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Attitudinal analysis of vaccination 
effects to lead endemic phases
Donggyun Ku 1, Gahyun Kim 1, Kyong Ran Peck 2, In Kwon Park 3, Rakwoo Chang 1, 
Donghan Kim 4 & Seungjae Lee 1*

To achieve endemic phases, repeated vaccinations are necessary. However, individuals may grapple 
with whether to get vaccinated due to potential side effects. When an individual is already immune 
due to previous infections or vaccinations, the perceived risk from vaccination is often less than 
the risk of infection. Yet, repeated rounds of vaccination can lead to avoidance, impeding the 
establishment of endemic phases. We explore this phenomenon using an individual-based Monte Carlo 
simulation, validating our findings with game theory. The Nash equilibrium encapsulates individuals’ 
non-cooperative behavior, while the system’s optimal value represents the societal benefits of 
altruistic cooperation. We define the difference between these as the price of anarchy. Our simulations 
reveal that the price of anarchy must fall below a threshold of 12.47 for endemic phases to be achieved 
in a steady state. This suggests that for a basic reproduction number of 10, a consistent vaccination 
rate greater than 89% is required. These findings offer new insights into vaccination-related decision-
making and can inform effective strategies to tackle infectious diseases.

When the spread of an epidemic paralyses a society, the government adopts countermeasures, such as vaccinat-
ing  people1–3. Vaccines not only bring benefits to vaccinated people who reduce their chances of infection from 
infectious diseases but may also cause side effects. A rational individual acts on the benefits and changes their 
strategy according to  circumstances4. This egoistic attitude threatens public health and cannot lead to the endemic 
stage of infectious diseases. For example, measles and whooping cough reoccurred in the UK under the voluntary 
vaccination policy and eventually remained  endemic5,6. On the other hand, COVID-19 is rapidly spreading as 
BA.4 and BA.5, a subvirus of Omicron, through Alpha, Beta, Gamma, and Delta. The wave of COVID-19 infec-
tions by mutations continues to nullify the success we have achieved through effective vaccine, social restriction, 
testing, and quarantine  policies7. First, the level of herd immunity increases because of vaccination, showing 
lower severity of the  virus8. Second, these variations interfere with the ability to recognise antibodies that threaten 
vaccine immunity, thereby causing  reinfection9,10. Third, the additional vaccination rate is no longer higher than 
the rate of previous vaccinations. In other words, the decreasing severity and increasing reinfection rates reduce 
the benefits of vaccination, preventing the vaccination of reasonable individuals.

Vaccination reduces the risk of infection in people. Egoistic people try not to get vaccinated but instead rely 
on immunity formed from neighbouring vaccinations. They want to avoid the side effects of vaccines. For this 
reason, a reduction in the vaccination rate by egoistic people creates a ’social dilemma’ in which vaccinations do 
not reduce the risk of infection but rather significantly increase the infection rate  again11–13. Those wishing to 
respond to infectious diseases should understand the potential interactions in vaccine networks. In this study, 
we aimed to understand how individuals make vaccination decisions under the perceived risk of vaccines and 
diseases by reflecting on the payoff of game theory in the susceptible–infected–recovered (SIR) model.

First, we must identify the situation in which the COVID-19 pandemic reaches an endemic phase. Numerous 
Monte Carlo simulations can be run to mimic real-world scenarios and to obtain the corresponding results. Then, 
the unique uncertainty of the input parameter is reproduced by indefinitely generating unpredictable random 
numbers, obtaining all available results and the probability of each result. This can provide more explainable 
results than those of deterministic predictions. Therefore, we aimed to derive realistic scenarios by calculating 
the probability of all scenarios that may occur by using individual-based Monte Carlo (IBMC) simulations to 
predict COVID-19 diffusion  patterns14–17. In IBMC, input parameters––including population density, personal 
mobility, infection, vaccination, immunity, and mortality––are used to provide accurate solutions for the model. 
These solutions can be directly compared to the results from the application of game theory.

By using game theory, we analysed the behaviour of those who chose vaccination and the optimal strategy to 
effectively achieve the benefits and those who simply wanted herd immunity. Based on the interpretation method, 
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game theory is divided into technical and normative  interpretations18. In technical interpretation, the theory 
focuses on determining the consistency with actual human behaviour, as in behaviour theory. In normative 
interpretation, game theory is not an approach to predict a player’s behaviour but focuses on how to  behave19.

In terms of technical interpretation, we found evolutionarily stable strategies (ESS) by deriving the Nash 
equilibrium (NE) based on the basic reproduction  number20, which is related to infectivity, by using the evolu-
tion game theory in which the ‘Vaccinated group V  ’ and ‘Unvaccinated group (free-ride to group immunity) U  ’ 
strategies exist. The effect of the individual’s egoistic attitude on the optimal vaccination rate that can control 
infectious diseases was analysed. The dilemma caused the individual to adopt noncooperative egoistic behaviour, 
free benefits, and vaccination delay in vaccine networks, resulting in a society’s vaccination rate reaching  NE21. 
Society did not reach a system optimum (SO), which is an inoculation level that maximises social welfare under 
altruism; this occurred individuals’ egoistic  behaviour22. The difference between NE and SO is defined as the 
price of anarchy (PoA)23. We quantified the anarchy state (i.e., the social mix) to analyse the selfish and altruistic 
behaviours of individuals in vaccine networks. Accordingly, this study showed that the PoA is determined by the 
payoff of the relative vaccinations for infection perceived by the  individual23.

The global health crisis caused by the spread of the COVID-19 pandemic calls for significant behavioural 
change and places significant psychological strain on  individuals24. Understanding behavioural epidemiology 
through normative interpretation of these situations can help align human behaviour with recommendations 
from epidemiological and public health  experts25.

We devised a novel model to analyze vaccination behavioral dynamics, aiming to bridge the gap between 
individual-based model (IBM) considerations and game theoretic perspectives. The core of this approach relies 
on the combination of an Individual-Based Monte Carlo (IBMC) simulation and game theory. Each offers unique 
insights into the complex dynamics of infectious diseases and vaccination strategies. The IBMC simulation, 
based on non-deterministic algorithms, offers a realistic picture of individual behavior and how it influences the 
spread of an infectious disease, such as COVID-19. It accounts for the randomness and inherent uncertainty in 
the spread of the virus, including the variable basic reproduction number due to mutations.

On the other hand, our application of game theory, rooted in deterministic algorithms, provides a framework 
for understanding strategic decision-making around vaccination. Game theory offers insights into how varying 
initial parameters can yield different outcomes, which is crucial for understanding the dynamics of infectious 
diseases. The bridge between these two models lies in their complementary strengths. While the game theory 
model provides a strategic perspective on decision-making, the IBMC simulation reflects the complexity and 
unpredictability of real-world infection dynamics. By applying parameter values from the IBMC simulation 
that exhibit similar infection dynamics to the deterministic algorithms of game theory, we compensate for the 
deterministic model’s  limitations26–28.

Further, we analyzed the strategic changing points based on dynamic attitudinal shifts in payoff values for the 
vaccinations’ impacts on the individual. We quantified the Price of Anarchy (PoA) values to determine whether 
the vaccinations lead to endemic phases as steady-state values over  time29,30. The combination of these two models 
allows us to better understand the complex interplay between individual behavior, strategic decision-making, 
and the dynamics of infectious diseases.

Results
Individual-based Monte Carlo (IBMC) simulations. To realistically analyze the continually evolving 
pandemic, characterized by the emergence of mutant viruses and fluctuating infection rates, we employed IBMC 
 simulations31. The simulation results suggest that the current coronavirus situation is challenging to control and 
that it takes a significant amount of time for the epidemic to reach its peak (see Fig. 8). Notably, the maximum 
probability of infection increases with each epidemic recurrence, showing a trend of pandemic recurrence in the 
probability of intermediate vaccinations. This underscores the need for a high level of vaccinations within the 
population to control the pandemic. Hence, the vaccination rate, which is instrumental in controlling infectious 
diseases, becomes a crucial factor in our analysis of individual behavior in the context of infectious diseases. 
However, to gain insights into controlling the infection, we need to consider a scenario where vaccinations are 
voluntary and the result of individual choice. It is in this context that we introduce a game theoretic model to 
our analysis.

The game theoretic model we adopt is directly informed by the findings from our IBMC simulations. The 
parameters derived from the IBMC simulations, such as the probability of infection and the vaccination rate, 
serve as inputs for our game theory analysis. In this way, we are able to model how individuals, acting rationally 
and out of self-interest, would choose to get vaccinated or not, depending on the prevailing circumstances. In 
doing so, we bring together the stochastic nature of the IBMC simulations and the strategic considerations of 
game theory to provide a more comprehensive picture of the pandemic dynamics. Thus, by combining game 
theory and infection dynamics, we offer a powerful analytical framework that leverages the strengths of both 
models—the realism of IBMC simulations and the strategic perspective of game theory. This integrated approach 
allows us to explore individual behavior under voluntary vaccination scenarios and provide insights into pan-
demic control.

Technical interpretation of game theory. We found P∗, an ESS point that can be used to control dis-
eases; this is like the results obtained from the IBMC simulations. This is determined by the perceived relative 
risk, r , which is defined as the relative ratio of the vaccine risk rv to the infection risk ri of the vaccine as per-
ceived by the individual. This refinement of P∗ can be used to predict individual perceived risks (i.e., levels of 
vaccinations in voluntary vaccination policies), as shown in Fig. 1. The P∗ value is related to the number of basic 
reproduction number, R0 . The number is an indicator of how many people can be infected when contracting an 
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infectious disease. This is because as this number becomes larger, the infection rate increases; thus, a higher level 
of P∗ is required to cope with the increased rate. The Omicron variant has an average basic reproduction number 
of 9.5 and a range from 5.5 to  2432, so we examined P∗ when R0 = {5, 10, 15, 20} according to the relative risk of 
vaccination to infection r through Fig. 1. In Table 1, the critical vaccination rate that enables disease control is 
θcrit , but it is almost impossible to bring r close to 0 in real life. We found that vaccination alone is insufficient to 
control diseases in situations wherein vaccinations are  voluntary33,34. This result is like the previously obtained 
IBMC simulation results.

Normative interpretation of game theory. The typical behavioural epidemiology involves varying 
populations. Although no explicit oscillation term exists in the model, dynamic scenarios in the form of repeti-
tive waves can be analysed, as shown in Fig. 2. This phenomenon is characteristic of an observable model with 
various  parameters35,36.

The underlying cause of the continuous infection peak depends on the subgeneration of each group that 
occurs according to strategy selection and the distribution of strategies over time. Here, S means the susceptible 
group, and I means the infected group. Moreover, V  and U  imply that each strategy is selected. In other words, 
SV , SU , IV , andIU imply that it is a subpopulation according to the S and I group’s selection strategy V  or U .

Figure 1.  Evolutionary stable strategy (ESS) point P∗ in the unsteady, steady, and eradicated areas according 
to R0 . If the basic reproduction number R0 is 10, we estimate that θcritic is approximately 80%. We know that 
under the yellow dotted line is the unsteady state. The unsteady state is the state wherein society is confused 
because of the disease. On the other hand, over the yellow dotted line, the blue area is a steady state that is the 
endemic state. Here, society is stable. Finally, when reaching the black dot line, society can eradicate the disease. 
The dotted line θcrit is a point where we can eradicate infection within our technical interpretation of game 
theory and cannot be reached in reality at ideal values. The aim of this to enter endemic phases by maintaining 
stability beyond the evolutionary stable strategy (ESS) P∗ . As the basic reproduction number R0 increases, the 
stable area decreases. This is a common-sense result that the higher the infection rate is, the more difficult it is to 
enter endemic phases.

Table 1.  Critical vaccination rate θcrit and ESS point P∗ that can eradicate diseases according to the basic 
reproduction number R0.

R0 = 5 R0 = 10 R0 = 15 R0 = 20

θcrit 0.8 0.9 0.93 0.95

P∗(r = 0.1) 0.78 0.89 0.93 0.94
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During the early stages of infection, the vaccinated group’s payoff πV of the vaccinated group becomes rela-
tively beneficial at a corresponding rate as the proportion of infected people increases. This induces the first 
infection peak of SV . Subsequently, as most individuals cooperate with vaccinations, the proportion of infected 
persons and rates decrease. As I approaches zero, the unvaccinated group’s payoff πU becomes relatively advan-
tageous. Accordingly, the number of individuals switching from SV → SU increases. At the commencement 
of the secondary infection wave, a second peak in the infection rate inevitably occurs as an increasing number 
of individuals adopt the unvaccinated group strategy. A rapid increase in the unvaccinated group ratio always 
precedes the infection peak. In other words, the infection peak of the unvaccinated group is ahead of that of the 
cooperator group.

In a system comprised entirely of rational individuals, the maximum and minimum values of the strategy 
are consistent with I ′ . I ′ is a mixed-strategy equilibrium as vaccinated and unvaccinated, and there is a prob-
ability of changing a strategy. Here, each individual selects an action based on personal observation of the same 
public information. This strategy assigns actions to all possible observations that individuals can perform. In 
game theory, if no player wants to deviate from their strategy, the strategy is called a correlated equilibrium. By 
correlating these strategies, the mixed strategy equilibrium (that is, NE) for all rewards in the reward vector can 
be achieved by using correlation strategies in noncooperative  games37.

When individuals choose the V  strategy with a probability of P∗, the numerical analysis of the ordinary dif-
ferential equation integral shows that even when applying the Fermi strategy probability, it is consistent with such 
predictions (Fig. 3). This analysis is consistent with all the analysed values for ri , rv , and the infection rate in the 
delayer βU . Moreover, the peak of inflection always occurred between the maximum and minimum values of V .

In the 1st peak of V  , 0.99 of the population adopts the V  strategy. In a situation where R0 = 10 and r = 0.1 
of Omicron, P∗ is 0.88. Then, the vaccination rate of the population does not reach θcrit according to Eq. (6) in 
the “Methods” section. Therefore, from the first peak, we do not expect an eradication of Omicron. The actual 
vaccination rate θ ′ in the Republic of Korea is also close to 0.88, but it can be seen that θcrit has not been reached. 
In addition, as the importance of vaccination decreases due to repeated vaccinations, r eventually decreases, 
indicating that the number of individuals adopting the V  strategy decreases. This is consistent with the result 
of θ ′ . In other words, the vaccination rate in the population θ eventually decreases as the number of individuals 
adopting the V  strategy decreases. In other words, these scenarios suggest that the previous pandemic was like 
the expected scenario of the recurrent infection  wave38,39. such as infectious wave behaviour. Here, the social 
dilemma of vaccination is also observed. This is because the number of individuals who want to free-ride herd 
immunity  increases40,41 due to repeated vaccinations. This allows us to expect Omicron to eventually move 
towards the endemic phase.

The quantity ζ denotes the coupling constant between the epidemiology of diseases and the evolutionary 
game dynamics. It defines how rapidly a population can respond to new information regarding the current state 
of a disease. Therefore, if the value of ζ increases, the response speed changes; hence, strategy changes frequently 

Figure 2.  Oscillation term of continuous infection peak according to strategy change of the subpopulations 
SV , SU , IV , IU . As the infection vibration is repeated, the number of infected peaks gradually decreases. This can 
be seen because of the formation of group immunity through vaccination. However, as vaccinations increase, 
social dilemmas arise, increasing the individual reliance on vaccinations in neighbourhoods. Eventually, over 
time, the individual ratio of U surpasses the individual ratio of V . Eventually, the probability of infection in V  
decreases due to vaccination, while the individual in U depends on group immunity, so it becomes higher than 
the probability of infection in V . Therefore, there are more infections in U than in V.
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occur. Therefore, if ζ increases, the individual responds quickly to new information, increasing the likelihood of 
adopting a V  strategy. In other words, the more individuals immediately respond to information and cooperate, 
the greater the peak of the infection is divided, reducing the maximum peak of the infection that can greatly 
threaten society.

Strategies V  and U  in our model can be divided into vaccination cooperating and noncooperating groups, 
respectively. Figure 4 shows how the behavioural epidemiology that an individual chooses V  or U  changes with 
the speeds at which an individual can access and respond to the information.

If the vaccination rate θ is close to P∗ , I can be expected to control the disease by reaching SO. This implies 
that the infection rate of the vaccinated group βV is the same as that of the unvaccinated group βU , thus indicat-
ing convergence and consequent control of the disease. However, we found that it is difficult to reach SO based 
on voluntary vaccinations via technical interventions in the game theory model (Fig. 3). This is because when 
V  increases and reaches its peaks, U  power is adopted to rely on individual herd immunity. Finally, more indi-
viduals adopt the U  strategy, resulting in another spread of infection. Eventually, the vaccination rate in society 
reaches NE, and infections continue to occur. This could be attributed to a social dilemma regarding vaccination 
caused by the ‘externality’ effect of the vaccinated individual. This observed counterintuition is equivalent to the 
well-known Braess’ paradox in the traffic flow problem, in which more roads could lead to more severe traffic 
congestion. We quantified the PoA (price of anarchy) and the ratio of SO to NE to analyse the individual’s egoistic 
and altruistic attitudinal behaviour in these vaccination network problems as Eq. (1)42:

In transportation, the PoA is calculated to suggest plans for smooth transportation by identifying the travel 
time delay caused by the egoistic behaviour of individual passengers in the transportation  network42. In this case, 
f NEij  is the traffic volume in NE, and f SOij  is the traffic volume in SO. tij(fij) is the travel time according to each 
traffic volume fij . Thus, 

∑
tij(fij)fij is calculated, and the travel time required to pass the link is converted into 

a cost to determine the network efficiency. If PoA > 1 , the toll cost for NE is higher than that of SO, indicating 
an inefficient network. In other words, the closer the PoA is to one, the greater the network can move towards 
maximising social  welfare23. The most critical feature in epidemiology is to recommend a pre-emptive plan 

(1)PoA =

∑
tij

(
f NEij

)
f NEij

∑
tij

(
f SOij

)
f SOij

=
INEmax

ISOmax

Figure 3.  Variations in infected group I and vaccinated group with strategy V . The blue line is the modelled 
value of the vaccine cooperation ratio V , and the sky-blue shade is the actual vaccination rate in the Republic 
of Korea. Higher infection rates (the highest point on the red line) reduce the relative risk of vaccination to 
infection r , which increases vaccination rates (the highest point in the blue line). The equilibrium point, the 
strategy change point for vaccination, occurs at convex and concave points, depending on the relative risk of 
vaccination to infection. In the first left, θ cannot be 1 because P∗ does not exceed θcrit , even though the group 
V almost reaches 1. This leads to a repeated wave of infection. The intervals between the modelled value and the 
real value indicate the difference between the endemic phases and reality.
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according to Imax . Therefore, we calculated the PoA based on the ratio of Imax in NE to Imax in SO to obtain the 
index that can determine Imax according to the individual’s behaviour. Through this PoA concept, we can quantify 
the extent to which social inefficiency and losses were caused by egoism compared to when the overall gain of 
society was maximised. The quantification of the PoA was to effectively manage epidemiology in the vaccination 
network problem, as shown in Fig. 5.

The graph for βU = βV = 1 presented in Fig. 5 illustrates the SO results, in which the number of infected 
people converges to zero. However, the reality is that SO is not reached because of a dilemma, resulting in 
βU > βV  . Therefore, the results shown in Fig. 5 are obtained, suggesting that the PoA is not close to 1 with 
increasing Imax . Here, decreases in r lead to a reduction in PoA and Imax , showing a more cooperative attitude 
towards vaccinations. As a result, Imax decreases. Figure 1, Table 1, and Fig. 3 show that Omicron is becoming 
endemic. However, as shown in Fig. 3, repeated inoculations increase r , which reduces the proportion of indi-
viduals taking the V  strategy, and from Fig. 5, we can see that the increase in r moves towards increasing PoA. In 
other words, when r increases, society goes to an unsteady situation, not a steady endemic, and then Imax does 
not converge but rather increases. At this time, when r = 0.08 is reached, the state of the steady endemic may be 
switched. However, according to Fig. 3, the proportion of the population adopting the V  strategy in the phases 
of repeated inoculations decreases.

Thus, we must maintain a vaccination probability above P∗ and increase V  in the population to maintain 
steady endemicity. Therefore, we should proceed to the steady endemic state by reducing the relative risk of 
vaccination to infection r in Fig. 5 to increase the proportion of the V  . This should reduce PoA to maintain a 
stable society from infection.

Discussion
First, the results of technical interpretation can predict the level of vaccination rates that can control infectious 
diseases in society based on the relative risk of vaccination to infection, as perceived by individuals. We found 
that the vaccination rate increased as the basic reproduction number increased. Currently, the infection repro-
duction index of COVID-19 is increasing owing to the continuing occurrence of mutant  viruses31. In addition, 
the importance of vaccines is decreasing owing to repeated vaccinations. This implies that the relative risk may 
increase, resulting in a situation in which society may eventually achieve an endemic phase.

In addition, we found from normative interpretations that selfish individuals switch individual strategies 
according to the average expected payoff that varies with vaccination rates. When an individual’s cognitive risk 
is less than 1, the individual is reluctant to adopt a vaccination strategy and wants to ride free on the herd immu-
nity generated by vaccinations in the neighbourhood. This can lower the vaccination rate and leads to infection 
resurgence. This is a social dilemma phenomenon of vaccines stemming from individual "self-interest," which 
can be interpreted as the cause of the oscillations in the infection wave in Monte Carlo simulations. As a result, 
in a situation wherein infectious diseases are spreading, if certain individuals implicitly refuse to receive the 
promised vaccination, a certain amount of anarchy occurs in society. The question arises as to who the victims of 

Figure 4.  The oscillation of the I peak with a change in ζ . The behavioural epidemiology of I changes with ζ 
oscillations occur frequently as ζ increases. This induces more oscillations in the entire population. However, the 
change in ζ does not influence I . This parameter does not ultimately fluctuate the size of the infection but rather 
disperses the size to make the oscillations more frequent.
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the anarchy are. This is because the subject who suffers the consequences is not only those who violate the rules 
but the entire society; this causes a social dilemma. To present countermeasures to minimise social dilemmas, 
we quantified it as the price of anarchy.

As indicated by the results, it is relatively difficult for a society composed of rational individuals to overcome 
diseases. Therefore, we must shift our policy towards reducing the amplitude of the epidemic. θ denotes the prob-
ability of the vaccination rate in population ε . Compared to U  , V  indicates vaccinating without showing a delay 
in the vaccination policy. The higher the probability is, the higher the θ value and the closer it may be to θcrit to 
facilitate disease control. It is difficult to expect P∗ beyond θcrit owing to social dilemmas arising from technical 
interpretations of the Monte Carlo simulations and game theory. However, to lower the PoA, it is important that 
we promote the vaccination rate of the real population to be above P∗ . If the vaccination rate of the population 
exceeds P∗ , a society can expect a more stable situation from infectious diseases because of the adoption of an 
ESS. It is crucial to increase the risk perception of infection to reduce the relative cognitive risk, thereby lower-
ing the risk of  vaccines43. In addition, we found through normative interpretation that the faster the response to 
new information, the more dispersed the infection peak, thereby reducing the size of the maximum infection. 
Thus, we quantified the behaviour of an individual in vaccination through the results from applying game theory 
in situations wherein infectious diseases tend towards the endemic phase. We found that it is important to lower 
the risk of vaccines relatively quickly and to vaccinate individuals to reduce the social dilemma.

This study adopted a two-pronged approach to simulate the spread of infectious diseases and understand 
individual behaviour in this context. Firstly, we used Monte Carlo simulations to model the stochastic nature 
of disease spread, taking into account the continuous emergence of mutant viruses and random changes in 
infection rates. Secondly, we employed game theory to analyse the strategic choices individuals make regarding 
vaccination, based on their perceptions of relative risks and benefits. The Monte Carlo simulations generated 
a range of possible outcomes, providing us with a set of key parameters that informed our game theory model. 
These parameters, such as the probability of infection and the vaccination rate, represented the ’game’s’ current 
state, upon which individuals based their strategic choices. In the game theory model, individuals, assumed to 
act rationally and in self-interest, decided whether to vaccinate or not based on these parameters. The dynamic 

Figure 5.  Changes in the PoA and how to lead endemic phases according to the r . The PoA shows the 
difference between the end value, the system optimum (SO), and the realistic value, the Nash equilibrium (NE), 
which can be obtained from the ideal value θcrit . Our objective is to reduce the gap between SO and NE and 
induce endemic phases. In this study, we obtained the steady state of PoA to find the endemic phases and then 
calculated PoA to make the vaccination policy effective. PoA is affected by the degree to which vaccination is 
dangerous compared to infection, and the relative risk of vaccination to infection is r = rv/ri . The lower the r , 
the higher the vaccination rate, which is the process of reaching an evolutionarily stable state. The rate converges 
when r is less than or equal to approximately 0.08 and moves on to the endemic phases. PoA decreases from 
28 to 12.47 according to r . In this case, if R0 = 10 , the vaccination probability P∗ (evolutionary stable strategy 
(ESS)) required is 89% (see Table 1). This result indicates that increasing the vaccination rate by lowering the 
relative risk of vaccination to infection r as a positive policy for vaccines can lead to social stability that can 
lower PoA and further induce the steady state to reach the endemic phases.
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interplay between individual decisions and the evolving state of the game led to different vaccination rates, which 
in turn influenced the course of the disease spread. By integrating these two models, we were able to overcome 
the limitations of deterministic algorithms and provide a more comprehensive picture of the infectious disease 
spread. This combined approach allowed us to mathematically quantify social phenomena caused by individual 
selfishness, a crucial aspect in infectious epidemiology. We identified a steady state and targeted vaccination 
rates for populations above P∗ , providing valuable insights for promoting vaccination rates in societies battling 
infectious diseases. Our findings suggest strategic directions for vaccine strategies to become an evolutionarily 
stable strategy (ESS).

Despite our efforts to combine individual-based modelling and game theory, one limitation of our study lies 
in the assumption of rational behaviour among individuals. In reality, individuals’ decisions about vaccination 
can be influenced by a variety of factors, including misinformation, personal beliefs, and societal pressures, which 
our model does not fully account for. Furthermore, the constant emergence of new virus variants and changes 
in societal behaviour could affect the efficacy of vaccination strategies, adding another layer of complexity not 
fully captured in our current model. Future research should therefore focus on incorporating these dynamic 
factors into the model to better understand and predict the course of infectious diseases in real-world scenarios.

Methods
IBMC simulations. In this study, the IBMC system consisted of N individuals randomly located in a square 
plane of L2 , corresponding to the population density, ρ = N

L2
 . Individuals represented as structureless points in 

the model were infected with probability pinfect when they were within an infectious distance, rinfect , from infected 
individuals. Infected individuals had incubation time tincubation , after which they faced two fates: immune after 
tinfect−immune or dead with probability pfatal during the infected period, tinfect . Immunisation is effective during 
tinfect−immune . Individuals can also be vaccinated with probability pvacc and become immune from tvacc−start after 
vaccination until tvacc−start + tvacc−immune , where tvacc−immune is the effective immunisation period. Table 2 lists 
the parameter values used in this study.

The population density, ρ , of 0.165m−2 , which is ten times as high as that of Seoul, South Korea, was used 
to mimic the human-congested area, and the infectious distance when unmasked was approximated as 1 m. In 
addition, probabilities of infection and fatality were set to 1.8% and 0.8% based on the real data from the Centers 
for Disease Control and Prevention in the Republic of Korea (CDCP)44, respectively, from which the incubation 
period (7.74 ± 4.39 days) of COVID-19 was also taken. On the other hand, both the infectious period after the 
incubation period and the time it takes for immunisation after vaccination were approximately set to 14 ± 7 days 
because the reported values are typically one ton two weeks. In the same spirit, we set immunisation periods 
from both infection and vaccination to 6 ± 1 months because the recommended vaccination period is reported 
to be approximately five to six months.

Even though the parameters used in the IBMC simulations are arbitrary, the presence of the recurrent pattern 
observed in the simulations is rather insensitive to the parameter space. For example, the population ratios of 
various types of individuals when ρ = 0.08m−2 and pvacc = 0 are shown in Supplementary Fig. 1.

Initially, N healthy individuals were randomly generated in the square plane of L2 , and one individual was 
selected as infected. Healthy individuals were then randomly vaccinated with a probability pvacc . Each individual, 
except for dead individuals, randomly moves with diffusion coefficient D = (�R)2

4τ
 according to the Einstein 

 relation45, where �R and τ are the step size and time step, respectively. The simulation adopts the periodic 
boundary condition in both the x- and y-directions to prevent the wall effect at the  edges45. The results are the 
averages and one standard deviation of 10 independent IBMC simulations.

Figure 6 presents the IBMC simulation results. Figures 6 and 7a show the typical time progression of various 
types of individuals (healthy, sick but not infectious, infectious, immune, dead, and vaccinated) when the prob-
ability of vaccination (pvacc) is 0.4 (the corresponding animation is given in Supplementary Fig. 1). Supplementary 

Table 2.  Parameters used in Individual-Based Monte Carlo (IBMC) simulations.

Parameter Value Meaning

N 1000 Number of individuals

L 246 m System size

ρ = N/L2 0.165 Population density

rinfect 1 m Infectious distance

pinfect 1.8% Probability of infection

pfatal 0.8% Probability of fatality

pvacc 0–80% Probability of vaccination

tincubation 7.74 ± 4.39 days Incubation period of COVID-19

tinfect 14 ± 7 days Infectious period after incubation period

tvacc 14 ± 7 days Time it takes for immunisation after vaccination

tinfect−immune 180 days±30 Immunisation period after infection

tvacc−immune 180 days±30 Immunisation period after vaccination

τ 0.001 day MC time step

�R 1.0 m MC step size
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Fig. 1: The animation of the IBMC simulation when pvacc = 0.4 is presented in which green, organ, red, blue, 
grey, and cyan colours correspond to healthy, sick but not infectious, infectious, immune, dead, and vaccinated 
individuals, respectively.

The following points are of significance: first, the pandemic occurred recurrently, which implies that it is 
challenging to control COVID-19. Second, it takes time for the pandemic to bloom. In this case, it took approxi-
mately 200 days for the pandemic to reach its peak. The pandemic had a long incubation period, considering 
that there was only one infected individual initially. Third, mass infection boosts mass immunisation, reducing 
the number of infected people. Finally, the peak probability of infection increased as the pandemic recurred, 
which is shown in Fig. 7b, in which the peak probability of infectious individuals is plotted as a function of the 
probability of vaccination. The pandemic continues until the peak probability of infectious individuals reaches 
at least 25%. Moreover, the recurrent trend of the pandemic appears only in the intermediate vaccination prob-
ability ( pvacc = 0.1− 0.5 ). This indicates that a high mass vaccination rate is required to end the pandemic. It 
should also be noted that the case for pvacc ≥ 0.8 does not suffer from the pandemic at all.

After obtaining the output from our IBMC simulations, we transitioned to the game theory model by con-
sidering the individual behaviors observed during the simulations. Specifically, we treated the individual’s deci-
sion to get vaccinated as a strategic choice in the context of game theory. Each individual’s payoff, in this case, 
can be understood as the personal benefit derived from either getting vaccinated or refusing vaccination, given 
the vaccination statuses of other individuals in the population. This is where the concept of an Evolutionarily 
Stable Strategy (ESS) becomes relevant. An ESS is a strategy that, if adopted by a population in a game, cannot 
be invaded by any alternative strategy that is initially rare. It is ’stable’ in the sense that small deviations from 
it will be reabsorbed into it. We considered an individual’s decision to get vaccinated as an ESS under certain 
conditions. We approximated the parameters of the game theory model based on the results from the IBMC 
simulations. The transition from the IBMC simulations to the game theory model involved mapping the indi-
vidual behaviors and interactions observed in the simulations to the strategic choices and payoffs in the game 
theory model. This allowed us to capture the complex, individual-level dynamics of infectious disease spread in 
a theoretically rigorous framework.

Evolutionary game theory. First, the definitions of the indices, the parameters and the variables used in 
this research are listed in Table 3.

We proposed a model with ‘Vaccinated group V ’ and ‘Unvaccinated group (delay vaccination to get free 
rides on herd immunity) U ’. In game theory, the former strategy can be interpreted as a form of cooperation, 
and the latter as selfish behaviour or betrayal. The individual establishes a strategy based on the perceived risk 

Figure 6.  IBMC simulation snapshots taken at (a) t = 0, (b) t = 340, (c) t = 760, and (d) t = 1130 days. At (a), 40% 
were vaccinated (cyan). The 2nd and 3rd outbreaks took place at (b) and (c), and the pandemic ended at (d), 
where approximately 90% of individuals were immune (blue).
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of the current  behaviour46,47. The individual perceived risks of the vaccine and infection are denoted by rv and 
ri , respectively. The vaccinated group’s payoff πV is defined as −rv (Eq. (2)). An unvaccinated group’s payoff πU 
is defined as riβUI because it can be assumed that they act according to the infection rate of the unvaccinated 
group βU and the proportion of infected people in the group (Eq. (3)). We assumed that all individuals received 
the same information to simplify the model, and this information was accepted completely to perceive the  risk48.

We suppose that the probability that the individual is vaccinated is P . Since the only actions available to the 
individual are vaccination and no vaccination, the probability of choosing unvaccinated is 1− P . If the individual 
uses a mixed strategy of ‘choose vaccination with the probability of P and choose unvaccinated with the prob-
ability of the remaining 1− P’, the average expected payoff of the Individual is described as Eq. (4).

(2)πV = −rv

(3)πU = −riβUI

Figure 7.  (a) Typical population ratios of various types of individuals as a function of time when pvacc = 0.4. 
Healthy, sick but not infectious, infectious, immune, dead, and vaccinated individuals are represented by green, 
orange, red, blue, grey, and cyan, respectively. (b) Peak probability of infectious individuals as a function of the 
probability of vaccination pvacc.
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Here, because the individual acts based on the relative perception of vaccines and infection risks, r , it is pos-
sible to simplify and represent variables by using r = rv/ri (Eq. (5)).

We attempted to identify which strategies can be adopted. If the majority of the population adopts strategy V  
and an entity adopting another strategy U always performs lower than that of an entity adopting V  , then V  is the 
best response strategy. If this is true for any V  = U  , V is called the ESS. If V  is the evolutionary stable strategy 
and everyone is currently playing V  , no one should change their strategy. We suppose Q is the probability that 
another individual chooses to vaccinate when one individual is agonised about vaccination with the probability 

(4)E = PπV + (1− P)πU = P(riβUI − rv)− riβUI

(5)E = −rP − βUI(1− P)

Table 3.  Parameters used in evolutionary game theory and the SIR model.

Parameter Meaning

P One individual’s probability of vaccination

P∗ Evolutionary stable strategies point

Q Another individual’s probability of vaccination

V Vaccinated group

U Unvaccinated group

rv Perceived risk of vaccination

ri Perceived risk of infection

r Perceived relative risk

β Average infection rate

βV Infection of vaccinated group

βU Infection of unvaccinated group

βc Cross-infection rate ( V ↔ U)

c Crossing parameters between V  and U groups

γ Average recovery period

µ Average birth rate

ε Population

πV Vaccinated group’s payoff

πU Unvaccinated group’s payoff

E Average expected payoff

EV Expected payoff to individuals playing V

EU Expected payoff to individuals playing U

�E Scale of attraction from U to V

θ Vaccination rate

θcrit Critical vaccination rate

S Susceptible group

SV Sensitivity of vaccinated group

SU Sensitivity of unvaccinated group

I Infected group

IV Infection of vaccinated group

IU Infection of unvaccinated group

I ′ Mixed-strategy equilibrium, strategy change point

R Recovered group

RV Recovered of the vaccinated group

RU Recovered of the unvaccinated group

δ Epoch

t Time

f Part of the average life span

R0 Basic reproduction number

�
(
πi ,πj

)
The probability that an individual who adopts i changes strategy to j

�S Strategy conversion rate of the susceptible group

�S Strategy conversion rate of the infected group

ζ Coupling constant between the epidemiology of diseases and the evolutionary game dynamics

k Irrationality of changing these strategies
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of P . Then, whether an individual selects V  or U  depends on the probability Q that another individual adopts V  . 
If this is expanded to the population ε(0 ≤ ε ≤ 1) , the vaccination rate at the population θ is described as Eq. (6).

The expected payoff to individuals playing V  is given as Eq. (7).

whereas the expected payoff to individuals playing U  is given as Eq. (8).

The payoff gains to an individual playing θ in such a population are given as Eq. (9).

�E is represented by a scale of attraction from U  to V  . Equation (9) shows that the best response ε depends 
on r . Then, depending on the given r , there is a unique strategy P = P∗(Q �= P) that satisfies the best response 
in ε . That is, the unique strategy P∗ under the condition that �E is positive means NE, and if the V  strategy is 
adopted with a probability close to P , it is an  ESS49.

Technical interpretation of game theory. In terms of technical interpretation, we analysed the SIR 
model. The model is defined as the rate of change in the population proportion in each compartment. Generalis-
ing the results of the proposed model when using the SIR vaccination model enables the population compart-
ment to be expressed as shown in Fig. 8 and Eqs. (10, 11, 12) below.

where µ is the average birth rate, β is the average infection rate, γ is the average recovery period, and ε is the 
population. After reaching a dynamic steady state, the vaccine coverage level in the population equals the uptake 
level. Because we focused on the steady-state solution of the model, our notation θ for vaccine uptake is consist-
ent with the payoffs in game theory as Eq. (6) in our notation. In the established SIR model, the third equation 
is redundant because S + I + R = 1 . Therefore, we can define S and I as Eqs. (13) and (14)50.

where δ = t
γ

 is the time and epoch of our model, measured in units of the average infection period, f = µ
γ

 is part 
of the average life span and represents the infection period, and R0 =

β
(γ+µ)

 is the basic infectious individual 
production number, a measure of the number of individuals in a susceptible group to an infected person who 
can spread the virus  to51.

The maximum θcrit value of satisfying these ESS conditions is called the invasion barrier for strategy V  . If 
the proportion of strategy V  in the population is less than θcrit , P cannot penetrate the population. According to 
these payoffs, the individual’s remuneration to select P at the population level in the early stages of the epidemic 
can be expressed as Eq. (15)49.

(6)θ = εP + (1− ε)Q

(7)EV = E(V , εP + (1− ε)Q)

(8)EU = E(U , εP + (1− ε)Q)

(9)�E = EV − EU = (βUI − r)(V − U)

(10)
ds

dt
= µ(1− θ)− βSI − µS

(11)
dI

dt
= βSI − γ I − µI

(12)
dR

dt
= µθ + γ I − µR

(13)
dS

dδ
= f (1− θ)− R0

(
1+ f

)
SI − fS

(14)
dI

dδ
= R0

(
1+ f

)
SI −

(
1+ f

)
I

Figure 8.  Behavioural epidemiology model. S, I , and R , generalised when using the SIR vaccination model. 
The model represents a state of dynamics. S represents the susceptible group with a possibility of infection. I 
represents the infected group. R refers to the recovered group in which immunity to infection is generated. β 
is the average infection rate that occurs in the population. The incidence of infected people varies with β . γ is 
the average recovery period related to the conversion of the I individual to the R group. The average birth and 
mortality rate µ represents the number of births and deaths within the population.
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If P ≥ θcrit , the epidemiological system converges to the disease-free state 
(
Ŝ, Î

)
= (1− P, 0) , whereas if 

P < θcrit , it converges to a stable endemic state, as shown in Eqs. (16) and (17).

Because S and I are constant in this case, the probability of infection of a person who has not been vaccinated 
can be expressed by using Eq. (18).

Therefore, the condition r < βDI for generating a mixed ESS can be written as Eq. (19).

The value of mixed ESS P∗ is obtained by solving r = βUIP
∗ . In situations where vaccination is perceived as 

an infection risk ( r > 1 ), the individual is unlikely to be vaccinated without the help of the model. According to 
our game theory analysis, considering the condition of R0(1− P) > 1 or ESS, the threshold for the infectious 
disease control vaccination rate at which the individual can stop immunisation is shown in Eq. (20).

Based on Eq. (19), the threshold of the perceived relative risk of vaccination to infection when the individual 
should stop immunising depends on the basic reproduction number R0.

Normative interpretation of game theory. By using the SIR model from a demographic perspective, 
appropriate vaccine thresholds can be derived. However, this model does not consider the variables for strategy 
 transition52. Thus, from a microscopic perspective, we proposed an SIR model that considered the individual’s 
strategy transition, as shown in Fig. 9.

In the proposed model, we considered three infection rates: βU in the unvaccinated group, βV in the vac-
cinated group, and βc in the contact between these two individual groups. We assumed that the probability βV 
of infection of the individual who cooperates with the vaccination is less than the infection rate βU of the indi-
vidual (unvaccinated group) trying to obtain the benefits of vaccination without effort ( βV < βU ). Vaccinated 
individuals form neutralising antibodies and are less likely to be infected than nonvaccinated individuals. We 
also defined βc as the cross-interaction between the two types of strategies ( V ↔ U).

We proposed a model incorporating evolutionary game theory and dynamics models by using a parcel 
approach. The probability that an individual who adopts i according to the general evolutionary game dynam-
ics changes strategy to j is related to its respective remunerations ( πi and πj ). The probability can be expressed 
using the Fermi rule as Eq. (21) 53:

This is the probability of enabling strategy modification, and the irrationality of changing these strategies is 
measured by using the parameter k . In this study, k = 0.5 was adopted as a constant. Through this, it was possible 

(15)θcrit =

{
0, R0 < 1

1− 1
R0

, R0 ≥ 1

(16)Ŝ = 1− θcrit

(17)Î =
f

1+ f
(θcrit − P)

(18)βUI =
R0(1+ f )ŜÎ

R0

(
1+ f

)
ŜÎ + f Ŝ

= 1−
1

R0(1− θ)

(19)R0(1− r) > 1

(20)P∗ = 1−
1

R0(1− r)

(21)�
(
πi ,πj

)
=

1

1+ e−(πj−πi)/k

Figure 9.  Behavioural epidemiology model for analysing technical intervention of game theory, a model 
that considers modification of the individual’s strategy. V denotes the vaccinated group, and U denotes the 
unvaccinated group. The individual changes the strategy according to the strategy conversion rate � . We 
classified βV and βU because the infection rate differs as per the strategy. Accordingly, each group was divided 
according to the strategy; hence, the model was divided into five compartments: SV , SD , IV , IU ,R. The 
individuals from different strategies may meet. Therefore, we expressed this as the cross-infection rate,βc
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to determine the ratio of individuals who modified strategies from i to j , that is, the strategy conversion rate 
(Eqs. (22) and (23)).

In relation to infection dynamics, an infection rate of βV < βc < βU exists in general situations. Here, βc is 
defined as βc = c(βV + βU )/2 . The crossing parameter c between the V  and U  is within the range of 0 < c < 1 , 
and in this study, c = 0.1 was assumed because of the high possibility of cross-infection owing to vaccine pass 
release. The differential equations of the SIR vacuum model that consider all the following assumptions are 
Eqs. (24, 25, 26, 27, 28)52.

In the normative interpretation of game theory, dynamic scenarios based on behaviour can 
be analysed by using the game-theory-based SIR dynamics model. In this study, parameters 
rV = 1, ri = 10, ζ = 1, γ = 1.25,βV = 1,βU = 10, k = 0.5, c = 0.1 were adopted as constant variables, and the 
variations in the infection risk ri and infection rate βU of the unvaccinated group were  analysed52. In this case, 
I0 = 0.01 and S0 = 1− I0 were set between the V  and U  strategies because the number of infected individuals 
was minimal at the beginning of the infection. Simultaneously, we described an ideal situation in which a person 
adopting the V strategy was vaccinated with the probability of P∗.

Each individual can receive an optimal reward if the least selected strategy was selected on average. This 
payoff matrix can be considered a noncooperative game, and the best strategy in a noncooperative situation is 
to reverse what the other party  does54. This is like the problems presented in vaccination. Individuals should 
be vaccinated; however, if a majority of the population is vaccinated, an individual’s motivation to not get vac-
cinated increases. The noncooperative factor is related to the risk of a relative vaccine against infection risks. 
Moreover, the risk of infection ri fluctuates based on the infected individual and is a central medium for attaining 
a continuous infection peak.

When the risk of infection is low, the individual feels that the risk of the vaccine is greater than that of the 
infection. Thus, the individual withdraws the V  strategy and adopts the U  strategy within a short period, as 
shown in Fig. 10. In this case, many people become infected within the same time, leading to shortages of beds 
and medical personnel and more damage. However, when the risk of infection is high, the perception of risk of 
infection increases as the peak of infection persists. Consequently, the payoff for vaccination and the number 
of individuals cooperating with it increase. The proportion of simultaneous infections decreases, increasing the 
possibility of preventing a pandemic. In other words, it is possible to have time to suggest pre-emptive measures 
to adjust the peak size of simultaneously infected people when infectious diseases spread. Therefore, to prevent 
simultaneous infections through vaccination, we should not only emphasise the importance of vaccines but 
also the altruistic attitude to form herd immunity, giving individuals a reason to get vaccinated to increase the 
payoff of relative vaccines.

Additionally, ri influences the variance in confirmed cases. When ri is low, the number of infected people 
increases exponentially over a short period. However, as ri increases, the distribution of confirmed cases is dis-
persed, and multiple oscillation terms exist. However, there may be insufficient confirmed cases to paralyze the 
medical system. We changed the following values to clarify the infection risk perception for the size and duration 
of infection peaks, which greatly rely on ri.

Therefore, the size of the infection peak is critical when investigating the epidemiology of an epidemic. The 
analysis results for the variations in Imax with ri and βU are shown below. That is, the size of Imax increases as βU 
increases but decreases as ri increases. Therefore, the higher the risk of infection is, the higher the individual’s 
benefit from the vaccine, indicating that the individual exhibits a more cooperative attitude towards the vaccine; 
hence, herd immunity can be rapidly achieved.

The probability βUI that an individual who chooses the U  strategy is infected should decrease as θ increases 
until θ reaches θcrit . Currently, all parameters are greater than 0. Thus, the following maximum expected reward 
values are obtained by using Eq. 4 when P = 1 (always vacuum), the maximum expected payoff can be obtained 
if βUI > r , and the maximum expected payoff can be obtained if βUI < r when P = 0 (always unvacuumed). 
Therefore, we can define the strategy change point I ′ as Eq. (29).

(22)�S = SV (SU + IU )�(πV ,πU )− SU (SV + IV )�(πU ,πV )

(23)�I = IV (SU + IU )�(πV ,πU )− IU (SV + IV )�(πU ,πV )

(24)˙SU = −SU (βUIU + βcIV )+ ζ�S

(25)ṠV = −SV (βcIU + βV IV )− ζ�S

(26)˙IU = SU (βUIU + βcIV )− γ IU + ζ�I

(27)˙IV = SV (βcIU + βV IV )− γ IV − ζ�I

(28)Ṙ = γ (IU − IV )

(29)I
′

=
rv

riβU
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The vaccinated group ratio can be expressed as V = (SV + IV )/(S + I) . Since only two strategies exist in the 
dynamics model, it can be expressed as U = 1− V  . The rate of change of strategy varies with strategy flux terms 
�S and �I ; that is, the rate of change of strategy V ̇ can be expressed as Eq. (30).

If we rearrange V̇  according to V(S + I) = (SV + IV ) , U(S + I) = (SU + IU ) , and S + I + R = 1 , the expres-
sion is Eq. (31).

Here, (1− R)2 controls the rate of change of the strategy because it relates to the total available population, 
which can vary its strategy. However, the most critical factor is the remainder of the equation. This is the general 
mean-field form of the master equation for the evolution of cooperation in two-strategy games. The proposed 
model is consistent with and returns to an evolutionary game considering only the strategy density.
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