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A predictive signal model 
for dynamic cardiac magnetic 
resonance imaging
Aaron D. Curtis 1,2, Alexander J. Mertens 1,2 & Hai‑Ling Margaret Cheng 1,2,3*

Robust dynamic cardiac magnetic resonance imaging (MRI) has been a long-standing endeavor—as 
real-time imaging can provide information on the temporal signatures of disease we currently cannot 
assess—with the past decade seeing remarkable advances in acceleration using compressed sensing 
(CS) and artificial intelligence (AI). However, substantial limitations to real-time imaging remain and 
reconstruction quality is not always guaranteed. To improve reconstruction fidelity in dynamic cardiac 
MRI, we propose a novel predictive signal model that uses a priori statistics to adaptively predict 
temporal cardiac dynamics. By using a small training set obtained from the same patient, the new 
signal model can achieve robust dynamic cardiac MRI in the presence of irregular cardiac rhythm. 
Evaluation on simulated irregular cardiac dynamics and prospectively undersampled clinical cardiac 
MRI data demonstrate improved reconstruction quality for two reconstruction frameworks: Kalman 
filter and CS. The predictive model also works with different undersampling patterns (cartesian, radial, 
spiral) and can serve as a versatile foundation for robust dynamic cardiac MRI.

Cardiac MRI (CMR) is an important clinical tool for assessing cardiac 3D anatomy, mechanics, and tissue 
microstructure and function1,2. Unfortunately, challenges such as long acquisition times and the ability to capture 
irregular cardiac dynamics still remain. Because only a small fraction of the information necessary for a full reso-
lution reconstruction can be acquired as the heart is beating, CMR currently gathers information pertaining to 
the same phase of the heart over multiple heart beats. This “averaging” over multiple cardiac cycles achieves high 
spatial resolution but also implies that scan times are long and true real-time dynamics are lost. This discarded 
information can be diagnostically relevant, especially when the dynamics are abnormal. For these reasons, there 
has been a long-standing effort to attain true real-time CMR3–5.

Multiple potent strategies have been attempted for real-time CMR6. These strategies are k-t acceleration, 
compressed sensing (CS), and artificial intelligence (AI). With k-t acceleration techniques, linear minimum 
mean-squared error (LMMSE) estimation is utilized to facilitate image reconstruction and guarantee reconstruc-
tion quality. As a recent example, the Kalman filter, known for real-time estimation and tracking of signals and 
objects7,8, has been applied to the dynamic CMR problem9–11. CS and AI technologies have also flourished, with 
CS seeing clinical implementation12–14. Unfortunately, each technique has inherent limitations. With k-t accel-
eration, irregular cardiac dynamics cannot be modeled and global structural details are neglected. In contrast, 
both CS and AI capture global details, but they may neglect local details6. Furthermore, in CS reconstruction, 
the undersampling rate is constrained to ensure fidelity15,16. In AI, wrong structures can be reconstructed if the 
acquired data falls outside the learned manifold17. Altogether, current acceleration strategies are susceptible to 
different sources of error.

We present a novel predictive signal model capable of adapting to the irregular cardiac dynamics often seen in 
real-world imaging of cardiac patients. The model is premised on the idea that reconstruction can be performed 
using statistical a priori information of what the heart should be doing at any given time. Thus, cardiac dynamics 
are not confined by an expectation of regular behavior. Our model was tested using both Kalman filtering and 
a state-of-the-art CS scheme based on GRASP18. We demonstrate that our predictive signal model improves 
image reconstruction quality in more realistic scenarios that mimic irregular cardiac dynamics. Lastly, we show 
that our approach is amenable to multiple k-space acquisition strategies. Our predictive signal model algorithms 
have broad implications by virtue of their real-time adaptation to unpredictable and changing cardiac dynamics, 
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their versatile undersampling scheme, and their ability to be integrated with previously developed techniques 
for accelerated CMR.

Theory
We will begin by deriving the predictive signal model within the context of the Kalman filter. We will then dem-
onstrate how the predictive signal model may be used to augment a CS scheme.

Kalman filter implementation.  The Kalman filter for dynamic CMR.  A Kalman filter consists of two key 
steps: a prediction step that uses a priori knowledge of signal dynamics, and a comparison between this predic-
tion and observed data. In dynamic CMR, Kalman filters are derived from the following state-space equations:

where xt is the fully sampled (but unknown) CMR image at time t  , wt−1 is process noise, zt is k-space data 
acquired at t  , H is a measurement matrix relating xt to zt , and vt is measurement noise. Equation (1) describes 
a priori knowledge of cardiac dynamics and assumes marginal dynamic changes by assuming the form of a 
random-walk process. Henceforth, we refer to previous work as a “random-walk” Kalman filter. Equation (2) 
describes the relationship between the fully sampled image and acquired k-space data and is required for the 
comparison step.

Acceptable performance of the random-walk Kalman filter demands robust estimation of the process noise 
covariance Q . However, obtaining an estimate in a realistic scenario may be challenging, especially if training data 
is limited. Furthermore, Eq. (1) assumes periodic cardiac motion9,11 and does not adequately model arrhythmia. 
A new format for Eq. (1) is necessary to achieve robust dynamic CMR. This is not a new concept and has been 
reflected in additional applications of Kalman filtering to MRI19,20.

Reworking the Kalman filter state‑space model.  We propose the following state-space model for Kalman filter-
ing in dynamic CMR:

where f (xt−1) is a nonlinear transform of the previous state xt−1 to account for non-marginal changes in cardiac 
dynamics. The measurement matrix H has been replaced with EF , where E is a downsampling matrix and F is 
the 2D discrete Fourier transform. For non-cartesian trajectories, EF would be equivalent to a non-uniform fast 
Fourier transform (NUFFT). In essence, acquired k-space ( zt ) will be interpolated onto a cartesian grid prior to 
the Fourier transform operation. Equations (3) and (4) yield the following Kalman filter equation21:

where xft  is the predicted estimate of the fully sampled image xt , Jf (xat−1) is the Jacobian of f (xt−1) evaluated at 
xat−1 , P

f
t  is the predicted spatiotemporal covariance of xt , superscript H denotes the conjugate transpose, Kt is 

the Kalman gain, R is the covariance of the measurement noise, † denotes the Moore–Penrose pseudoinverse, xat  
is the updated/actual estimate at time t  , and Pat  is the updated/actual spatiotemporal covariance of xt . Note the 
covariance of xt is spatiotemporal, as we are reconstructing a dynamic time-series.

To account for irregular cardiac behavior, we developed a statistical protocol for estimating f (xat−1) (Fig. 1). 
To mimic realistic scenarios, estimation was performed with limited training data consisting of a single fully 
sampled cardiac cycle. No additional cardiac cycles are required to estimate f (xat−1) . We also assume the current 
cardiac phase is known (in practice, the cardiac phase can be determined via an electrocardiogram (ECG)). We 
will refer to Kalman filtering with a predictive signal model as a “two-stage Kalman filter”, where stage one is 
estimating f (xat−1) and stage two is the Kalman filter.

The predictive signal model: statistical estimation of f (xat−1).  Consider a single arbitrary phase transition from 
xt−1 to xt . Suppose we wish to estimate xt via a linear combination of all pixels from the previous fully sampled 
image, xt−1 . As each pixel in xt has a non-zero mean, we will use an affine estimator:
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Figure 1.   A predictive signal model incorporated in a two-stage Kalman filter. Stage One uses a learned cardiac 
motion dictionary to predict the next cardiac image. Stage Two uses the spatiotemporal statistics and the 
acquired k-space data to update this prediction and produce the final estimate.
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where ft is a state transition matrix for time t  , and bt is a bias vector accounting for the non-zero means of xt . 
Let us estimate ft and bt using temporal statistics, as estimating ft and bt using spatial statistics would require 
multiple images for each time point t  . We will assume each pixel in xt is a temporal wide-sense stationary 
(WSS) random process. Thus, an N × N image consists of N2 WSS random processes. Let us also assume these 
processes are jointly WSS. Using a previously acquired training scan consisting of a single cardiac cycle with T 
fully sampled images (i.e. phases) of size N × N , we can estimate the temporal covariance of each pixel and the 
temporal cross-covariance between each pair of pixels:

where l  denotes the time delay, B(i, j, t) denotes the value of pixel (i, j) at time t  , µi,j denotes the mean value of 
pixel (i, j) , and * denotes the complex conjugate. The temporal covariance and cross-covariance values are reor-
ganized into T matrices, where each matrix is indexed according to l :

Reorganizing the mean values into a single vector yields:

Notice that l  represents the phase difference between successive cardiac images. Thus, C3 could describe a 
transition from cardiac phase 2 to 5. Assuming the current cardiac phase at time t  is known, the LMMSE esti-
mator for ft and bt is as follows:

where l  is chosen based on the phase difference between t − 1 and t  . This LMMSE estimator is comprised of N2 
non-zero mean Wiener filters, one for each pixel in xt . Refer to22 or k-t BLAST23 for more information regard-
ing Wiener filtering. Equations (14a) and (14b) represent a learned cardiac motion dictionary. This dictionary 
is used to model the state transition between any two arbitrary cardiac phases. To understand how this works, 
recall Eq. (5): f (xat−1) is a non-linear transformation from CN×N to CN×N . As the subspace does not change in 
this transformation, f (xat−1) can be represented as an affine transform. Thus, in our two-stage Kalman filter, we 
will set f

(
xat−1

)
= ftx

a
t−1 + bt . This implies Jf (xat−1) = ft = Cl(C0)

−1 . We can now predict the next fully sam-
pled CMR image using our dictionary, provided the phase difference is known. This prediction is then updated 
(Eqs. 7–9) using the spatiotemporal statistics of xt . It is important to note that this prediction is an approximation: 
it need not perfectly represent the actual cardiac dynamics being imaged. To ensure our two-stage Kalman filter 
generalizes well, we developed additional protocols (see below) to enforce versatility.

Reconstructing multiple cardiac cycles.  The dictionary was built assuming WSS and jointly WSS temporal statis-
tics. As such, all autocorrelation and cross-correlation functions are conjugate symmetric:

where CH
l  denotes the conjugate transpose of Cl . The −l corresponds to a negative time delay. We first consider 

a scenario where the training and test set both consist of T phases and we wish to reconstruct phase 1 of the 
next cardiac cycle using phase T of the current cycle. We can step T – 1 phases backwards in time by assigning 
Cl = C−(T−1) . Permitting backward transitions is what enables us to use a single cardiac cycle as our training 
scan. We can also apply backward transitions to arrhythmia: if the cardiac cycle abruptly returns to early systole 
(phase 1) from, say, early diastole (e.g. phase 7 out of T), we assign Cl = C−6 to move backwards 6 phases.

In any reconstruction, we must select l  based on which phase in the training scan bears the greatest resem-
blance to the currently estimated cardiac phase. This can be done by using ECG monitoring or non-ECG methods 
capable of tracking the sinus rhythm24.
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Statistical estimation of Q.  One caveat of using a single cardiac cycle in our training scan is that cardiac phases 
will look identical across multiple heartbeats (i.e. redundancy). An additional parameter is required to ensure 
our predictive signal model generalizes well: the process covariance, Q , where a non-zero value indicates the 
prediction from our dictionary only serves as an initial approximation.

It is critically important that Q is defined judiciously. In previous work, Q represents the covariance between 
two successive images in a periodic training scan9,11. In our work, we remove this assumption of periodicity by 
defining Q as:

where C0 is diagonalized to protect against overfitting. Note: C0 may be computed directly from the training 
scan. Thus, only a single cardiac cycle is required to compute Q . Equation (16) mathematically admits that our 
dictionary may be incorrect, thereby conferring adaptability to our two-stage Kalman filter. Although Q may have 
large diagonals (i.e. large power) that could result in image artifacts, Q is naturally balanced by our dictionary 
where redundant terms produce an averaging/smoothing effect. Mathematically, our dictionary is an N2 − 1 
order finite impulse response (FIR) lowpass filter.

Accommodating for low temporal resolution training data.  So far, our two-stage Kalman filter assumes the tem-
poral resolution of the test set is identical to the training scan. To ensure our filter is generalizable, the following 
method was developed to reconstruct images acquired at a higher temporal resolution than that of the training 
data.

Suppose the temporal resolution of our test scan is five times that of our training scan, where the training 
scan represents frames 1, 6, 11 etc. in our test scan. The smallest phase transition in the test scan that our training 
scan can model is of size five (e.g. phase 1 to 6). To model smaller phase transitions while ensuring our estimate 
for f (xat−1) in Eq. (5) is accurate, a new procedure is necessary. As before, we use an affine transform to predict 
f (xat−1):

where ft,new and bt,new are a state transition matrix and bias vector purposely designed to model a smaller phase 
transition.

However, as Eq. (17) is a model of cardiac dynamics, computation of ft,new and bt,new requires a priori infor-
mation. While we cannot use the model learned in our cardiac motion dictionary, we can use the information in 
that dictionary to compute ft,new and bt,new . Suppose the smallest possible phase transition our learned cardiac 
motion dictionary can model is that of size V  . According to our procedure described above, we would model 
this phase transition by setting Cl = C1 in Eq. (14a). Thus, we have the following model for describing a transi-
tion from phase t − V  to phase t :

Let t − v indicate an arbitrary phase in between phases t − V  and t  , where V − 1 ≥ v ≥ 1 . The cardiac phase 
immediately following t − V  in the test scan is t − V + 1 (i.e. v = V − 1 ). To reconstruct frame xt−v , we assume 
this image falls linearly between xt−V and xt:

When v = V − 1 , we are reconstructing the cardiac phase immediately following t − V  . Substituting Eq. (18) 
into Eq. (19) yields:

Taking the expected value of Eq. (20b) with respect to all past observations ( zt−V . . .)7,8,21 yields the following:

Equation (21b) is an affine transform that can be used to predict xft−v = f (xat−V ) using a previous fully 
reconstructed image ( xat−V ). While Eq. (21b) is valid if our goal is to reconstruct phase t − v using phase t − V  , 
it does not provide a solution to the problem of reconstructing phase t − v + 1 from phase t − v . To generalize 
Eq. (21b), we rewrite Eq. (19) for phase t − v + 1:

(16)Q = IN2×N2⊛C
0
,
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Substituting in Eq. (18) yields:

Equation (20b) provides a model for xt−V in terms of xt−v . Let us substitute Eq. (20b) into Eq. (23b):

Taking the expected value of Eq. (24) with respect to all past observations ( zt−v . . . ) yields:

Equation (25b) is an affine transform capable of predicting the subsequent cardiac phase t − v + 1 using the 
fully reconstructed image for phase t − v . Thus, for our new model defined by Eq. (17):

To reiterate: V  describes the smallest phase transition our learned cardiac motion dictionary can model, fV 
and bV are the associated state transition matrix and bias vector from the learned cardiac motion dictionary, 
and v is an indexing variable to help the user track which cardiac phase of the test scan between phases t − V  
and t  is being reconstructed.

Equations (26a) and (26b) provide a method for computing the appropriate state transition matrix and bias 
vector in Eq. (17) despite a low temporal resolution training scan. By enabling reconstruction at smaller phase 
increments, we are effectively reconstructing at an enhanced temporal resolution. Furthermore, as these equa-
tions were derived for an arbitrary value of V  , we may generalize V  to represent any phase transition that can be 
adequately modeled by our learned cardiac motion dictionary. Thus, Eqs. (26a) and (26b) enable us to reconstruct 
multiple cardiac cycles, arrhythmic events, or changes in the sinus rhythm (as fV and bV are known), further 
generalizing our predictive signal model and ensuring it is adaptable to any sinus rhythm no matter how different 
the true rhythm is from our training data.

Initializing R, xa0 , and Pa0.  Given the orthogonality of k-space data points, one can assume that R is additive 
white Gaussian noise. Hence, R = σ 2I , where σ 2 is the variance of k-space corresponding to an arbitrarily 
selected background region within any test image. Ideally, R would be estimated via a phantom scan. The initial 
value for the reconstructed image ( xa0 ) is chosen to be the first image in the training set, as any image can be 
used to initialize the Kalman filter9,11. For the first time-step only, this requires f1 = IN2×N2 . To initialize our 
spatiotemporal covariance ( Pa0 ), we initially assume that image noise is additive white Gaussian. As such, Pa0 is a 
diagonal matrix, where the diagonal entries of Pa0 are equal to the spatial variance of an arbitrarily selected back-
ground segment within any test image. In the majority of our simulations, this background corresponds to the 
one used to estimate R ; raw k-space noise was used instead if applicable. It is important to note that this estimate 
of Pa0 may not be accurate, as it captures the spatial statistics of our image. However, the recursive updates of the 
Kalman filter correct for these inaccuracies, ensuring the spatiotemporal statistics are properly represented by Pat .
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Implementation of the random‑walk Kalman filter.  In order to test the effectiveness of our predictive signal 
model, we designed a random-walk Kalman filter based on the state-space model used in previous work. Our 
implementation of the random-walk Kalman filter is not identical to prior work, as it does not consider sup-
plementary techniques.

In our random-walk Kalman filter, Q was computed in two steps. First, the training scan was used to compute 
a sequence of T-1 difference images. Second, the covariance of each pixel in the difference images was computed 
and assigned to the corresponding diagonal entry of Q . This procedure was inspired by previous work, where 
the off-diagonal entries of Q were assumed to be of low power and ignored. Aside from f

(
xat−1

)
= xat−1 (which 

implies Jf
(
xat−1

)
= IN2×N2 ), all other parameters of the Kalman filter were unaltered.

Compressed sensing implementation.  We will now discuss how to integrate the predictive signal 
model with a GRASP CS scheme. Let us begin with the following minimization problem:

where X is a matrix with each column representing a single fully sampled image (organized temporally), X̂ 
represents the final reconstructed images, y is the acquired k-space data, H is a measurement model relating 
X to y , ϕ() is a sparsity transform, fm and bm are the state transition matrix and bias vector that model a phase 
transition from time point m to m+ 1 , and Am is a matrix to extract the mth column from X . We will refer to 
the last term as the state-space consistency term, as it ensures the reconstruction follows our predictive signal 
model. The parameters �spar and �ss are used to weigh the importance of the sparsity and state-space consistency 
terms during the reconstruction process.

The procedure for computing fm and bm remains unchanged: one must simply acquire a fully sampled train-
ing scan consisting of a single cardiac cycle. One may also account for low temporal resolution training data 
using the method derived in Eqs. (17)–(26b). Aside from weighting, the purpose of �ss is to accommodate for 
inaccuracies and redundancies in the training data, thereby ensuring the predictive signal model generalizes 
well. Lastly, the state-space consistency term can be removed from Eq. (27) by setting �ss = 0 . This enables us 
to directly examine the impact of the predictive signal model on the CS reconstructions. Going forward, we will 
refer to CS with the predictive signal model as “two-stage CS”.

Methods
Please note that all reconstructions in this paper were performed in MATLAB version R2020a or later.

This study consists of simulations that utilize DICOM cardiac CINE datasets from the UK Biobank and pub-
licly available raw cardiac k-space datasets from the Ohio State University, denoted OCMR25. Relevant guidelines 
and regulations as specified by the UK Biobank were strictly adhered to. Our usage of UK Biobank data was 
approved via a Material Transfer Agreement (MTA) between our laboratory and the UK Biobank. The Innova-
tions and Partnerships Office at the University of Toronto helped us execute said agreement. The application 
reference number for this MTA is 61943. Thus, this MTA serves as an ethics approval for a collaboration between 
our laboratory and the UK Biobank. With this MTA in place, the UK Biobank consents to the Data Protection 
Act of 1998. Informed consent was obtained by the UK Biobank for all patient data found within their repository, 
and there is no patient identifying information in the data provided to us. More information regarding the UK 
Biobank may be found in the data accessibility statement. For the OCMR datasets, all relevant guidelines and 
regulations specified by the Ohio State University for public use of the OCMR datasets were strictly adhered 
to. The regulations set forth by the Ohio State University explicitly state that no patient identifying information 
is included in the OCMR datasets. More information regarding the OCMR datasets may be found in the data 
availability statement.

(27)X̂ = argmin
X

�HX − y�22 + �sparϕ(X)+ �ss

∑M

m=2
�fmXAm−1 + bm − XAm�

2
2,

Table 1.   Relevant parameters for each dataset. It assumed that one TR corresponds to one phase encode/radial 
spoke.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 OCMR Dataset

Cardiac view Two-chamber long axis Four-chamber view Two-chamber long axis Two-chamber long axis Four-chamber view Four-chamber view

Image size 64 × 64 70 × 70 60 × 60 60 × 60 70 × 70 136 × 81

Training time: primary scenarios 591 s 908 s 482 s 476 s 888 s 4333 s

Training time: secondary 
scenarios 572 s N/A N/A N/A N/A N/A

Number of samples: cartesian 64 70 60 60 70 136

Number of phase encodes: 
cartesian 5 5 5 5 5 6–13

Acceleration rate: cartesian
(
64
64

)(
64
5

)
= 12.8

(
70
70

)(
70
5

)
= 14

(
60
60

)(
60
5

)
= 12

(
60
60

)(
60
5

)
= 12

(
70
70

)(
70
5

)
= 14

(
136
136

)(
81
9.16

)
= 8.83

Number of samples: radial 82 90 77 77 90 N/A

Number of spokes: radial 5 6 5 5 6 N/A

Acceleration rate: radial 20.1 18.3 18.9 18.9 18.3 N/A
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To examine the performance of our predictive signal model, multiple datasets from the UK Biobank were 
used. To facilitate comparison across all simulated scenarios, reconstructions using UK Biobank data were per-
formed with Kalman filtering only. A total of five different patient datasets from the UK Biobank were used for 
our simulations (previously acquired on a 1.5 T scanner (MAGNETOM Aera 1.5 T, Siemens Healthineers)). Each 
patient’s dataset consisted of two CINE scans, each representing a distinct fully sampled cardiac cycle with 50 
phases. The first cardiac cycle was used for training. The second cycle was replicated five times to create ground 
truth data for testing, after which undersampling was performed to test reconstruction via Kalman filtering. 
Relevant parameters for each dataset are listed in Table 1. In total, three primary scenarios and two secondary 
scenarios simulating low temporal resolution training data were tested. All UK Biobank reconstructions were 
performed without using rebinning strategies common in conventional CINE. Data was assessed using mean 
squared error (MSE) and confirming MSE convergence.

To create undersampled test CINE scans from the UK Biobank data, full resolution images from the second 
cardiac cycle were converted to k-space via the 2D Fourier transform. An undersampling mask was applied and 
a NUFFT used for non-Cartesian trajectories. Undersampling masks and the NUFFT were designed to sample 
approximately 8% of Cartesian k-space for each frame (note that the NUFFT is not a one-to-one operation). 
Thus, each frame was undersampled by a factor of approximately 12.5. In our work, the undersampling factor 
can be viewed as an estimate of the acceleration relative to a fully sampled CINE sequence, especially for carte-
sian acquisition schemes. However, one must remember that the undersampling factor is not indicative of the 
true acceleration factor, as acceleration depends on multiple parameters such as the repetition time (TR) and 
the number of k-space lines acquired per frame (e.g. radial spokes). Table 1 provides a more tangible estimate 
of acceleration. Acceleration for radial scans was estimated using πn/2ns , where n is the number of points in 
the fully reconstructed image, and ns is the number of acquired spokes. Note: it is conventional to acquire πn/2 
spokes during radial acquisition26. This formula also assumes a constant TR and oversampling ratio between a 
conventional radial scan and our accelerated radial scan.

To verify the performance of our algorithms on raw k-space data, a dataset from the OCMR library was used 
(previously acquired on a 1.5 T scanner (MAGNETOM Sola 1.5 T, Siemens)). Reconstructions were performed 
using both Kalman filtering and CS. The filename for this dataset was “us_209_pt_1_5T.h5”. This dataset consisted 
of prospectively undersampled Cartesian k-space acquired over multiple cardiac cycles. To reduce the field of view 
and provide better visualization of the heart, every other sample along the frequency and phase encode direction 
was taken; aliasing was removed in post processing. To create the training set, this dataset was rebinned into a 
fully sampled 15 phase cardiac CINE. After building the learned cardiac motion dictionary, reconstruction of 30 
unsorted prospectively undersampled raw k-space frames was performed. Each frame sampled approximately 
11.32% of Cartesian k-space, which corresponds to an undersampling factor of approximately 8.83. Note that 
for the OCMR dataset only, the sampling mask changed between successive frames. The 30 frames were chosen 
to simulate two distinct periodic cardiac cycles, thereby providing assurance that our algorithms can reconstruct 
multiple cardiac cycles acquired from raw k-space data. Reconstruction parameters are listed in Table 1. In total, 
one primary scenario was tested. The OCMR dataset consists of raw k-space acquired from multiple receiver 
coils. However, our experiments only used raw k-space acquired from one of these receiver coils. This was done to 
fully demonstrate the capabilities of our predictive signal model in the absence of any supplementary techniques.

Primary scenarios: algorithm feasibility.  The three primary scenarios were designed to evaluate the 
performance of our predictive signal model, assuming identical temporal resolution in the training and test data. 
To evaluate the feasibility and robustness of our predictive signal model, each primary scenario was repeated 
across all five UK Biobank datasets. For each UK Biobank simulation, the two-stage Kalman filter was compared 
to the random-walk Kalman filter. To verify that our predictive signal model can facilitate raw k-space data 
reconstruction, the first primary scenario was repeated an additional time using the OCMR dataset. For each 
OCMR simulation, the two-stage Kalman filter and the two-stage CS scheme were compared to the random-
walk Kalman filter and a conventional CS scheme. Conventional CS was achieved by setting �ss = 0 in Eq. (27).

In scenario one for the UK Biobank datasets, we reconstructed a test set with the same heart rate as the 
training set. The training set consisted of one cardiac cycle with T = 50 phases. These images were denoised in 
MATLAB using a built-in convolutional neural network (cNN). The Moore–Penrose pseudo-inverse was used 
to ensure successful computation of Eq. (14a). To generate the test set, the second cardiac cycle (i.e. test set) from 
the databank was replicated 5 times, creating M = 5T = 250 images for five periodic cardiac cycles. To handle 
a phase transition from one heartbeat to the next, we transition from phase 50 to phase 1 of the next heartbeat, 
implying l = −49 . To protect against contrast variations due to automated rescaling of DICOM images, each 
frame in the test set was rescaled to match the mean of the corresponding phase in the training set. This scenario 
tests our predictive signal model under theoretically ideal conditions, as periodicity was vital to previous work.

In scenario one for the OCMR dataset, we reconstructed 30 frames of raw k-space data. The training set 
consisted of one cardiac cycle with T = 15 phases. These training images were not denoised in MATLAB, as we 
wished to preserve the integrity of the raw k-space. As all k-space was acquired from a single experiment, the 
mean of each frame in the test set was not rescaled. For our CS schemes, we used a non-linear conjugate gradi-
ent descent algorithm based on backtracking line search to solve Eq. (27). We also used temporal total variation 
(TTV) as our sparsity transform ϕ().

In scenario two for the UK Biobank datasets, we simulated arrhythmia by creating an early return to systole. In 
the 50-phase cardiac cycle from the biobank, phase 1 corresponds to early systole synchronized with the R-wave 
of the ECG signal and phase 50 corresponds to the end of diastole. To mimic an early occurrence of the next 
R-wave, we made the simple assumption that the heart was beating to phase 30 and then jumped to phase 1 of the 
next cycle. To recreate a shorter cycle for the second of the 5 consecutive cycles in the test set, only phases 1–30 



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10296  | https://doi.org/10.1038/s41598-023-37475-5

www.nature.com/scientificreports/

were retained; the other four cycles used all 50 phases. Effectively, we transitioned from phase 30 to 1, implying 
l = −29 . The mean of each frame in the test set was rescaled.

In scenario three for the UK Biobank datasets, we simulate a transient change in heart rate (faster sinus 
rhythm). For simplicity, we assumed the heart rate doubled during the second of the 5 consecutive cycles in the 
test set. For this second cardiac cycle, every other phase was retained (i.e. phase 1, 3, 5,…), implying l = 2 . All 
other cycles consisted of 50 phases. The mean of each frame in the test set was rescaled.

To demonstrate the flexibility of our predictive signal model, each UK Biobank simulation was performed 
two separate times using Cartesian and golden-angle radial undersampling masks (all scenarios using the first 
UK Biobank dataset were repeated with a spiral undersampling mask as well). All undersampling for Cartesian 
masks was performed in the phase encode direction. The OCMR simulations were performed using a Cartesian 
mask included in the OCMR dataset. All these masks were tested in order to demonstrate our signal model’s 
ability to handle versatile undersampling schemes. To facilitate spiral acquisition, a total of 6 rotations were 
used. The sampling scheme used in the OCMR datasets was similar to variable density Cartesian, and was left 
unchanged. To accommodate for non-Cartesian trajectories, a NUFFT based on GRASP was used for EF18. All 
relevant parameters are found in Table 1; an acceleration rate estimate is not provided for spiral undersampling, 
as the acquisition time per frame is equal to TR.

Secondary scenario: accommodating for low temporal resolution training data.  In two differ-
ent scenarios, we evaluated the performance of the two-stage Kalman filter against the random-walk Kalman 
filter, assuming the temporal resolution of the test set was five times that of the training set. The training and test 
sets were obtained from the first UK Biobank dataset.

In our first secondary scenario, the training set consisted of one cardiac cycle with T = 10 phases. These 
images were denoised in MATLAB, and the Moore–Penrose pseudoinverse was used to ensure successful com-
putation of Eq. (14a). The test set consisted of five periodic cardiac cycles, with 50 phases per cycle. The mean 
of each frame in the test set was also rescaled. As certain test set images did not have a corresponding training 
set image, their means were scaled to match the mean of the previous image in the test set. Reconstruction was 
performed using a radial mask. A NUFFT based on GRASP was also used here.

An additional secondary scenario was simulated using a modified state-space model where ft = IN2×N2 , 
bt = 0 and Q = C0 . This simulation is analogous to a random-walk Kalman filter, except Q has off-diagonal 
entries. The purpose of this simulation was to discern the importance of the off-diagonal entries in ft and their 

Table 2.   Reconstruction times (s) for all scenarios. Note, “D2” stands for “Dataset 2” etc.

Primary scenarios: algorithm feasibility Secondary scenario

Scenario 1: multiple 
periodic cycles

Scenario 2: single 
arrhythmic event

Scenario 3: faster sinus 
rhythm

Scenario 1: two-stage 
Kalman filter

Scenario 2: 
f = IN2

×N2 , b = 0, non-
diagonal process covariance

Two-stage Kalman filter, 
Cartesian sampling

D1: 2610 D1: 1950 D1: 1961

N/A N/A

D2: 4180 D2: 2976 D2: 3152

D3: 1689 D3: 1270 D3: 1448

D4: 1698 D4: 1461 D4: 1188

D5: 4274 D5: 3188 D5: 3051

Two-stage Kalman filter, 
radial sampling

D1: 2601 D1: 1911 D1: 1879

2682 1905

D2: 4523 D2: 3185 D2: 3245

D3: 1780 D3: 1339 D3: 1317

D4: 1726 D4: 1322 D4: 1267

D5: 4300 D5: 3305 D5: 3182

Two-stage Kalman filter, 
spiral sampling D1: 2685 D1: 2027 D1: 2016 N/A N/A

Random-walk Kalman filter, 
cartesian sampling

D1: 1830 D1: 1730 D1: 1669

N/A N/A

D2: 3026 D2: 2690 D2: 2645

D3: 1267 D3: 1137 D3: 1097

D4: 1223 D4: 1105 D4: 1082

D5: 3140 D5: 2818 D5: 2752

Random-walk Kalman filter, 
radial sampling

D1: 1907 D1: 1739 D1: 1743

1892

D2: 3210 D2: 2921 D2: 2911

D3: 1273 D3: 1166 D3: 1176

D4: 1318 D4: 1365 D4: 1138

D5: 3354 D5: 3028 D5: 3011

OCMR dataset, two-stage 
Kalman filter 5980 N/A N/A N/A

OCMR dataset, Random-
walk Kalman filter 3969 N/A N/A N/A
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ability to control the high power of Q , particularly if reconstruction is performed using a low temporal resolu-
tion training set.

Results
Reconstruction times for all scenarios can be found in Table 2. Reconstruction times for the CS schemes were not 
reported, as each reconstruction completed in under 1 min. A comparison against Kalman filter reconstruction 
times would be insignificant.

Primary scenarios: algorithm feasibility.  Figures  2, 3, 4 and 5 demonstrate improved tracking and 
reconstruction of the two-stage Kalman filter and the two-stage CS scheme. The ability to successfully track 
dynamics across multiple cardiac cycles (Figs. 2, 3), after unforeseen changes in cardiac dynamics (Fig. 4), and 
during changes in the heart rate (Fig. 5) are shown. The MSE results for the second primary scenario (single 
arrhythmia) are shown in Fig. 6a–d. This scenario was chosen due to the increased difficulty of modelling an 
arrhythmic event. The MSE results for the first and third primary scenarios are shown in Supplementary Figs. S1 
and S2. The MSE for the OCMR dataset cannot be provided, as the usage of prospectively undersampled data 
precludes the availability of a ground truth. All calculated MSE results displayed convergence, thereby demon-
strating the feasibility and robustness of our predictive signal model. Figure 6e,f displays the maximum, mean, 
and median MSE values for all radial and cartesian simulations. Interestingly, the random-walk Kalman fil-
ter offered comparable MSE statistics to the two-stage Kalman filter for specific datasets using radial sampling 
(Fig. 6e). However, for Cartesian sampling MSE statistics (Fig. 6f), the two-stage Kalman filter demonstrated 
superior performance compared to the random-walk Kalman filter.

Both the random-walk Kalman filter and conventional CS introduced distortions in the reconstructed images. 
For the random-walk Kalman filter, the shape of the left atrium and the contrast along the wall of the left ven-
tricle was affected (see arrows in Figs. 2, 3, 4, 5). As an example, consider the OCMR random-walk Kalman 
filter reconstructions: the left atrium and left ventricle are improperly shaped for a contracting heart (see orange 
arrows). These distortions were observed to occur even if the random-walk Kalman filter occasionally produced 
a reconstruction of sufficient quality (e.g. Fig. 4, heartbeat 3, phases 1 and 50). In regards to conventional CS, 

Figure 2.   Reconstruction of multiple cardiac cycles I. These reconstructions were performed on the first UK 
Biobank dataset. The orange arrows illustrate distortions in the shape of the left atrium and the contrast along 
the wall of the left ventricle during random-walk Kalman filter reconstructions. Our two-stage Kalman filter 
demonstrates improved tracking and reconstruction quality compared to the random-walk Kalman filter.
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streaking artifacts were observed throughout the entire image. This is consistent with insufficient sampling 
density in the phase encode direction and the usage of Cartesian undersampling.

Overall, an increase in image quality and convergence of the MSE (if applicable) was observed for all simula-
tions. Figures 2, 3, 4 and 5 demonstrate that radial sampling was the best undersampling scheme for our algo-
rithms, despite absence of a lower MSE.

Secondary scenario: accommodating for low temporal resolution training data.  A total of two 
hundred and fifty 64× 64 images were reconstructed for both secondary scenarios (Fig. 7a). The MSE results for 
these simulations are shown to converge in Fig. 7b. A video of the reconstructions for our two-stage Kalman fil-
ter with a 5 × increase in temporal resolution can be found as Supplementary Video S2. These results demonstrate 
the ability of our predictive signal model to reconstruct cardiac images across multiple cardiac cycles despite low 
temporal resolution training data. Notice that in Fig. 7a significant noise appears in the random-walk Kalman 
filter reconstructions, as indicated by the arrows. This is a consequence of inaccurate cardiac modelling, demon-
strating that the predictive signal model is necessary to achieve robust dynamic CMR.

In Fig. 7b, note that setting ft = IN2×N2 , bt = 0 , and Q = C0 caused the MSE to exhibit divergent trends. 
These divergent trends were found by examining how the variance of the MSE changes with time. Interestingly, 
this simulation yielded a reconstruction quality close to our two-stage Kalman filter (Fig. 7a). Taken together, 
this suggests that the off-diagonal terms used to compute ft and bt are necessary. Moreover, a predictive signal 
model must be used to ensure convergence if the training data has a lower temporal resolution than that of the 
test set. This justifies the need for a large matrix ft , and proves the ability of ft to control the large power of Q 
via smoothing. As such, the off-diagonal terms in ft contribute substantially to successful image reconstruction.

Discussion
Our algorithms provided improved reconstruction quality at an average undersampling factor of 12.5 across 
all sampling masks while demonstrating convergence. Furthermore, our algorithms demonstrated improved 
performance when applied to raw k-space data. Most importantly, our predictive signal model is potentially 
amenable to a plethora of scenarios in dynamic CMR and may provide significant advantages in the form of: 
adaptability to irregular cardiac rhythm, versatile undersampling, opportunity to compensate for low temporal 
resolution training data, and the ability to be integrated with previously developed reconstruction techniques.

While our results are promising, it must be emphasized that our work was largely based on simulations, as 
raw k-space data in all the formats we desired (non-Cartesian k-space, arrhythmia, variable sinus rhythm) was 
unavailable. In fact, this relative dearth of ground-truth cardiac k-space data has been a long-standing issue and is 
the reason why all real-time cardiac MRI methods have been notoriously difficult to verify. Despite this limitation, 

Figure 3.   Reconstruction of multiple cardiac cycles II. These reconstructions were performed on the 
prospectively undersampled OCMR dataset. The orange arrows illustrate the inability of the random-
walk Kalman filter and conventional CS to properly model cardiac dynamics for the given undersampling 
scheme. Equipped with a predictive signal model, both our two-stage Kalman filter and two-stage CS scheme 
demonstrate improved tracking and reconstruction quality compared to the random-walk Kalman filter and 
conventional CS when applied to raw k-space datasets.
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we did demonstrate the robustness of our algorithms when applied to raw Cartesian k-space cardiac data that 
had been prospectively undersampled. Other undersampled k-space trajectories, such as radial and spiral, had 
to be simulated from Cartesian DICOM images, which is non-ideal because artifacts commonly associated with 
radial/spiral imaging, as well as strategies to combat these artifacts (e.g. density compensation and trajectory 
correction), were absent. Furthermore, abnormal cardiac dynamics, such as arrhythmia and changing heart 
rate, are not found in real data and had to be simulated. The reasons are obvious, as conventional re-binning of 
acquired frames is intended to eliminate abnormal cardiac dynamics; even if there exists prospectively acquired 
data on an abnormal rhythm, there is no means to verify it.

Amongst the three undersampling schemes, the improved performance offered by radial sampling is not 
surprising, as this approach emphasizes the low frequency region of k-space; hence, one would expect improved 
reconstruction of global structural details. However, the two-stage Kalman filter MSE from radial sampling 
occasionally exhibited comparable behavior to the random-walk Kalman filter MSE. Furthermore, the MSE for 
both Kalman filters displayed the occasional spike, which seems counterintuitive. This behavior is likely due to 
the presence of smaller objects and edges (e.g. during systole), which are represented by high frequency k-space 
content. Further accentuating this point is the reduced MSE for our two-stage Kalman filter simulations with 
Cartesian sampling. This is expected, as Cartesian sampling emphasizes equally all frequency regions of k-space. 
However, we must remember that despite the quantitative value of the MSE metric, the human visual system 
emphasizes low spatial frequency content and judges image quality in a manner difficult to capture faithfully 
using mathematical constructs.

A protocol for building the predictive signal model is crucial for the success of our two-stage Kalman filter, 
especially when reconstructing at a higher temporal resolution, and it must be designed judiciously. This makes 
logical sense, as the performance of any Kalman filter is tied to the accuracy of f (xt−1) and Q . The training set 
used to estimate f (xat−1) must be an accurate descriptor for the underlying cardiac dynamics. This is a natural 
limitation of statistical estimation and is the primary motivation for performing the training scan immediately 
prior to the test scan, as demonstrated via previous work. Unfortunately, due to usage of the UK Biobank data, 
this was not possible in our studies. It should be noted that any inaccuracy within the training set would yield 

Figure 4.   Reconstruction of a single arrhythmic event. These reconstructions were performed on the first UK 
Biobank dataset. Arrhythmia is simulated as skipping phases 8 and 9 in heartbeat 2 and a sudden return to 
systole (phase 1) in heartbeat 3. The orange arrows illustrate distortions in the shape of the left atrium and the 
contrast along the wall of the left ventricle during random-walk Kalman filter reconstructions. The two-stage 
Kalman filter can track the arrhythmic event and continuously provide high-quality reconstructions afterwards.
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inaccuracies in our estimation of f (xat−1) , which could cause divergence8. Spikes in the MSE graphs serve as 
a reminder of this fact. Again, these spikes are likely due to an increased presence of high frequency k-space 
content, which is difficult to estimate compared to low frequency k-space content. This is illustrated within the 
error images.

In regards to the two-stage CS scheme, the signal model proved essential in removing the streaking artifacts 
caused by inadequate sampling of k-space. While an undersampling factor of 8.83 may not appear large at first 
glance, one must remember that only a single coil was used during the reconstructions, forgoing any additional 
acceleration and quality that may be gained from multicoil imaging. Coupled with the usage of a Cartesian 
undersampling mask, streaking artifacts are to be expected. The successful removal of these artifacts depends on 
an accurate state-space consistency term, as well as a well-tuned weighting factor �ss . Care must also be taken to 
avoid overfitting to the predictive signal model as well, which is controlled by the tuning of �ss.

Various factors could lead to an inaccurate predictive signal model, including: inherent variations between 
different MRI experiments, inaccurate phase estimation, motion artifacts, and noise in the training scan. To help 
illustrate the consequences of an inaccurate predictive signal model, consider the random-walk Kalman filter 
implementation for the secondary scenarios. The appearance of perturbations is due to inaccurate modeling; 
the training set for this scenario consisted of T = 10 images, whereas one cardiac cycle of the test set consisted 
of T = 50 images. Inaccurate modeling results in a reliance on the mean value, hence, the perturbations. This 
may also explain the random-walk Kalman filter reconstruction artifacts in Figs. 2, 3, 4 and 5. Thus, diligence 
in all aspects of building the predictive signal model is essential.

Fortunately, strategies exist to deal with each of the above examples. To combat variations between MRI 
experiments, one should acquire the training set during the same experiment as the test set. This is certainly 
feasible if one chooses to use our algorithms, as the training set need not be large. A second solution to combat 
variations between MRI experiments is to use the DC value of k-space to equate the training and test set means, 
as implemented in our work. Regarding motion artifacts, multiple strategies have been developed24,27–29. Imple-
menting motion compensation would be essential, as motion could introduce a spatial offset not accounted for in 

Figure 5.   Reconstruction in the presence of variable sinus rhythm. These reconstructions were performed 
on the first UK Biobank dataset. A doubling of the sinus rhythm is simulated by skipping every other phase in 
heartbeat 2. The orange arrows demonstrate perturbations in the shape of the left atrium and the contrast along 
the wall of the left ventricle during random-walk Kalman filter reconstructions. Our two-stage Kalman filter 
demonstrates improved tracking and reconstruction quality compared to the random-walk Kalman filter.
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the training set. Lastly, our simulations demonstrate the benefits of denoising images a priori via a convolutional 
neural network.

An important limitation regarding our predictive signal model is the usage of CINE data. Reorganizing 
cardiac CINE frames is not a perfect model for arrhythmic events, especially if said event consists of both tem-
poral and physiological changes (e.g. atrial fibrillation). This was the motivation for developing an algorithm 
capable of handling any arbitrary change in the temporal resolution of the test scan. Demonstrating the ability 
to handle a non-periodic sinus rhythm is important, as conventional CINE precludes data should the heart rate 
change mid-acquisition. Furthermore, our protocol for estimating Q and tuning �ss was designed to accommo-
date variability, such as physiological changes during arrhythmic events. Our second secondary simulation was 
also designed to examine the behavior of Q, and did provide confirmation that a poorly chosen Q will result in 
divergence of our two-stage Kalman filter.

Let us revisit the strategies for acceleration: undersampling, accommodating for low temporal resolution 
training data, and computational time. Theoretically, the undersampling rate can be increased at the cost of an 
increased MSE. This tradeoff may be acceptable if the MSE of our algorithms remain well below that of their 
conventional counterparts. Based on the Kalman filtering results, an undersampling rate of 12.5 appears to strike 
a good balance on average and is higher than that commonly found in the current literature6. The second strat-
egy, accommodating for low temporal resolution training data, can be adjusted to compensate for any arbitrary 
difference in temporal resolution between the training and test set. The generalizability of our algorithm in this 
manner is a potential asset for dynamic CINE MRI. Computational times are another consideration for further 
optimization, as clinical use demands that reconstruction times of the Kalman filter be further reduced. Although 
we did not optimize our Kalman filter implementation, we can turn to multiple strategies in the literature30–32 to 
optimize computationally intensive steps, such as computing a Moore–Penrose pseudoinverse.

Let us further explore the reduction of computational time. As established in the introduction, multiple 
approaches for dynamic real-time cardiac MRI exist, many of which exhibit clinically feasible computational 
times. Our algorithm’s novelty is computationally demanding, as significant resources are required to accurately 
model irregular cardiac dynamics for an arbitrary temporal resolution and sinus rhythm. This was particularly 

Figure 6.   Mean-squared error (MSE) plots for the second primary scenario (single arrhythmic event), and MSE 
statistics for all scenarios. The subplots demonstrate the MSE for the second primary scenario across all UK 
Biobank datasets: (a) two-stage Kalman filter (TS-KF) with radial sampling, (b) TS-KF with cartesian sampling, 
(c) random-walk Kalman filter (RW-KF) with radial sampling, and (d) RW-KF with cartesian sampling. The x 
indices represent the frame number. Except for the index labeled “1”, each index also indicates the last phase of 
the corresponding cardiac cycle. (a–d) All demonstrate the robustness and consistency of our two-stage Kalman 
filter. Across all datasets, the MSE exhibited convergence. Subplot (e) demonstrates the maximum, mean, and 
median (med) values for all primary scenarios using radial sampling across all UK Biobank datasets. The MSE 
for the OCMR dataset is not available, as prospectively undersampling precludes the availability of the ground 
truth. Note that in general the TS-KF offered improved or comparable performance to the RW-KF. Subplot (f) 
demonstrates the maximum, mean, and median values for all primary scenarios using cartesian sampling across 
all datasets. Note that the TS-KF vastly outperforms the RW-KF for this sampling scheme.
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Figure 7.   Reconstruction accommodating for low temporal resolution training data. All reconstruction results 
are shown in (a). The test set has a temporal resolution five times greater than that of the training set. Combined 
with a spatial undersampling factor of 12.5, the effective acceleration factor is 100.5. Note that the random-walk 
Kalman filter reconstructs erroneous images: this is a consequence of inaccurate modelling. To compensate, the 
Kalman filter continuously attempts to reconstruct the mean, hence the perturbations. These perturbations are 
highlighted with orange arrows. Subplot (b) provides the MSE for the reconstructions shown in (a). The MSE 
plot for our two-stage Kalman filter simulation is shown in red. Our algorithm properly accommodates low 
temporal resolution training data by ensuring convergent behavior. Furthermore, the magnitude of the error is 
comparable to those shown in Fig. 6.
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noticeable in the OCMR reconstructions, as those images were significantly larger than the images used for 
the UK Biobank simulations. However, our algorithm’s ability to accommodate unforeseen cardiac dynam-
ics without the need for rebinning or preclusion of k-space is an asset for dynamic cardiac MRI. In the case of 
Kalman filtering, this is further augmented by the Kalman filter’s innate ability to ameliorate noise introduced 
due to high acquisition speeds. An immediate next step would be to mathematically simplify the components 
of our modelling process and our Kalman filters. For example, previous work assumed multiple matrices were 
diagonal, thereby allowing them to reduce the computational time required. While diagonalization is not a valid 
approach here (as the off-diagonal entries are important), it does illustrate that mathematical simplification is 
certainly feasible.

One of the immediate next steps is to implement our technique on an MRI scanner for feasibility testing 
and validation. This would address multiple limitations: lack of access to raw k-space data in different formats, 
inability to perform the training and test scan in the same session, imperfect modelling of arrhythmic events, 
and inability to fully investigate the importance of selecting Q . Furthermore, implementation on an MRI scan-
ner is necessary for proper validation of clinical measures such as left ventricular ejection fraction. In vivo, we 
can robustly build the predictive signal model by obtaining a single fully sampled CINE cardiac cycle prior to 
real-time data acquisition.

Another interesting future study would be to improve the training scan. While the requirement of a single 
cardiac cycle is advantageous for training, usage of fully sampled k-space does pose some questions regarding 
our algorithm’s flexible undersampling. Furthermore, it is important to recognize that all training scans will likely 
be subjected to motion artefacts or inconsistencies. Implementing a solution that does not utilize fully sampled 
k-space while ensuring artefacts are compensated for is an immediate next step and would pose an excellent 
future study in tandem with the study described in the previous paragraph.

Conclusion
We have presented a novel predictive signal model for dynamic CMR that can be used to obtain high-quality 
reconstructions at an average acceleration of 12.5 from undersampling and another factor of 5 from temporal 
interpolation. We demonstrate the ability to use this algorithm in multiple reconstruction frameworks, an asset 
for dynamic CMR. With its attributes of adaptability to irregular heart rhythms, versatile undersampling, abil-
ity to accommodate for low temporal resolution training data, and the ability to be integrated with previously 
developed techniques, this predictive signal model algorithm can serve as a foundation for further innovations 
in robust, real-time dynamic CMR.

Data availability
For all UKBiobank datasets, please visit https://​www.​ukbio​bank.​ac.​uk/; interested parties must obtain permis-
sion from UKBiobank in order to download these datasets. We cannot provide a direct link to these datasets, as 
doing so would violate the strict confidentiality specified in the research agreement between our laboratory and 
the UKBiobank. For all Ohio State University datasets, please visit https://​ocmr.​info/.
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