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Accurate sex prediction 
of cisgender and transgender 
individuals without brain size bias
Lisa Wiersch 1,2, Sami Hamdan 1,2, Felix Hoffstaedter 1,2, Mikhail Votinov 3,4, Ute Habel 3,4, 
Benjamin Clemens 3,4, Birgit Derntl 5,6, Simon B. Eickhoff 1,2, Kaustubh R. Patil 1,2,7* & 
Susanne Weis 1,2,7*

The increasing use of machine learning approaches on neuroimaging data comes with the important 
concern of confounding variables which might lead to biased predictions and in turn spurious 
conclusions about the relationship between the features and the target. A prominent example is the 
brain size difference between women and men. This difference in total intracranial volume (TIV) can 
cause bias when employing machine learning approaches for the investigation of sex differences in 
brain morphology. A TIV-biased model will not capture qualitative sex differences in brain organization 
but rather learn to classify an individual’s sex based on brain size differences, thus leading to spurious 
and misleading conclusions, for example when comparing brain morphology between cisgender- 
and transgender individuals. In this study, TIV bias in sex classification models applied to cis- and 
transgender individuals was systematically investigated by controlling for TIV either through 
featurewise confound removal or by matching the training samples for TIV. Our results provide strong 
evidence that models not biased by TIV can classify the sex of both cis- and transgender individuals 
with high accuracy, highlighting the importance of appropriate modeling to avoid bias in automated 
decision making.

Machine Learning (ML) approaches have become increasingly popular in medical imaging, especially for neu-
roimaging  data1–3. Previous studies applying ML approaches to neuroimaging data coming from individuals 
with mental and neurodegenerative disorders have provided valuable insights into the complex mechanisms 
underlying  psychopathology4–6. The ability of ML models to make predictions about previously unseen individual 
subjects has expanded the field from population-based analyses to investigation of individualized  biomarkers5,6. 
However, it is important to ensure that predictions are not confounded by variables that are not part of the causal 
pathway of interest, but are associated with both the features the model was trained on and the  target6,7, as results 
from confounded analyses might potentially lead to inaccurate and spurious  conclusions8,9. Using brain size bias 
in sex classification as an example, the present study examines which confound removal strategy is most suitable 
to achieve high classification accuracy while effectively removing brain size  bias8–10.

ML approaches have been successfully applied to the study of sex differences in the brain by training a classi-
fier to predict sex based on features derived from structural brain imaging data, e.g. regional grey matter volume 
(GMV). Such a sex classifier is expected to capture multivariate brain organizational patterns that differ between 
the sexes. High classification accuracies on out-of-sample  data11,12 are then taken as evidence for qualitative sex 
differences in the  brain13,14. So far, studies using sex classification approaches based on structural brain imaging 
data achieved classification accuracies ranging from 82 up to 94%11,12,15–17. However, a sex classifier biased by 
brain size (measured as total intracranial volume,  TIV18,19) will result in predictions that are driven by TIV dif-
ferences rather than actual sex differences in brain  structure9,10,20. As a result, a TIV-biased model will classify 
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individuals with higher TIV as males and individuals with lower TIV as females, while making more mistakes 
for individuals with intermediate TIV.

The use of such a TIV-biased sex classifier is particularly problematic when analyzing data of individuals for 
whom local and global brain structural alterations have been reported, such as those with "gender incongru-
ence," where a person’s sex and gender identity  differ21. In the present paper, following the linguistic guidelines 
provided by the Professional Association of Transgender  Health22, the term “sex” is used to refer to the sex that 
a person was assigned at birth based on their anatomical sexual characteristics, whereas the term “gender (iden-
tity)” is used to denote the subjective identification of an individual as female, male, or one of the other gender 
identities which might be also fluid or non-binary. While the coherence of sex and gender is termed cisgender 
for cisgender men and women (CM, CW), gender incongruent individuals are denoted as transgender men and 
women (TM, TW,21).

To date, it is not yet fully understood if and to which extent local and global brain organization of transgen-
der individuals is driven by factors matching their gender identity on top of those matching their sex. So far, 
studies contrasting groups of cisgender and transgender individuals reported regional GMV differences in the 
 putamen23,  insula16 as well as in surface areas, cortical and subcortical brain  volumes24. Additionally, transgender 
individuals undergoing cross-sex hormone treatment (CHT) were reported to show structural alterations in the 
hypothalamus and the third  ventricle25. Thus, there is some evidence indicating that transgender individuals 
display local brain volume  differences24,26–28. Extending the results of group studies contrasting cisgender and 
transgender individuals, sex classification approaches—building a classifier on cisgender individuals’ data and 
then applying it to transgender individuals—have reported reduced sex classification accuracies for transgender 
compared to cisgender samples (76.2% vs. 82.6%17; 61.5% vs. 93.2–94.9%16). Higher rates of misclassification of 
sex in transgender as opposed to cisgender individuals have been taken to indicate that transgender brains might 
differ from those typical for their sex, implying an interaction between sex and gender at the neuroanatomical 
 level16,17,29. However, before such conclusions can be drawn, biases that can influence a sex classifier must be 
taken into account, particularly those related to  TIV18,19. It is crucial to be aware of the impact of local and global 
structural brain alterations that can lead to increases or decreases of TIV resulting in the TIV of transgender 
individuals falling between TIV of cisgender women and  men25. Consequently, the predictions of a TIV-biased 
classifier might erroneously be interpreted as evidence for transgender brain organization to align with gender 
identity as has been reported  before16,29.

Here, we investigate the impact of TIV bias by examining two approaches to control for confounding effects 
of  TIV10 in sex classification to evaluate which approach is most suited to account for TIV bias in the present sex 
classification analysis. We compare two statistically different approaches of controlling for TIV bias in comparison 
to a baseline model that does not account for the influence of TIV. For the first approach, we built debiased mod-
els through featurewise confound control by removing confounding effects of TIV during training (Fig. 1,20,30). 
In the second approach, we trained models on a stratified sample where women and men were matched for TIV. 
Model performance and TIV bias were assessed on hold-out samples of cisgender individuals to compare per-
formance of the biased to the debiased models. We hypothesized that a TIV-biased model should achieve high 
performance but also exhibit a biased output pattern. In contrast, a model not biased by TIV will likely exhibit 
a drop in classification accuracy. However, importantly, misclassifications of such a model should be largely 
independent of TIV. In the final step, the debiased models were applied to application samples comprising both 
cisgender and transgender individuals to examine whether models without a TIV bias provide any evidence for 
an interaction of sex and gender influences on structural brain organization, as previously  suggested17.

Results
Classifiers employing Support Vector Machine (SVM) models with radial basis function kernel (rbf) were trained 
on whole-brain voxelwise GMV data of two large, non-overlapping cisgender samples to classify sex assigned at 
birth. In the first sample, women and men were matched for age (AM sample) to create a sample with a natural 
occurring TIV-distribution (Fig. S1 and Table S1). As a baseline, we trained the first model on this sample with-
out any control for TIV bias (AM model), following the methodology of a previous  study16. We then compared 
the baseline model to other models, which integrated two different approaches for confound control in order to 
assess which approach successfully removes TIV bias while accurately classifying sex. For the first approach, a 
ML model was also trained on the AM sample, but additionally controlled for TIV bias by featurewise confound 
removal (AM+cr model), while the third model comprised stratification for TIV by training the model on a 
sample of women and men who were matched for both age and TIV (ATM; see Fig. S1 and Table S1 for demo-
graphic details and TIV distribution of the samples). While the third model was trained on the ATM sample 
without additional TIV-control (ATM model) to evaluate stratification in itself, the fourth model employed a 
combination of both approaches to assess whether the addition of featurewise confound removal might further 
improve results (AM+cr model, Fig. 1). Subsequently, all models were calibrated to ensure that the prediction 
probabilities of the models match the respective class label (Figs. S2 and S3, Supplementary Results, https:// 
scikit- learn. org/ stable/ modul es/ calib ration. html# calib ration). To evaluate model performance on hold-out data, 
each sample (AM and ATM) was split into a training sample (80%) and a hold-out sample (20%). As the two 
approaches—featurewise confound removal and stratification by matching—might exhibit differences in model 
performance since they are based on different statistical  processes8, all four models were evaluated on both AM 
and ATM hold-out samples. This allowed for a thorough understanding of model behavior and evaluation of 
whether both approaches successfully remove TIV bias. Assessing model performance on the first sample (AM 
hold-out sample), which exhibits a naturally occurring TIV-distribution among women and men, enables a real-
istic evaluation of the model’s effectiveness in broader populations beyond those included in the present study. 
In turn, the ATM hold-out sample enables a more in-depth evaluation of the model performance, as it displays 

https://scikit-learn.org/stable/modules/calibration.html#calibration
https://scikit-learn.org/stable/modules/calibration.html#calibration
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no significant difference in TIV between women and men. Consequently, an accurate model performance for 
the ATM hold-out sample indicates a non-TIV-biased model behavior as the model classifies a person’s sex based 
on other features than TIV, providing a “confound-free accuracy”31. Additionally, the models were tested on two 
independent application samples comprising transgender and cisgender individuals (sample A, sample B, see 
Fig. S1 and Table S1 for demographic details and TIV distribution of the samples).

Evidence for TIV bias in the AM model. The application of the AM model to the AM hold-out sample 
resulted in a high classification accuracy of 96.89% (Table 1, Table S2, and Fig. 2). Accordingly, the assigned 
probability of being classified as male (prediction probability) was higher for men than for women (Fig. 3a). The 
comparison of TIV distributions revealed that men who were classified congruently with their sex as male had a 
significantly higher TIV than incongruently classified men (Fig. 3b). Similarly, women classified incongruently 
with their sex as male on average had a higher TIV than congruently classified women, even though this differ-
ence was not significant (details in Table 2).

When applied to the ATM hold-out sample, the AM model resulted in a much lower classification accuracy of 
79.19% (Tables 1 and S2), presumably as the model could not rely on TIV for classifying in the ATM sample. Still, 
we observed a similar pattern as above, with men having a higher prediction probability than women (Fig. 3c), 
significantly higher TIV in sex congruently as opposed to incongruently classified men, and significantly lower 

Figure 1.  Analysis pipeline. Workflow of the sex classification analysis.
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TIV in sex congruently as opposed to incongruently classified women (Fig. 3d and Table 2). Altogether, across 
both hold-out samples, this model tended to classify subjects with higher TIV as male and those with lower TIV 
as female, clearly indicating a brain size bias inherent in this model.

Reducing TIV bias by confound removal. Featurewise control for TIV in the AM+ cr model resulted 
in decreased classification accuracies both for the AM (61.80%) and the ATM (72.98%; further details in Fig. 2, 
Table 1 and Table S2) hold-out samples. In comparison to the AM model with no TIV control (Fig. 3a) predic-
tion probability displayed a much larger overlap between women and men (Fig. 3e, g). Further evaluation did 
not reveal any evidence for a TIV bias—i.e. neither did sex congruently classified men show higher TIV than 

Table 1.  Model performance of all models applied to the hold-out and application samples (* Balanced 
Accuracy). Model performance of all models applied to the hold-out and application samples.

AM model AM+cr model ATM model AM+cr model

Model performance for the AM hold-out sample

 Recall: 0.9503 0.7329 0.8820 0.8571

 Specificity: 0.9876 0.5031 0.8509 0.8571

 F1: 0.9684 0.6574 0.8685 0.8571

 BA*: 0.9689 0.6180 0.8665 0.8571

Model performance for the ATM hold-out sample

 Recall: 0.7453 0.8323 0.9255 0.9193

 Specificity: 0.8385 0.6273 0.9255 0.9317

 F1: 0.7818 0.7549 0.9255 0.9250

 BA*: 0.7919 0.7298 0.9255 0.9255

Model performance for sample A

 Recall: 0.9474 0.7895 1 0.9474

 Specificity: 0.8276 0.7241 0.8276 0.8448

 F1: 0.8926 0.7627 0.9194 0.9000

 BA*: 0.8875 0.7568 0.9138 0.8961

Model performance for sample B

 Recall: 0.8889 0.8333 0.9722 0.8889

 Specificity: 0.9608 0.5882 0.9020 0.9020

 F1: 0.9143 0.6897 0.9211 0.8767

 BA*: 0.9248 0.7108 0.9371 0.8954

Figure 2.  Sex classification accuracy. Accuracy values of the four different models for the cross validation (CV)-
folds and applied to the AM and ATM hold-out sample.
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Figure 3.  Association between prediction probability and TIV. Prediction probability (a, c, e, g, i, k, m, o) and 
TIV distribution (b, d, f, h, j, l, n, p) of sex congruently and incongruently classified women (red) and men 
(blue) of all four models applied to the AM and ATM hold-out sample. (W/f: women classified as female; W/m: 
women classified as male; M/m: men classified as male; M/f: men classified as female).

Table 2.  Wilcoxon rank sum tests of the hold-out samples. Comparison of individuals classified as female 
versus male (Wilcoxon rank sum tests) for the AM and ATM sample.

TIV women classified as female versus classified as male
TIV men classified as male  versus classified as 
female

AM hold-out sample

 AM model T = 12,722, z = − 2.3885, p = 0.0169, η2 = 0.0354 T = 12,829, z = 3.3879, p < 0.001, η2 = 0.0713

 AM+cr model T = 7514, z = 3.2204, p = 0.0013, η2 = 0.0644 T = 8858, z = − 2.6727, p = 0.0075, η2 = 0.0444

 ATM model T = 11,004, z = − 0.4390, p = 0.6606, η2 = 0.0012 T = 11,507, z = 0.0236, p = 0.9812, η2 < 0.001

 AM+cr model T = 11,236, z = 0.2778, p = 0.7812, η2 < 0.001 T = 11,284, z = 0.5097, p = 0.6103, η2 = 0.0016

ATM hold-out sample

 AM model T = 9908, z = − 4.7156, p < 0.001, η2 = 0.1381 T = 11,325, z = 6.2257, p < 0.001, η2 = 0.2407

 AM+cr model T = 8425, z = 0.8513, p = 0.3946, η2 = 0.0045 T = 10,341, z = − 2.3190, p = 0.0204, η2 = 0.0334

 ATM model T = 12,284, z = 1.3806, p = 0.1674, η2 = 0.0118 T = 12,239, z = 1.0910, p = 0.2753, η2 = 0.0074

 AM+cr model T = 12,403, z = 1.6918, p = 0.0907, η2 = 0.0178 T = 12,130, z = 0.8780, p = 0.3800, η2 = 0.0048



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13868  | https://doi.org/10.1038/s41598-023-37508-z

www.nature.com/scientificreports/

incongruently classified men nor did sex congruently classified women show lower TIV than incongruently clas-
sified women in both the AM (Fig. 3f) and the ATM (Fig. 3h and Table 2) hold-out samples.

Reducing bias by matching the training sample for TIV. The application of the two models built 
using TIV matched data with and without featurewise TIV control (ATM and ATM+cr model, respectively) to 
the AM hold-out sample resulted in similarly high classification accuracy (86.65% for ATM, 85.71% for ATM+cr 
model, details in Tables 1 and S2), performing between accuracies achieved by the AM and the AM+cr model. 
Thus, for the ATM models, additional featurewise TIV control did not result in decreased model performance. 
This is further reflected in similar prediction probability distributions (Fig. 3i, m), which were higher for men 
than for women. Likewise, the TIV of sex congruently and incongruently classified individuals did not differ 
significantly from each other both for women and for men (Fig. 3j, n and Table 2). Application of these models 
to the ATM hold-out sample (details in Tables 1 and S2), displayed better performance (92.55%) than for the AM 
hold-out sample. Furthermore, prediction probability distributions showed a comparable (Fig. 3k, o) but more 
pronounced pattern for the ATM hold-out sample. Again, when testing on the ATM hold-out sample, there was 
no difference between TIV of sex congruently and incongruently classified individuals both for the model with-
out (Fig. 3l and Table 2) and with additional confound removal (Fig. 3p and Table 2).

Overall, the AM model achieved highest classification accuracy, but evaluation of the model output identified 
clear evidence for a TIV bias of the model. Reducing TIV-related variance by featurewise confound removal in 
the AM+cr model resulted in a less biased model, which also displayed a pronounced decrease in model perfor-
mance, especially for the AM hold-out sample. Both models trained on the TIV balanced sample (ATM, ATM+cr 
model) did not show evidence of a TIV bias while still retaining high classification performance and appropriate 
calibration curves (Figs. S2 and S3), indicating that—at least for the present classification problem—training 
on a matched sample is more appropriate than featurewise confound removal. Thus, in the following, we will 
focus on comparing the performance of the biased AM model and the nonbiased ATM model on cisgender and 
transgender individuals in the application samples (sample A, sample B). Results for the AM+cr and ATM+cr 
models are provided in the Supplementary Results and Fig. S4.

Biased performance of the AM model for cisgender and transgender individuals. The appli-
cation of the TIV-biased AM model resulted in an overall high performance of 88.70% for sample A, with an 
accuracy of 81.63% for cisgender and 93.43% for transgender individuals (detailed measures in Tables 1 and S3). 
Likewise, for sample B, the model achieved high overall accuracy of 93.10% (Tables 1 and S3) with an accuracy 
of 90.24% for cisgender individuals and 95.65% for transgender individuals. Matching the high accuracies, the 
prediction probability showed a sex congruent pattern with higher prediction probabilities for CM and TW 
(assigned male at birth) than for CW and TM (assigned female at birth) in both sample A (Fig. 4a, c) and sample 
B (Fig. 4e, g). A comparison of probability distributions of cis- and transgender individuals with the same sex 
revealed a trend for higher prediction probability for CW than for TM in sample A (t = 1.98, p = 0.0527, Cohen´s 
d = 0.53), which was significant in sample B (t = 3.58, p < 0.001, Cohen´s d = 1.01), matching the TIV-distribu-
tions showing higher TIV for CW than TM (Fig. S1).

The comparison of prediction probabilities for CM versus TW was not significant in both samples (Sample 
A: t = − 0.55, p = 0.5820, Cohen´s d = − 0.15; Sample B: t = 1.07, p = 0.2922, Cohen´s d = 0.36), while the effect size 
indicated a trend of lower prediction probability for TW than CM. While TIV-distributions for sex congruently 
and incongruently classified individuals did not differ significantly (Table 3), sex congruently classified CW and 
TM had a lower TIV than those classified in a sex incongruent manner. Sex congruently classified CM and TW 
had a higher TIV than those classified sex incongruently (Fig. 4b, d, f, h), indicating a similar bias of this model 
for both cisgender and transgender individuals.

Nonbiased ATM model: similar performances for cisgender and transgender individuals. The 
application of the ATM model to sample A displayed a high overall sex classification accuracy of 91.30% (91.84% 
for cisgender and 90.01% for transgender individuals). This model also performed accurately on sample B with 
an overall accuracy of 93.10% (92.68% for cisgender and 93.48% for transgender individuals, details in Table 1 
and S3). In both samples, the ATM model yielded sex congruent prediction probabilities for all four groups 
(Fig. 4i, k, m, o). As opposed to the biased model, here, TM showed a trend of higher prediction probability than 
CW in Sample B (CW vs TM: t = − 1.27, p = 0.2093, Cohen´s d = − 0.36; Sample A: t = 0–0.47, p = 0.6425, Cohen´s 
d = − 0.12;). This gender congruent trend was not observed for TW (CM vs. TW: Sample A: t = 0.31, p = 0.7577, 
Cohen´s d = 0.08; Sample B: t = − 2.02, p = 0.0510, Cohen´s d = − 0.68). The comparison of TIV distributions 
between sex congruently and incongruently classified individuals (Fig. 4 j, l, n, p) did not reveal any significant 
differences (Table 3), neither for cisgender nor for transgender individuals, thus displaying no evidence for a 
TIV bias of this model.

Discussion
In this work, we systematically compared two confound removal approaches, featurewise confound removal 
and sample stratification, with the aim to train accurate sex classification models without a TIV bias. In order to 
directly compare our findings to those of a previous study, we implemented a ML pipeline that has demonstrated 
high levels of sex classification  accuracy16. This pipeline consisted of principal component analysis (PCA) for 
dimensionality reduction, followed by an SVM model with rbf kernel for learning, but did not report any con-
sideration of the confounding effects of TIV.

Consistent with previous results, the baseline AM model which does not consider confounding effects of 
TIV achieved near-perfect classification accuracy on the AM hold-out sample by accurately classifying men with 
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high TIV as male and women with low TIV as  female11,12,16,17, but relied on TIV as a proxy for sex, indicating a 
pronounced TIV bias (Fig. 3b). The TIV bias was even more pronounced when the model was applied on the 
ATM hold-out sample presumably as the AM model was more likely to make mistakes for men with relatively 
lower TIV and women with relatively higher TIV. The pronounced TIV bias observed here is especially inter-
esting, since the GMV data had already been scaled for TIV during preprocessing. Thus, our results align with 
previous claims that while the absolute amount of tissue is corrected for individual TIV, such scaling does not 
fully remove TIV-related variance (32, http:// www. neuro. uni- jena. de/ cat12/ CAT12- Manual. pdf).

For the AM+cr model, where a featurewise removal of TIV was performed on the AM data, the misclassifica-
tions of both women and men were not systematically related to TIV differences, indicating that this model was 
not biased by TIV. This suggests that the AM+cr model based its classifications on different information than the 
AM model did. Our results match the findings of previous  studies20,30,33,34, reporting a decrease in accuracy for sex 
classification models controlling for TIV in contrast to TIV-biased models. This decrease is likely related to the 

Figure 4.  Association between prediction probability and TIV for the AM and ATM models in the two 
application samples. The upper row (a–h) shows the prediction probability (a, c, e, g) and TIV distribution 
(b, d, f, h) of sex congruently and incongruently classified CM, CW, TM and TW in the AM model in sample A 
and B. The bottom row (i–p) shows the prediction probability (i, k, m, o) and TIV distribution (j, l, n, p) of sex 
congruently and incongruently classified CM, CW, TM and TW in the ATM model in sample A and B. (CW/f: 
CW classified as female; CW/m: CW classified as male; CM/m: CM classified as male; CM/f: CM classified as 
female; TM/f: TM classified as female; TM/m: TM classified as male; TW/m: TW classified as male; TW/f: TW 
classified as female).

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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removal of TIV-related variance during featurewise confound removal, which might have decreased the overall 
amount of information available for the AM+cr model in contrast to the AM  model20,30,33,34. This observation 
is in line with the results of a previous study suggesting that TIV alone contains enough information to classify 
sex at a similar level of accuracy as TIV-uncorrected  GMV34. Considering that features in the AM sample can 
be assumed to contain more TIV-related variance than the ATM sample presumably explains why the drop in 
accuracy between the AM and the ATM+cr is less pronounced for the ATM hold-out sample than for the AM 
sample. Altogether, featurewise confound removal reduced TIV bias at the cost of classification accuracy. While 
a lack of bias in a model is desirable, so is high accuracy, suggesting that featurewise confound removal might 
not be the ideal approach to reduce TIV bias in structural sex classification.

In contrast to the models trained on the AM sample, both ATM trained models resulted in high and unbiased 
model performance for the AM as well as the ATM hold-out samples. The slightly higher accuracy for the ATM 
hold-out sample is likely due to the ATM hold-out sample better matching the characteristics of the ATM train-
ing sample, in particular with respect to TIV distribution, which is highly related to the target variable  sex30. The 
better performance of the ATM and ATM+cr model on the ATM hold-out samples also supports the relevance of 
stratifying training and hold-out samples with respect to relevant variables that may interact with the  target35,36.

The comparison of TIV of sex congruently and incongruently classified women and men did not indicate 
a TIV bias, which is in line with a study proposing beforehand matching to be a more efficient approach than 
feature-wise confound removal in the statistical  analysis9. However, another study argued against the match-
ing of data, arguing that matching for specific characteristics creates a sample that is not representative of the 
whole  population20. While we agree that the ATM sample does not strictly represent the TIV distribution of 
the population by rather comprising men with relatively low and women with relatively high TIV, the ensuing 
models achieved high classification accuracies, even when applied to the AM hold-out sample which reflects the 
natural TIV distribution. This indicates that the models themselves are not biased by training sample charac-
teristics, especially the restricted TIV range. In fact, the models appear to correctly capture sex differences in a 
generalizable manner as exemplified by their performance on the two hold-out samples. However, we would like 
to emphasize that both confound removal approaches employed in the present study rely on different statistical 
operations which are anticipated to result in different outcomes and model  performances8. Thus, high model 
performance of one approach does not imply the other one to behave in a similar manner. For this reason, test-
ing which approach is most suited for an individual ML-problem is crucial. The present results demonstrated 
that matching women and men for TIV in the training sample provides an appropriate approach for creating 
unbiased and accurate sex classification models.

In contrast to previous  studies16,17, we observed similarly high classification accuracies for cis- and transgender 
individuals regardless of whether the models were debiased or not. This discrepancy may partly be explained by 
the fact that TIV of the transgender individuals in the present samples matched TIV of cisgender subjects of the 
same sex rather than aligning with gender identity (Fig. S1). Thus, even a biased classifier could accurately clas-
sify transgender individuals. However, in samples where the TIV values for transgender individuals indeed fall 
in-between those of cisgender men and women, as reported  previously25 TIV-biased models would misclassify 
transgender individuals in accordance with their gender identity, which could explain prior  findings16. Future 

Table 3.  Wilcoxon rank sum tests of the application samples. Comparison of individuals classified as female 
versus male (Wilcoxon rank sum tests) for application sample A (a) and sample (b).

a) TIV CW classified as female versus classified as 
male TIV CM classified as male versus classified as female

AM model T = 203, z = − 1.8459, p = 0.0649, η2 = 0.1363 T = 286, z = 1.0967, p = 0.2728, η2 = 0.0501

AM+cr model T = 249, z = 0.8776, p = 0.3802, η2 = 0.0308 T = 236, z = − 1.0457, p = 0.2957, η2 = 0.0456

ATM model T = 268, z = − 0.3336, p = 0.7387, η2 = 0.0045 no CM classified as female

AM+cr model T = 268, z = − 0.3336, p = 0.7387, η2 = 0.0045 T = 294, z = 0.8668, p = 0.3861, η2 = 0.0313

TIV TM classified as female versus classified as male TIV TW classified as male versus classified as female

AM model T = 472, z = − 2.3483, p = 0.0189, η2 = 0.1671 T = 558, z = 1.4178, p = 0.1563, η2 = 0.0609

AM+cr model T = 477, z = 2.7689, p = 0.0056, η2 = 0.2323 T = 442, z = 0.6931, p = 0.4882, η2 = 0.0146

ATM model T = 499, z = 1.8437, p = 0.0652, η2 = 0.1030 no TW classified as female

AM+cr model T = 506, z = 1.4812, p = 0.1386, η2 = 0.0665 T = 532, z = 0.3395, p = 0.7342, η2 = 0.0035

b) TIV CW classified as female versus classified as male TIV CM classified as male versus classified as female

AM model T = 224, z = − 0.6281, p = 0.5299, η2 = 0.0179 T = 186, z = 2.0591, p = 0.0395, η2 = 0.2231

AM+cr model T = 199, z = 1.8328, p = 0.0668, η2 = 0.1527 T = 159, z = − 1.3948, p = 0.1631, η2 = 0.1024

ATM model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 178, z = − 0.2739, p = 0.7842, η2 = 0.0039

AM+cr model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 138, z = − 1.1500, p = 0.2501, η2 = 0.0696

TIV TM classified as female versus classified as male TIV TW classified as male versus classified as female

AM model no TM classified as male T = 145, z = 1.4162, p = 0.1567, η2 = 0.1180

AM+cr model T = 289, z = 2.7714, p = 0.0056, η2 = 0.2648 T = 115, z = − 0.1698, p = 0.8651, η2 = 0.0017

ATM model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female

AM+cr model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female
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studies should apply TIV-debiased models to additional datasets to help disentangle the complex interaction of 
sex, gender and the brain. It would be particularly interesting to apply our debiased models, which are available 
to other researchers (https:// github. com/ juaml/ sex_ predi ction_ vbm) to those datasets for which a reduction of 
sex classification accuracy for transgender participants has previously been  reported16,29. Another explanation 
for the discrepancy between present and previous  results16,29, might be that our classifiers learnt fundamentally 
different models, e.g. employing different feature weights than those in previous studies, which in turn might 
be caused by differences in characteristics of the training samples and in turn different parameters learnt during 
model optimization. Beside the differences due to different training samples, other factors affecting ML models 
and respective results might relate to differences in age-distribution. Here, we not only balanced for sex but 
also employed an exact matching of men and women with regards to age which might have reduced variance 
in comparison to the training-samples of other  studies16,29 leading to differences in the fundamental model and 
results. In addition to age in the training sample, the age distribution of the application sample could also play a 
role, due to age-related GMV decline. Thus, older TW could be misclassified due to age-related GMV changes.

The present models were trained on a diverse collection of samples, ensuring a heterogeneity in several 
variables, such as age, scanning characteristics, and nationality. Likewise, as application samples we used two 
completely independent datasets comprising TW and TM. To our knowledge, previous studies have focused 
on test samples only comprising TW when applying a sex classifier trained on structural data of cisgender 
individuals to transgender  individuals16,29, limiting conclusions to TW rather than transgender individuals in 
general. Notably, one study employing data of both TW and TM did not report significantly lower classification 
accuracy for transgender  data17, which is in line with the present results. While we did not observe decreased sex 
classification accuracy for transgender individuals, this cannot be taken as a proof of absence of such structural 
brain differences, which might be revealed by the investigation of different sets of brain features or different 
analysis approaches.

Future studies can benefit by incorporating confound control approaches within interpretable ML pipelines 
that can provide insight into how many and which brain regions are most relevant for sex differences. Those 
insights can shed further light on which features are more common in men, women or both, thereby carrying 
implications for hypotheses as the mosaic of the human  brain37, which exceeds the scope of the current study 
design. Methodologically sound studies, including both sex and gender aspects, are needed to improve our 
understanding of sex and gender-related differences in behavior and prevalence rates of mental disorders to 
advance development of sex-specific  treatments38,39. Viewing patients through the lens of sex and gender is an 
essential step towards personalized care and individualized  medicine6,40. Therefore, to achieve the ultimate goal 
of neuroimaging-based precision medicine, the present study takes a first step towards exploring appropriate 
confound removal in ML-based sex  classification41. Although each ML analysis must consider confounds specific 
to the research question at hand, TIV is an important confound to consider in neuroimaging data in general, as 
also shown by  others9,18,33,34,42. In addition to its application in sex classification analyses, as demonstrated here, 
appropriate confound control should also be considered for other ML applications. We, therefore, recommend 
that researchers should investigate which confound removal method is appropriate for their ML analysis.

Conclusion
Our findings demonstrate that stratification via TIV-matching effectively eliminates TIV bias while achieving 
high levels of classification accuracy in a sex classification analysis using structural brain imaging features. 
Contrary to previous  results16, our sex classification model demonstrated comparable levels of classification 
accuracy for both cisgender and transgender individuals. Our study emphasizes the importance of removing 
TIV bias appropriately in sex classification tasks to prevent incorrect interpretations. In general, confounding 
is a common issue in many ML-based modeling tasks, albeit with varying confounds and levels of confounding 
effects. Therefore, future studies utilizing ML approaches on brain imaging data should diligently examine for 
biases and implement appropriate confound control measures.

Materials and methods
Data. Data pool for model training and evaluation. To ensure a heterogeneous sample for training the clas-
sifiers, we combined data from 10 large cohorts into one data pool of structural magnetic resonance imaging 
(MRI) images from subjects differing in nationality, imaging parameters and age range. Supplementary Table S4 
gives further details on the composition of the data pool, and details of the MRI data acquisition parameters 
can be found in the Supplementary Material. We only included subjects aged between 18 and 65 years with 
no indication of any psychiatric disorder, resulting in a total N of 5557 subjects. It is important to note, that 
the majority of large datasets, which have been employed for sex classification studies so far, likely report sex 
based on “presented sex”, i.e. the name and outer appearance of participants or on self-reported sex without 
explicitly collecting information on gender identity. We assume that among subjects not describing themselves 
as transgender, self-reported gender identity is equivalent to sex assigned at birth, while acknowledging that this 
match may neither be perfect nor binary.

Sixteen subjects whose TIV values differed more than three standard deviations from the mean TIV of the 
data pool were excluded as outliers. Then, two non-overlapping samples were extracted from the data pool. In 
the first sample (AM), women and men were matched for age to control for age-related GMV  decline43–46. In the 
second sample (ATM), women and men were additionally matched for TIV. Possible differences between samples 
and sites in scanning acquisition were controlled for by including similar numbers of subjects from the different 
samples in the AM and ATM-sample respectively. Both the AM and ATM sample comprised 276 subjects from 
1000 Brains, 146 subjects from Cam-CAN, 168 subjects from CoRR, 50 subjects from DLBS, 94 subjects from 

https://github.com/juaml/sex_prediction_vbm
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eNKI, 192 subjects from GOBS, 396 subjects from HCP, 96 subjects from IXI, 76 subjects from OASIS3, and 120 
subjects from PNC. Each sample was split into a training (80%) and a hold-out sample (20%).

Age-matched (AM) sample. For the AM sample (N = 1614, 807 women), women and men were matched for 
age within each site (including multiple sites within one sample) by including a male counterpart from the 
same site whose age differed by no more than one year for each female subject. The age range in this sample was 
18–65 years (M = 37.96, SD = 15.28). Further detailed information can be found in Table S1, and a plot of the TIV 
distribution of women and men is displayed in Fig. S1. There was no significant difference in age between women 
and men (t = 0.01, p = 0.99); however, the sexes differed significantly with respect to TIV (t = − 61.06, p < 0.001). 
Splitting the sample into training (80%) and hold-out samples (20%) resulted in 1292 subjects (646 women) for 
training and 322 subjects (161 women) for testing. The training and hold-out samples did not differ with respect 
to age (t = 0.98, p = 0.33) or TIV (t = − 0.11, p = 0.91). The age difference between sexes remained nonsignificant 
within both the training (t = − 0.00, p = 0.99) and the hold-out sample (t = 0.03, p = 0.97), whereas the TIV differ-
ence was significant for both samples (training: t = − 54.79, p < 0.001, hold-out: t = − 26.90, p < 0.001).

Age‑TIV‑matched (ATM) sample. For the ATM sample (N = 1614, 807 women), women and men were matched 
for age and TIV within each site. For each female subject, a male counterpart was included whose age differed 
by no more than one year and whose TIV differed by no more than 3%. The age range in this sample comprised 
18–65 years (M = 38.15, SD = 15.35). More detailed information is displayed in Table S1, and the distribution 
of TIV for women and men in this sample is shown in Fig. S1. In this sample, women and men did not differ 
significantly in age (t = 0.01, p = 0.99), or in TIV (t = − 1.25, p = 0.21). The ATM sample was also divided into 80% 
for training and 20% hold-out for testing, again resulting in 1292 subjects (646 women) for training and 322 
subjects (161 women) for testing. The training and hold-out samples did not differ with respect to age (t = 0.02, 
p = 0.98) or TIV (t = − 0.53, p = 0.60). Additionally, there was no significant difference between women and men 
in age or TIV in the training (age: t = 0.01, p = 0.99; TIV: t = − 0.99, p = 0.32) or hold-out sample (age: t = − 0.01, 
p = 0.99; TIV: t = − 0.83, p = 0.41).

Application samples. The first application sample (Sample A) was acquired in Aachen (Germany). This data 
set consisted of 115 individuals (24 CM, 25 CW, 33 TM, 33 TW). All cisgender participants were recruited via 
a public announcement around Aachen, whereas TM and TW were recruited in self-help groups and at the 
Department of Gynaecological Endocrinology and Reproductive Medicine of the RWTH Aachen University 
Hospital, Germany. All cisgender and transgender subjects in this sample reported no presence of neurologi-
cal disorders, other medical conditions affecting the brain metabolism or first-degree relatives with a history of 
mental disorders. The Ethics Committee of the Medical Faculty of the RWTH Aachen University approved the 
study (EK 088/09,23). At the time of MRI measurement, 15 TM and 16 TW each were receiving hormone treat-
ment. The age of the participants ranged from 18 to 61 years (M = 30.38, SD = 11.03). More detailed demographic 
information can be found in Table S1 and Fig. S1.

The second application sample (Sample B) consisted of an open-source dataset acquired in Barcelona, avail-
able via (https:// data. mende ley. com/ datas ets/ hjmfr v6vmg/2,47–49). The data set contained 87 subjects (19 CM, 22 
CW, 29 TM, 17 TW) with an age range of 17 to 39 years (M = 22.23, SD = 4.97). More detailed information related 
to age and TIV in all four groups can be found in Table S1 and Fig. S1, though no information were available 
regarding the status of potential hormone treatment.

Model applications were evaluated on both application samples separately to further understand the model 
behavior on samples with differing characteristics (Table S1).

The data usage of the second application sample as well as the data for the AM and ATM-sample was approved 
by the Ethics Committee of the Medical Faculty of the Heinrich-Heine University Düsseldorf (2018-317, 4039, 
4096, 5193). All subjects were participants in research projects approved by a local Institutional Review Board 
and provided written informed consent and all experiments were performed in accordance with relevant guide-
lines and regulations.

Preprocessing of structural data. Structural T1-weighted MR images of all datasets were preprocessed 
using the Computational Anatomy Toolbox (CAT12.5 r1363, http:// www. neuro. uni- jena. de/ cat12/) in SPM 
(r6685) running under Matlab 9.0. After initial denoising (spatial-adaptive Non-Local Means), the pipeline 
included spatial registration, bias-correction, skull-striping and segmentation by an adaptive maximum a poste-
riori  approach50 with using a partial volume  model51. Subsequently, an optimized version of the Geodesic Shoot-
ing  Algorithm52 was applied for normalization to MNI space and the resulting Jacobians were used for non-
linear only modulation of grey matter segments, before final resampling to a 3 × 3 × 3 mm resolution via FSL. 
The non-linear only modulated images (m0wp1) were globally scaled for TIV internally with an approximation 
of TIV, i.e. every voxel was scaled by the relative linear transformation to the MNI152 template. Consequently, 
while TIV-related variance was likely not fully removed from the data, the GMV data included in the analyses 
were not fully TIV-naive.

Predictive modelling. Whole-brain voxelwise GMV were used as features for training the classifiers, 
resulting in 77779 brain features (voxels) per subject. For each of the AM and the ATM training samples, classi-
fiers were trained to predict sex with and without featurewise removal of TIV-related variance, resulting in the 
four different models: AM, AM+cr, ATM and AM+cr model (Fig. 1). For all four models, we employed a SVM 
classifier with rbf  kernel53 using Julearn (https:// juaml. github. io/ julea rn). Before training the classifier, PCA was 
performed to reduce the dimensionality of the  data16. The maximum number of components (n = 1292, num-

https://data.mendeley.com/datasets/hjmfrv6vmg/2
http://www.neuro.uni-jena.de/cat12/
https://juaml.github.io/julearn
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ber of subjects in the training sample) was retained. Where applicable, for featurewise TIV control TIV-related 
variance was removed after dimensionality reduction by subtracting the fitted values of each feature in a cross-
validation (CV)-consistent manner to avoid data  leakage20,30. Stratified tenfold CV was performed to assess gen-
eralization performance. The two hyperparameters, C (1 −  1e8, log-uniform) and gamma  (1e-7 − 1, log-uniform), 
were tuned via Bayesian Hyperparameter Optimization with 250 iterations within a fivefold CV inner loop fol-
lowing the analysis employed in a previous  study16. The best performing combination of hyperparameters from 
the Bayesian Hyperparameter Optimization was used to train the final model on the full sample (details depicted 
in Supplementary Material).

The four final models were used to obtain predictions for the AM and ATM hold-out samples and both appli-
cation samples (Fig. 1). Before application of the models to the hold-out samples, we ensured that the models 
were calibrated (https:// scikit- learn. org/ stable/ modul es/ calib ration. html# calib ration) by assessing probabilities 
of classifying an individual into a respective class in relation to the actual labels of the individuals (Supplementary 
Figs. S2 and S3, Supplementary Results). These calibrations allow for checking whether the models gave accurate 
estimates of class probabilities and support probability predictions. To distinguish between the predicted and 
actual label of the sex a person identifies with, we refer to the terms “male” and “female” as predicted labels of an 
ML model whereas we refer to “men” and “women” as actual (true) label of an individual.

To further explore model behaviour, we compared the TIV-distributions of individuals classified in accord-
ance with their sex and those who were not, by use of violin  plots54 and by Wilcoxon rank sum tests. Due to the 
amount of comparisons conducted here, we chose a conservative significance level of α = 0.005 with effect sizes 
estimated  accordingly55. To examine whether models were confounded by total GMV, we first tested whether 
GMV differed between the sexes in the two samples. In the AM sample, similarly to TIV, sexes exhibited signifi-
cant differences in total GMV (two-sample t-test; t = − 31.21, p < 0.001). However, matching for TIV in the ATM 
sample also resulted in a non-significant difference in total GMV (t = 0.85, p = 0.40), indicating that matching 
on TIV was effective also for GMV. We then compared the GMV distributions of individuals classified correctly 
in accordance with their sex and those who were misclassified (Tables S5 and S6) with the same conservative 
significance level as for TIV-differences of α = 0.005. Further details can be found in the Supplementary Results 
and Tables S5 and S6. To assess potential differences between cis- and transgender individuals in prediction 
probabilities, we statistically compared probabilities of CM and TW as well as CW and TM. A power-analysis 
for these comparisons was conducted using G*Power to compute sample size required for effect sizes as found 
in previous work with a α–level of 0.05 and power-level of 0.829,56,57.

Data availability
The data used in the study are available via open-source datasets, for which access information is provided in the 
supplementary information files together with the structural scanning parameter. Code is available on GitHub: 
https:// github. com/ juaml/ sex_ predi ction_ vbm.
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