could help to clarify the clinical 
progression of COVID-19 in hospitalized patients with new variants, potentially optimizing antiviral therapies.

Finally, the algorithms combining textual and tabular predictors are not limited to COVID-19 prognosis pre-
diction. If supplied with new data, the language model can be trained to analyze EMRs related to other disorders 
commonly encountered in the ED, such as heart failure, sepsis, pneumonia, COPD, syncope, and others. When 
dealing with these diseases, emergency physicians could better stratify patient risk and make more informed 
decisions regarding admission or discharge. Ultimately, this could lead to better utilization of hospital resources 
and healthcare system efficiency.
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Conclusions.  The results of this study suggest that the combined analysis of tabular and textual data was 
effective in predicting 30-day mortality in patients with SARS-CoV-2 infection presenting to the ED and in pre-
dicting their ICU admission. The combination of tabular and textual data represents a novelty, at least partially24, 
in the clinical research dealing with the COVID-19 outbreak.

Our findings suggest that NLP may also have a potential application for prognosis prediction in other com-
mon diseases seen in the emergency setting, as noted in a recent systematic review26.

Future studies will be necessary to improve the accuracy of the algorithm and confirm its generalizability 
through external validation cohorts, especially with the changing epidemiology of the pandemic.

Methods
Study population and outcomes.  In this bi-centric retrospective cohort study, EMRs of all confirmed 
COVID-19 cases evaluated at the ED of HRH and SRH, in the Milan area, between February 20 and May 5, 2020, 
were analyzed.

Confirmed COVID-19 cases were defined as patients who tested positive for the SARS-CoV-2 virus by real-
time reverse-transcription PCR assay on a nasal and pharyngeal swab, broncho-alveolar lavage, or broncho-
aspiration specimens performed in the ED. Patients admitted to ICU on arrival at the ED were excluded.

Data collected included: triage information, diagnosis, medical history, physical examination, clinical notes, 
vital parameters, blood tests, imaging exam reports, and ED disposition. Both tabular (e.g. vital parameters, 
blood exams) and free-text (e.g. clinical notes and radiological reports) data were used.

The primary COVID-19-related outcome was the 30-day mortality rate, and the secondary outcome was 
ICU admission.

Model development.  EMRs of 15,599 patients evaluated in the two EDs over the study period were con-
sidered to develop the ANN (i.e. fastai, TensorFlow) and decision tree (i.e. XGBoost) models.

Data from each hospital was first processed independently, as shown in Fig. 2.

Figure 2.   Algorithm pipeline for model development. Cylinders represent datasets. Boxes are algorithms 
or groups of algorithms. Solid arrows indicate the data/computation flow. Dashed arrows show the internal 
organization of groups of algorithms. Data collected from Humanitas Research Hospital (HRH) and San 
Raffaele Hospital (SRH) are processed by two separate groups of algorithms and merged into a single dataset. 
These two groups of algorithms performed data anonymization, preparation, and preprocessing. Once the 
datasets were merged, patients without COVID-19, jointly from the data of a previous study30, were selected 
to train, validate, and test the language model. Likewise, patients with COVID-19 were used for the predictive 
models. The preparation group algorithms select the clinically relevant predictors (selection), clean the data 
(cleaning) and transform the data so that for each patient, all the data are in a single row (pivoting). The 
preprocessing group algorithms identify the patient with COVID-19, those that died, and those that were 
transferred to ICU (labeling). Next, the sequence of values is converted into a single value by multiple values 
policies, and the out-of-range policies handle values that exceed the expected range of values.
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In both algorithm pipelines, the first step was anonymization (e.g. secure hashing of patient identifiers); the 
second step was preparation, and the third was preprocessing.

The preparation phase included three sub-steps: features selection, data cleaning, and pivoting. Features 
selection was based on potential risk factors previously identified in scientific literature. In the pivoting step, the 
dataset was organized such that all data for a patient were in a single row and each variable was in a single column.

The preprocessing phase consisted of four main steps, as depicted in Fig. 2. Firstly, COVID-19-positive 
patients were singled out of all those in the initial dataset (i.e. all patients admitted to the two EDs during the 
study period). Then, patients were categorized based on outcomes of death and ICU transfer. After that, outlier 
policies were applied, where outliers were replaced with boundary values (e.g. heart rate values above 250 bpm 
or below 20 bpm were replaced with a default boundary value). Multiple values policies were employed, con-
verting each patient’s data sequence into a single number by taking the first valid (not null) data item. Lastly, 
out-of-range values were handled according to specific rules as required (e.g., C-reactive protein values below 
the normal range were reported as “< 0.08”: these values were substituted with the lower limit value). After being 
processed separately, the datasets from both hospitals were merged into a single dataset. The merged dataset was 
subsequently used to train the ANN and XGBoost models, as shown in Fig. 3.

The textual data of all COVID-19-negative patients in the merged dataset was joined to the textual data of a 
previous study dataset30. This purely textual dataset was used to train the language model. A statistical language 
model is a probability distribution over a sequence of words. It can be estimated, for instance, by fitting an ANN 
and can be used to get a numerical representation of the text while preserving the semantic relations.

The language model was then used to improve the performance of COVID-19 prognosis prediction models 
whenever textual data was considered. However, none of the textual data of COVID-19-positive patient data 
was used to train or validate the language model.

The COVID-19-positive patients’ data in the merged dataset was subsequently randomly split into train, 
validation, and test sets. Ten different random splits were performed, and for each, the model training was 

Figure 3.   TensorFlow tabular-textual model architecture. Cylinders represent datasets, and boxes are 
algorithms or groups of algorithms. Solid arrows indicate the data/computation flow. The tabular data of each 
study subject go through the tabular model, while the text data are first ‘numericalized’ and then are sent to the 
textual model. The tabular and textual models are taken from the fastai 1 library: hyperparameters are tuned, but 
the architecture is unchanged. The tabular and textual model outputs go through a network consisting of nine 
layers (a combination of models) of four different types: linear layers, ReLU (Rectified Linear Unit) activations, 
batch normalization, and dropout layers. The number of layers, their type, and the number of neurons in the 
combination of models section are kept identical in all experiments.
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carried out, and the performance was evaluated. The data splitting, model training, and model evaluation cycle 
is schematized in Fig. 2 as ‘iteration’.

For each split and metric, the mean and standard deviation of the values obtained by the iteration was pro-
vided. All models were used to predict the likelihood of the target outcome (e.g. death and ICU admission). A 
0.50 threshold was applied to convert the likelihood into a binary prediction (e.g. a likelihood of 0.51 means a 
prediction of having outcome 1). No other thresholds were used.

Notably, in each iteration, three distinct models were trained and evaluated as illustrated in Fig. 1: (i) a tabular 
model, whose input data was only the selected numeric predictors (i.e. age, creatinine, C-reactive protein, hemo-
globin, and platelets); (ii) a text model, whose input data was only text predictors (i.e. history, physical exam, 
and radiological reports); (iii) a tabular-textual model, whose input data was both numeric and text predictors.

In each iteration, the fastai models were trained on the training dataset by gradually unfreezing the model 
layer parameters52. Gradual unfreezing is used to reap the benefits of a transfer learning design pattern53. This 
pattern is based on the idea of applying to a specialized task (i.e. COVID-19 prognosis) for which there is little 
data, the weights of a model trained for a different task (i.e. the Italian medical language model) for which more 
data is available.

Training of the fastai tabular model was performed by freezing all but the last layer and fitting for two epochs. 
Then, all but the last two layers were frozen and fitting was performed for two more epochs. Finally, all layers 
were unfrozen, and fitting was executed for ten epochs. The best model (i.e. the model with the highest value of 
the reference performance metrics on the validation set, see below) obtained during training was selected and 
used to compute the performance on the test set. A similar approach was used to train the tabular-textual model 
but with a slightly different number of epochs and different layers frozen.

All fastai models were trained using Cross Entropy Flat Loss function54 and AdamW optimizer55. In each 
iteration, missing tabular training data values were randomly generated using a normal distribution based on 
the training data values, but only when the percentage of missing values did not exceed 5%.

TensorFlow models were all trained with the CrossEntropy loss function and the AdamW optimizer. A 
detailed description of the tabular-textual model architecture and of learning hyperparameters is contained in 
the supplementary appendix.

Models were built using the fastai v. 156, the TensorFlow and the XGBoost frameworks.
Language model training on a MacBook Pro (processor 2.3 GHz 8-Core Intel Core i9, RAM 16 GB) required 

144 h to achieve a perplexity of 11.28 and an accuracy of 51.89% on the language model validation set. The 144-h 
computational time refers to the training time of the language model used in the textual and text-tabular models. 
The model inference time, lasting less than one second, is the time that may matter to the physician in the ED. 
This means that the computation time can be used profitably by emergency doctors.

Such results were achieved without hyperparameter tuning using the fastai v.1 language model.

Performance measures.  To evaluate the predictive performance of each model, discrimination and cali-
bration were assessed. In addition to the F1 score, C-index, and AUC calculation, MCC was chosen as a refer-
ence metric to identify the best model on the validation set due to its intrinsic ability of simultaneously consider-
ing true positive, false positive, true negative, and false negative predictions, making it more reliable for binary 
classification tasks57. MCC ranges from − 1 to + 1, with 0 representing a prediction no better than random. A 
paired t-test was used to compare the MCC computed for each model on test sets.

Model calibration addresses the likelihood of correct predictions represented by the predicted probability 
estimates. This metric discretizes the probability interval into a fixed number of bins and assigns each predicted 
probability to the bin that encompasses it. ECE is the difference between the fraction of correct predictions in 
the bin (accuracy) and the mean of the probabilities in the bin (confidence). Therefore, if a model’s accuracy is 
equal to the bin’s mean probability, the ECE would be 0, indicating perfect calibration. Lower values of ECE cor-
respond to better calibrations58,59. When a scalar summary statistic is insufficient, calibration is often visualized 
using reliability diagrams plotting the expected sample accuracy as a function of confidence.

Training the models for all ten necessary iterations required 47 sec for the tabular model, 18.38 h for the text 
model, and 82 h for the combined model. The training was performed using fixed learning rates for the fastai 
tabular model and discriminative learning rates for the other fastai models56,60. For TensorFlow models see the 
supplementary appendix.

All methods were conducted in accordance with the Helsinki declaration. All experimental protocols were 
approved by the Institutional Review Board of Humanitas Clinical and Research Center—IRCCS, IRB approval 
number 2544; May 20, 2020. Informed consent was obtained from all subjects or their legal guardian(s).

Data availability
Publication of data would compromise individual privacy. Please contact RF for disclosure.
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