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Adaptive constraints 
by morphological operations 
for single‑shot digital holography
Danlin Xu 1,2, Zhengzhong Huang 1 & Liangcai Cao 1*

Digital holography provides access to quantitative measurement of the entire complex field, which is 
indispensable for the investigation of wave‑matter interactions. The emerging iterative phase retrieval 
approach enables to solve the inverse imaging problem only from the given intensity measurements 
and physical constraints. However, enforcing imprecise constraints limits the reconstruction accuracy 
and convergence speed. Here, we propose an advanced iterative phase retrieval framework for single‑
shot in‑line digital holography that incorporates adaptive constraints, which achieves optimized 
convergence behavior, high‑fidelity and twin‑image‑free reconstruction. In conjunction with 
morphological operations which can extract the object structure while eliminating the irrelevant part 
such as artifacts and noise, adaptive constraints allow the support region to be accurately estimated 
and automatically updated at each iteration. Numerical reconstruction of complex‑valued objects 
and the capability of noise immunity are investigated. The improved reconstruction performance 
of this approach is experimentally validated. Such flexible and versatile framework has promising 
applications in biomedicine, X‑ray coherent diffractive imaging and wavefront sensing.

Phase contains fundamental information about the optical properties and characteristics of objects. However, 
the oscillation frequencies of light waves are so fast that the imaging sensors enable to measure only the intensity 
of the field while the phase is  missing1. Retrieval of the phase becomes a challenging issue. Digital holography 
is a label-free and non-invasive imaging technique to extract the phase, referring to digital record of holograms 
and numerical reconstruction by means of diffraction  theory2. Holograms captured by an electronic sensor 
encode both the amplitude and the phase of the object’s wavefront through introducing a reference light. Digital 
holography provides some significant advantages, including high-speed holographic wavefront acquisition, avail-
ability of multi-dimensional information without requiring an imaging lens and versatility of image processing 
 techniques3,4, which promises practical applications in  microscopy5,6, biological specimen  analysis7–9, terahertz 
 waves10,11 and  microfluidics12.

Based on Gabor’s holography, the in-line digital holography has emerged as an attractive and simple holo-
graphic configuration, where the axes of the diffracted object wave and the reference wave are  parallel13. Although 
the in-line setup endows with full bandwidth utilization and high phase sensitivity, the quality of reconstructed 
images is susceptible to the overlapping out-of-focus twin-image artifact that exists owing to the on-axis inci-
dence of the two  beams14. As a result, varieties of experimental means have been implemented to address the 
twin-image  noise15–19, such as off-axis  holography15, phase-shifting16,17 and so on. Nevertheless, the off-axis 
holography requires an oblique-angle reference beam, resulting in the sacrifice of space-bandwidth product of 
the imaging system. In terms of the phase-shifting strategy, a time-division phase-shifting method needs sequen-
tial exposure of phase-shifted holograms at the expense of time-bandwidth product, whereas a wave-splitting 
phase-shifting method requires specially designed optical  elements20. More recently, numerical approaches have 
been explored and developed to tackle with the twin-image  problem21–23, wherein phase retrieval algorithm is 
typically employed.

Phase retrieval aims to recover a complex-valued signal given intensity-only diffraction patterns, which is 
supposed to be a key ingredient of in-line digital  holography24. As a wavefront-sensing method, phase retrieval 
has attracted widespread attention for the reason that it offers a solution to the phase problem arising in diverse 
fields including  crystallography25,  astronomy26 and optical  imaging27. In order to generate better behaved image 
reconstruction models to meet practical applications, different techniques have been introduced to optimize 
phase retrieval problem, such as deep  learning28–30, modified sensor  masks31 and pixel super  resolution5,14. The 
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pioneering research work of iterative phase retrieval dates back to Gerchberg–Saxton (GS) algorithms which 
is slow and sensitive to initial  guesses32, therefore inspiring a furry of follow-up work to improve the GS itera-
tive  framework33–35. Such GS-based algorithms exploit back-and-forth propagation between different planes, 
embedding physical constraints like  support36–38, non-negativity39,40,  absorption21 into iteration to speed up 
convergence and avoid local convergence during iteration. Support constraints require the prior knowledge 
of the object shape, so as to set the transmission function of the object beyond the known object boundary to 
zero. To escape the need of such prior knowledge, the adaptive support of “shrink-wrap” technique based in 
the  spatial37 and  frequency38 domain estimates and updates the support area according to the range where the 
intensity is over a certain threshold. However, if the determined threshold level is lower, the support region could 
be overestimated which induces the residue of noise in the reconstruction. While if the determined threshold 
level is higher, some object information could be missing. The inaccurate selection of the threshold causes a 
less than perfect estimation of the support. Thus, the absorption constraint has been proposed relying on the 
principle that absorption may not give rise to an increased amplitude following a scattering process. Although 
such effective method dispenses with the object support, it is limited to the samples which do not absorb or 
scatter optical wave  significantly41. Recent researches favor multi-image phase retrieval because it is flexible to 
the issues existing in the GS-based algorithms. Multiple frames of raw images serve as amplitude constraints to 
force the complex object field to gradually agree well with all these measurements. The data redundancy supplied 
by multiple measurements is capable of reconstructing complex-valued  objects42. Multiple measured holograms 
can be achieved by varying object-to-sensor  distances38,43–45, illumination  wavelengths46,47, illumination  angles48,49 
and coding mask  modulation50. Unfortunately, the achievable of a stable and accurate reconstruction is strongly 
enslaved to high-precision controllable devices, slow convergence rate, great quantities of holographic data and 
iterations. Hence, optimizing the phase retrieval approach for high-quality reconstruction and improved noise 
immunity still remains a challenging task.

Morphological filtering technique is a nonlinear signal processing method stemming from set theory and 
integral  geometry51, which is developed to numerous applications such as biomedical image processing, machined 
surface inspection and fault diagnosis. Typically, morphological operations, comprising erosion, dilation, clos-
ing, opening, related combined and compound operations, can be employed to modify the geometry of the raw 
image, thereby to realize the extraction of the exact pictorial information. In this work, we propose an advanced 
iterative phase retrieval method that generates adaptive constraints by morphological operators for single-shot 
in-line digital holography to improve the reconstruction quality and speed up convergence. In this proposed 
scheme, the square root of a single intensity pattern is used to update the modulus of the diffracted wave field 
in the diffraction space, and the adaptive constraint updated iteratively by morphological operators is applied 
to confine the object wave field, so that it can adaptively tend to the accurate amplitude and phase distributions 
of a complex object and accelerate the convergence speed. Compared to previous strategies for generating the 
object support, the proposed approach in conjunction with morphological operations provides a more appropri-
ate and efficient estimation of support. The support region generated automatically is tight enough to eliminate 
the need of a sequence of intensity patterns. The method of generating adaptive constraints by morphological 
operations is described in detail. The numerical calculation and the immunity to noise are discussed. Moreover, 
the experimental reconstructions are presented to verify the stability and accuracy of our approach.

Methods
Optical setup for in‑line digital holographic imaging. Here, an in-line digital holographic imaging 
configuration is considered, which is presented in Fig. 1a. A linearly polarized Gaussian laser beam is emitted 
from a He–Ne laser at the wavelength of 632.8 nm. After being collimated and expanded by the beam expander 
(BE) which is comprised of two lenses, the laser beam passes through the object. Then the interference of the 
scattered and unscattered wave fields generates an in-line hologram recorded by a CMOS sensor (QHY174, 
QHYCCD Co., Ltd.). The CMOS sensor we used has the resolution of 1200× 1920 with a pixel size of 5.86 µ m, 
and the field of view (FOV) of such holographic imaging system is 7.032× 11.251 mm2 . On account of the 
limited FOV of the CMOS, the diagram acts as a low-pass filter to select a certain area of the object to image on 
the CMOS. Such lensless in-line digital holographic imaging system is characterized by portability, low cost and 
high space-bandwidth product.

Principles of adaptive constraints applied in iterative phase retrieval. Mathematically, the phase-
retrieval problem can be formulized  as52

where u ∈ C is the complex-valued signal representing the transmission of the interested object, I is the measured 
intensity pattern, A expresses the wavefront propagation process, ⊙ refers to the Hadamard product, M represents 
the modulated optical masks that provides constraints to optimize the convergence and reduce the ill-posedness 
of the inverse problem. Early researches concentrated on introducing support constraints which limit the recon-

structed region into the double-side constraint iteration. Specially, the mathematical definition of the support 

constraint describes as ui =
{

ui i ∈ S
0 i /∈ S

 , where S denotes the set of pixels within the support region. The conven-

tional backpropagation reconstruction overlapped with twin image is presented in Fig. 1b1. In the iterative phase 
retrieval method, the support constraint is commonly imposed on the object domain. Given the prior knowledge 
of the object size, the support constraint is generally assumed as a rectangular or circular aperture to eliminate 
the information located outside the estimated support  region53. As seen in Fig. 1b2, such loose and rough support 

(1)Find u ∈ C s.t. Ik = |Ak(Mk ⊙ u)|2, k = 1, . . . ,N ,
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enables to suppress artifacts outside the boundaries, but artifacts distributed within the support region still 
preserve, which significantly obfuscates the reconstruction. Moreover, in terms of the target object in a particular 
shape, designing a specific support is complicated and inefficient. Hence, morphological operations are intro-
duced to generate adaptive constraints, aiming to improve the accuracy and efficiency of extracting the relevant 
image structures and solve the twin-image problem.

Morphological filtering, mainly involving morphological operations and structural element (SE), is regarded 
as a powerful image processing tool for analyzing and extracting the geometrical structure of an image even 
wrapped by noise. The interactions between a raw image and a certain pre-designed SE can be investigated by 
morphological  operations51. A binary SE represents a smaller matrix of pixels than that of the raw image, whose 
features are determined by its shape and domain. Mathematically, the binary erosion of a set F by a pre-defined 
SE (G) is expressed  as54

where � represents the erosion operation, (G)ε =
{

σ |σ = g + ε, g ∈ G
}

 denotes the translation of origin of G 
to point ε . It means that erosion replaces each pixel with the local minimum of all pixels in the neighborhood 

(2)F�G =
{

ε|(G)ε ⊆ F
}

,

Figure 1.  (a) Optical configuration of an in-line holographic imaging system. BE, beam expander; L1–L2, 
lenses. (b1) In-line reconstruction by back-propagating to the object plane. (b2) Reconstruction by applying 
support constraints in the iterative phase retrieval method after 40 iterations. (b3) Reconstruction by applying 
adaptive constraints in the iterative phase retrieval method after 40 iterations. The support region is outlined by 
red lines and the constraint patterns are situated in the lower left corner respectively. (c) Schematic diagram for 
the steps of generating adaptive constraints.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10267  | https://doi.org/10.1038/s41598-023-37423-3

www.nature.com/scientificreports/

whose shape and size is determined by SE. On the contrary, the binary dilation replaces each pixel with the local 
maximum of all pixels in the neighborhood, which is defined  as54

where ⊕ represents the dilation operation, Ĝ is the reflection of G. Based on the combination of erode and dila-
tion operations, the opening and closing operations can be described respectively as

where ◦ denotes the opening operation and • denotes the closing operation. Morphological opening operation 
eliminates the irrelevant part such as scatters and burrs in the image while preserving the primary geometry of 
the object structure. Morphological closing operation fills the small holes and thickens the foreground pixels 
in the image. Because the morphological opening and closing functions are not mutually  inverse55, they can be 
further cascaded as open-closing and close-opening operations by using different SE (G1, G2), which can be 
considered as

On the basis of the skeletons and morphological characteristics in an image, morphological operations have 
the ability to selectively remove the unwanted structures such as noise and unrelated target objects. The recon-
struction shown in Fig. 1b3 indicates that using adaptive constraints obviously enhances extraction capability 
and removes disturbance of twin-image artifacts. It offers a more appropriate and efficient estimation of object 
support. Stages for the generation of adaptive constraints are illustrated in Fig. 1c. An input image U is firstly 
binarized using Poisson distribution-based  threshold56. Such automatic threshold algorithm dispenses with 
the need for setting a certain threshold and optimizing any parameters. Then the morphological adjustments 
are considered for refining the image. Due to the shrinkage of the closing operator and the expansibility of the 
opening  operator55, close-opening filter enlarging the object domain incurs the inadequate removal of noise, 
while open-closing filter contracting the object domain causes the partial loss of relevant image information. To 
get the trade-off between these two filters, an average weighted combination of open-closing and close-opening 
operations F̄ = OC(Bp)+CO(Bp)

2  is calculated. After undergoing morphological operations, Gaussian filtering is 
applied to smooth the image F̄ . Finally, the adaptive constraint is formed upon binarizing the filtering image 
again according to the threshold obtained by edge detection method ‘Sobel’. If the constraint is created by using 
the threshold-based segmentation algorithm in a straightforward manner, the binary pattern depends on the 
area where the intensity is above the pre-assessed threshold. In this case, the accuracy of estimating the object 
support is susceptible to twin-image artifacts and measurement noise in experiment. Instead, morphological 
filtering enables to extract the geometrical structure of featured objects even in cases involving experimental 
noise, utilizing a SE to probe each pixel and modify its grayscale value according to the intensity of all pixels in 
its neighborhood. Consequently, the adaptive constraint generated by morphological filtering is updated at each 
iteration, giving rise to a sharper and tighter support region.

In pursuit of an advanced iterative phase retrieval method for in-line hologram that endows with high-
fidelity reconstruction, superior convergence speed and improved immunity to noise, adaptive constraints by 
morphological operations are introduced to the iterative phase retrieval algorithm. The overview flowchart is 
depicted in Fig. 2a. The iterative process between the sensor plane and the object plane is performed as follows.

• Step 1: Initialization. The in-line hologram with M1 × N1 pixels captured by the CMOS is padded with 
constant to I0 with M2 × N2 pixels ( M2 > M1,N2 > N1 ). The initial amplitude is identified as the square 
root of the padding hologram, and the initial phase ϕ0 is set to random or constant. Subsequently, the initial 
complex-valued wave field is expressed as Uk

s =
√
I0 exp

(

jϕ0
)

.
• Step 2: The process of the wave field propagating in the free space is calculated by the angular spectrum 

method (ASM)57, which takes the form as 

 where F and F−1 represent two-dimensional Fourier transform and inverse Fourier transform respectively, 
H is the transfer function defined as 

 where (fx , fy) is the coordinate in spatial frequency domain, z denotes the distance from the object plane to 
the sensor plane. In digital holography, there are various types of reconstruction noise that can affect the 
quality and accuracy of the reconstruction. In order to achieve a better reconstruction, it is important to 
acquire the focus distance of an object. The optimal reconstruction plane can be identified based on Tamura 
coefficient (TC) metric which has only a single extreme in the whole focus  range58. Hence, taking advantage 
of the intrinsic flexibility of digital holography due to its numerical focusing ability, multiple sections of an 

(3)F ⊕ G =
{

ε|
(

Ĝ
)

ε
∩ F �= ∅

}

,

(4)
F ◦ G = (F�G)⊕ G,

F • G = (F ⊕ G)�G,

(5)
OC(F) = (F ◦ G1) • G2,

CO(F) = (F • G1) ◦ G2.

(6)Pz(u) = F
−1

{

F {u} ·H
(

fx , fy , z
)}

,

(7)H
(

fx , fy , z
)

=
{

exp
(

i2πz
√

1
�2

− f 2x − f 2y

)

, f 2x + f 2y ≤ 1
�2

0 otherwise
,
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object can be reconstructed by locating the best focus distance corresponding to different sections of the 
object. � is the wavelength. The complex-amplitude field Uk

s  distributed in the sensor plane is propagated 
back to the object plane to obtain Uk

o = P−z

(

Uk
s

)

= Ak
o exp

(

jψk
o

)

.
• Step 3: In the object plane, the adaptive constraint (AC) is implemented to update both the amplitude Ak

o and 
the phase ψk

o  . The generation of adaptive constraints combines thresholding technique and morphological 
operations, which is illustrated in Fig. 1c in detail.

• Step 4: By propagating the updated field Uk+1
o  forward to the sensor plane, the complex-amplitude field 

is given by Uk+1
s = Pz

(

Uk+1
o

)

 . Then, the amplitude of the complex-valued field in the sensor plane 
Uk+1
s = Ak+1

s exp
(

jϕk+1
s

)

 is updated with square root of the in-line hologram, while the phase value is still 
maintained.

Steps 2–4 are processed repeatedly until the mth iteration. Finally the reconstruction can be achieved by back 
propagating from the sensor plane to the object plane. The free-space propagation is calculated as a circular 
convolution model via fast Fourier transforms(FFTs), which causes wraparounds superimposed on the 
calculation result. In order to resolve this issue, adequate padding is used to prevent periodization artifacts and 
obtain an accurate  calculation59. Evolutions of adaptive constrains enforced on the amplitude and the phase in 
the object plane are exhibited in Fig. 2b. The adaptive constraints are generated at each iteration by employing 
morphological operations based on the reconstructed amplitude and phase in the object plane respectively. The 
implementation of morphological filtering helps to extract the object structure while simultaneously eliminating 
the artifact and noise. As the iteration process continues, the constraint is updated automatically and performs 
a Hadamard product with the reconstructed images in the object plane. Hence, irrelevant regions are gradually 
filtered out, causing the support region to automatically shrink to match the geometrical structure of the object. 
The generation of adequate tight and sharp support region is conducive to promote the accuracy of extracting 
the object information and suppress the overlapping twin-image artifact that obscures the reconstruction.

Numerical calculation
Reconstruction of complex‑valued objects. For the purpose of verifying the improvement effect of 
employing adaptive constraints in the iterative phase retrieval, the comparison of reconstruction quality and 
convergence behavior with multi-distance phase retrieval (MPR), support and adaptive constraints is carried 
out. The parameters we used for numerical simulation are as follows: the wavelength is 500 nm, the pixel pitch is 
5.86 µ m, G1 creates a disk-shaped SE with a radius equal to 1 and G2 creates a 2× 2 square SE. In-line holograms 
with 500× 500 pixels are padded with constant to an image with 1000× 1000 pixels. Given an in-line hologram 
with the imaging distance of 6cm, support and adaptive constraints are enforced on the object plane in the dou-
ble-side constraint iteration. For the MPR method, We adopted three in-line holograms with a distance interval 
of 0.5 mm. These three intensity patterns are treated as amplitude constraints in the iterative phase retrieval.

In Fig. 3a1,a2, the amplitude and phase distributions of a complex-valued object with “flat” boundary serve 
as ground truth. The retrieved amplitude and phase by methods of support constraints, MPR and adaptive 
constraints are shown in Fig. 3b1–c3. Note that the reconstructions by support constraints and MPR still suffer 

Figure 2.  (a) The overview flowchart of adaptive constraints inserted in the iterative phase retrieval of a 
complex-valued object. (b) Evolutions of adaptive constraints versus iterations which is applied to adaptively 
update the amplitude and phase distributions in the object plane.
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from the overlapping twin-image artifact. That is because the support constraint seems as an aperture that mainly 
contributes to filtering artifacts beyond the object support region, but artifacts wrapped inside the pre-designed 
boundary can not be obstructed during iterations. MPR approach is able to achieve stable and high-fidelity 
reconstruction, but the reconstruction quality is restricted by the quantity of captured holograms and iterations. 
In contrast with them, incorporating adaptive constrains into the iterative phase retrieval exhibits higher-quality 
reconstruction and better ability to tackle with the twin-image problem. The twin-image artifact is interpreted 
as noise terms that can be removed by morphological operations. The cross-sectional profiles match well with 
ground truth. In addition to reconstructing the object with stepped-phase distributions, comparison of 
reconstructing the object with continuous-phase distributions by means of different phase retrieval algorithms 
is also discussed. According to ground truth of object 2 shown in Fig. 3e1, e2, it is noticeable that the retrieved 
amplitude and phase using adaptive constraints still have a better performance in reconstruction quality and 
twin-image elimination than that using support constraints and MPR, which is depicted in Fig. 3f1–g3. Applying 

Figure 3.  Reconstruction of a complex-valued object with “flat” boundary by using support constraints, 
MPR and adaptive constraints. (a1,a2) Ground-truth amplitude and phase of the original object 1. (b1–b3) 
Comparison of the retrieved amplitude after 200 iterations. (c1–c3) Comparison of the retrieved phase after 200 
iterations. (d1–d2) The MSE curves against runtime of the retrieved amplitude and phase in object 1. (e1,e2) 
Ground-truth amplitude and phase of the original object 2. (f1–f3) Comparison of the retrieved amplitude after 
100 iterations. (g1–g3) Comparison of the retrieved phase after 100 iterations. (h1,h2) The MSE curves against 
runtime of the retrieved amplitude and phase in object 2. Below are the cross-sectional profiles, where the red 
line indicates the retrieved amplitude and phase value, and the blue line indicates the amplitude and phase value 
of the original object.
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conventional support constraints generally suffers from a high reconstruction error because the loose support 
region is insufficient to suppress the artifact. By introducing the morphological filtering, adaptive constraints 
allow for gradually adjusting the support domain according to the structural characteristics of the object during 
iterations. The mean square errors (MSEs) E =

[

∑

x,y

∣

∣ρ
(

x, y
)

− ρ0
(

x, y
)∣

∣

2
]

/

[

∑

x,y

∣

∣ρ0
(

x, y
)∣

∣

2
]

 of the retrieved 
amplitude and phase considered as a metric to reflect the reconstruction quality with different approaches are 
calculated in Fig. 3d1,d2,h1,h2, where ρ

(

x, y
)

 is the estimated distribution and ρ0
(

x, y
)

 is the initial distribution. 
It is indicated that the method of incorporating adaptive constraints is allowed to achieve a more optimized 
convergence performance.

Another example of reconstructing a complex-valued scene with “random” boundary is depicted in Fig. 4. 
Figure 4a1,a2 indicate the ground-truth amplitude and phase of the original object 1. A image with sharp edges 
is input as the phase part. As shown in Fig. 4b1–c3, the reconstruction quality by support constraints and MPR 
methods is severely degraded by artifacts originating from mutual interference between the amplitude and the 

Figure 4.  Reconstruction of a complex-valued object with “random” boundary by using support constraints, 
MPR and adaptive constraints. (a1,a2) Ground-truth amplitude and phase of the original object 1. (b1–b3) 
Comparison of the retrieved amplitude after 300 iterations. (c1–c3) Comparison of the retrieved phase after 300 
iterations. (d1,d2) The MSE curves against runtime of the retrieved amplitude and phase in object 1. (e1,e2) 
Ground-truth amplitude and phase of the original object 2. (f1–f3) Comparison of the retrieved amplitude after 
600 iterations. (g1–g3) Comparison of the retrieved phase after 600 iterations. (h1,h2) The MSE curves against 
runtime of the retrieved amplitude and phase in object 2. Below are the cross-sectional profiles, where the red 
line indicates the retrieved amplitude and phase value, and the blue line indicates the amplitude and phase value 
of the original object.
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phase distributions of the object with “random” boundary. Significantly, artifacts can be completely removed by 
imposing adaptive constraints, which demonstrates that adaptive constraints generated by morphological opera-
tions help to accurately extract the object structure and simultaneously eliminate the unwanted information. To 
further visualize the reconstruction effect of applying adaptive constraints, a cell image with more complicated 
distribution is used as the phase part shown in Fig. 4e2. In Fig. 4f1–g3, it is observed that the use of support 
constraints is ineffective for retrieving the low-frequency phase information, and the reconstruction is obscured 
by the artifact. Enforcing adaptive constraints on the object plane appears to be a viable solution for these issues, 
as it enables the rendering of recognizable cellular structures. It can also be discovered in Fig. 4d1,d2,h1,h2 
that adaptive constraints require significantly less time to achieve the same MSE as the other phase retrieval 
approaches, which illustrates that employing adaptive constraints has higher convergence speed and lower MSE. 
Therefore, adaptive constraints incorporated into the phase iteration method have improvement in fidelity of 
reconstruction and convergence behavior.

Reconstruction under noisy conditions. Furthermore, single-shot phase retrieval inherits ill-posed-
ness, which makes it susceptible to measurement noise. In order to evaluate the noise immunity of adaptive con-
straints implemented in the iterative phase retrieval, the simulated hologram is added white Gaussian noise with 
different signal to noise ratio (SNR). Evolutions of adaptive constraints when white Gaussian noise with the SNR 
of 15 dB is added to the simulated hologram are described in Fig. 5a. It is noteworthy that adaptive constraints 
updated automatically at each iteration contribute to sketching the contours of the object and filtering the recon-
struction immersed in noise. Support constraints designed according to the object shape help to reduce noise 
outside the known boundary, but noise superimposed on the object within the support region still degrades the 
reconstruction quality, as seen in Fig. 5c1,c2. As depicted in Fig. 5b1,b2, reconstructions by adaptive constraints 

Figure 5.  Reconstruction under white Gaussian noise with the SNR of 15 dB and 20 dB. (a) Evolutions 
of adaptive constraints under the case of a simulated noisy hologram with the SNR of 15 dB. (b1,b2) 
Reconstruction with adaptive constraints after 100 iterations under the condition of SNR = 20 dB and SNR = 
15 dB respectively. (c1,c2) Reconstruction with support constraints after 100 iterations under the condition 
of SNR = 20 dB and SNR = 15 dB respectively. (d) Convergence behavior of support constraints and adaptive 
constraints with SNR = 20 dB and SNR = 15 dB.
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achieve a better recovery performance than using support constraints. To quantify the convergence behavior 
under noisy conditions, plot of logarithm MSE against iterations is performed in Fig. 5d. The reconstruction has 
a lower MSE with the increase of SNR. It can be observed that the MSE enlarges with the increasing of iterations 
by means of support constraints. That is because the noise within the support domain cannot be filtered out 
and accumulates during the iteration process, resulting in an increased reconstruction error. In contrast, adap-
tive constraints ensure convergence under moderate-noise conditions, having a better noise tolerance. Thus, 
using adaptive constraints is profitable to enhance the reconstruction quality and improve convergence behavior 
under noisy conditions.

Experimental reconstruction
Next, we go further to experimentally confirm the improved reconstruction performance of our proposed 
method by imaging an amplitude resolution test target. By methods of nano processing, the positive 1951 USAF 
target (Thorlabs, Inc.) is fabricated by etching lines onto a glass plate. The raw in-line hologram in Fig. 6a is 
measured by the CMOS sensor at the distance of 4.14 cm from the object. For MPR method, the distance interval 
between three hologram planes is 0.5 mm. With the increasing of iterations, evolutions of adaptive constraints in 
Fig. 6b illustrate that introducing morphological operations helps to probe the structural features of the object 
to adaptively form a tight and sharp object support. Comparisons of the amplitude reconstruction by applying 
support constraints, MPR and adaptive constraints are performed in Fig. 6c1–d3. The retrieved amplitude by 
support constraints and MPR is severely obscured due to the existence of high reconstruction noise. By contrast, 
adaptive constraints can accomplish higher-quality reconstruction without artifacts overlapped, exhibiting better 

Figure 6.  Experimental reconstruction of an amplitude resolution test target. (a) The captured in-line 
hologram. (b) Evolutions of adaptive constraints against iterations. (c1–c3) The retrieved amplitude by applying 
support constraints, MPR and adaptive constraints respectively after 200 iterations. Amplitude values of Group 
3, Elements 1–6 are plotted on the right. (d1–d3) Reconstruction of the corresponding boxed areas in (c1–c3). 
Amplitude values of Group 5, Elements 1–6 are plotted on the right. The inset in (d3) represents the best 
structures resolved by adaptive constraints.
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resolution with line width ranging from 8.77 to 15.63 µ m (Group 5, Elements 1–6). Also, Group 6, Element 3 
of USAF 1951 with linewidth 6.2 µ m is the finest resolvable feature, which can be found in Fig. 6d3. It can be 
elucidated that measurement noise and the twin-image artifact which is interpreted as noise can both be removed 
by morphological operations.

In addition, we imaged a phase plate to demonstrate the quantitative phase imaging ability of incorporating 
adaptive constraints. The phase plate is fabricated by etching multiple binary patterns onto a quartz glass plate. 
The raw in-line hologram in Fig. 7a is captured at the distance of 4.31 cm from the object. As observed in Fig.7b–d 
which present the surface profiles and the cross-sectional profiles of the retrieved phase by different approaches, 
the reconstruction quality by support constraints and MPR method is degraded attributing to the wrap-around 
artifact. Whereas enforcing adaptive constraints on the object domain is profit for eliminating twin-image arti-
facts from the retrieved phase distribution effectively. Besides, the low-frequency phase can hardly transfer into 
the intensity at the sensor plane because the frequency response of the weak phase transfer function declines to 
 zero60, which poses challenges for recovering the low-frequency phase based on the in-line holographic system. It 
is noticed that iteratively updating adaptive constraints at the object plane seems to address this problem, which 
has a efficient reconstruction of the phase object. The experimental reconstruction confirms the improvement 
of reconstruction performance and the effectiveness in removing artifacts by exploiting adaptive constraints.

Furthermore, the skeletal muscle cells sandwiched between glass plates are selected to demonstrate the capac-
ity of our proposed method to reconstruct complex-valued objects. Figure 8a shows the measured in-line holo-
grams. Notice that the retrieved amplitude in Fig. 8b1–b3 and the retrieved phase in Fig. 8c1–c3 by methods of 
adaptive constraints present a better reconstruction than using support constraints and MPR. Using adaptive 
constraints can remove twin-image artifacts effectively and reveal the cell morphology clearly. For cell samples, 
too little light scattering from the specimen commonly results in a poor image contrast, which is difficult to bring 
out a distinguishable structure from an overwhelming incident light  background8. The reconstructions performed 
in Fig. 8b3,c3 suggest that imposing adaptive constraints to confine the object support can significantly improve 
the image contrast and resolution.

Conclusion
In summary, we propose an advanced iterative phase retrieval framework for single-shot in-line holographic 
imaging that incorporates adaptive constraints, which achieves high-fidelity reconstruction and optimizes 
convergence performance. Different from previous strategies for generating the object support, adaptive 
constraints by introducing morphological operations enable the object support to be automatically and 
accurately updated at each iteration. The capability of morphological filtering technique to extract the object 
structure while eliminating the irrelevant part provides a more appropriate and efficient estimation of support. 
Reconstruction of complex-valued objects by employing adaptive constraints is investigated and the immunity 
to noise is demonstrated. Compared with applying support constraints and MPR method, adaptive constraints 

Figure 7.  Experimental reconstruction of a phase plate. (a) The measured in-line hologram. (b–d) The surface 
profiles and the cross-sectional profiles of the retrieved phase corresponding to the boxed area by employing 
support constraints, MPR and adaptive constraints respectively after 500 iterations. The cross-sectional profiles 
show phase values along the red dotted lines in (b–d).
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are more effective in eliminating twin-image artifacts and speeding up convergence. Additionally, the improved 
reconstruction performance of this approach is experimentally confirmed by imaging an amplitude resolution 
target, a phase plate and skeletal muscle cells. Such flexible and versatile framework may better facilitate 
applications in biomedicine, X-ray coherent diffractive imaging and wavefront sensing.

Data availibility
Data underlying the results presented in this paper are available in https:// github. com/ THUHo loLab/ Adapt 
ive- Const raints.
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