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Automated machine learning 
(AutoML) can predict 90‑day 
mortality after gastrectomy 
for cancer
Gopika SenthilKumar 1,2, Sharadhi Madhusudhana 2, Madelyn Flitcroft 2, Salma Sheriff 2, 
Samih Thalji 2, Jennifer Merrill 2, Callisia N. Clarke 2, Ugwuji N. Maduekwe 2, Susan Tsai 2, 
Kathleen K. Christians 2, T. Clark Gamblin 2 & Anai N. Kothari 2*

Early postoperative mortality risk prediction is crucial for clinical management of gastric cancer. 
This study aims to predict 90‑day mortality in gastric cancer patients undergoing gastrectomy 
using automated machine learning (AutoML), optimize models for preoperative prediction, and 
identify factors influential in prediction. National Cancer Database was used to identify stage I–III 
gastric cancer patients undergoing gastrectomy between 2004 and 2016. 26 features were used to 
train predictive models using H2O.ai AutoML. Performance on validation cohort was measured. In 
39,108 patients, 90‑day mortality rate was 8.8%. The highest performing model was an ensemble 
(AUC = 0.77); older age, nodal ratio, and length of inpatient stay (LOS) following surgery were most 
influential for prediction. Removing the latter two parameters decreased model performance (AUC 
0.71). For optimizing models for preoperative use, models were developed to first predict node ratio 
or LOS, and these predicted values were inputted for 90‑day mortality prediction (AUC of 0.73–0.74). 
AutoML performed well in predicting 90‑day mortality in a larger cohort of gastric cancer patients that 
underwent gastrectomy. These models can be implemented preoperatively to inform prognostication 
and patient selection for surgery. Our study supports broader evaluation and application of AutoML to 
guide surgical oncologic care.

Although the incidence of gastric cancer is decreasing, it remains the fourth leading cause of cancer-related 
death world-wide1. Surgery is the only curative treatment; however, postoperative mortality rates remain high 
with a 90-day mortality of 9.1% following total  gastrectomy2. The risk of significant perioperative morbidity 
makes the decision for proceeding with gastric resection challenging in some patients. Studies have shown that 
aggressive treatments and delayed hospice care can decrease quality of life for patients with advanced cancers 
and their  families3,4, and thus accurate early mortality risk prediction following gastrectomy is crucial for clinical 
management of gastric cancer.

Machine learning (ML) has the potential to more accurately make predictions when compared to traditional 
statistical methodologies, as it is designed to capture multifaceted non-linear relationships and complex interac-
tions between  variables5,6. ML has been applied to improve prognostication in various disease  states6; within 
gastric cancer specifically, ML models have been shown to improve endoscopic/pathology-based  diagnosis7 and 
predict postoperative disease  recurrence8,9 and lymph node  metastasis10. Despite its advantages, some criticisms 
of ML include difficulty with selecting and training appropriate models, managing a complex set of input features 
and pre-processing data, and scaling fitted models to  production6. Moreover, despite the availability of extensive 
data within electronic health records, the need for expertise in ML has been proposed to be one of the major 
factors limiting the widespread application of ML models in  healthcare11.

Automated Machine learning (AutoML) is an emerging field within ML that provides user-friendly tools for 
training high quality, scalable models and decreases the reliance on human  experts11. Numerous open-source 
and industry-produced AutoML tools have been developed in recent years; however, their application to clinical 
prediction have been  limited11. H2O.ai’s  AutoML12 is a freely available, easy-to-use interface that allows users 
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to train a variety of pre-developed candidate models. It has also been reported to have improved  performance13 
and more versatile features compared to other AutoML  tools14. The primary objective of this study was to assess 
whether AutoML can predict 90-day mortality in patients with gastric cancer undergoing gastric resection. 
Secondary objectives included optimizing models for preoperative prediction and identifying factors that most 
strongly contribute to predictions of mortality after gastric cancer surgery.

Materials and methods
The National Cancer Database (NCDB) was used to identify stage I–III gastric cancer patients undergoing 
gastrectomy between 2004 and 2016. The NCDB is a hospital-based cancer registry developed by the American 
College of Surgeons Commission on Cancer (CoC) and the American Cancer Society. Data are made available 
publicly to investigators associated with a CoC-accredited cancer program. It includes data from over 1500 
CoC-accredited programs and captures approximately 70% of patients with new cancer diagnoses in the United 
 States15. Patients with metastatic disease and palliative-intent surgery were excluded. 26 input features were 
selected and used to predict 90-day mortality (Table 1). Characteristics of patients alive at 90 days versus those 
that died were compared using two-tailed t-tests or chi-square analysis for continuous and categorical variables 
respectively. IBM SPSS Version 28.0 was utilized for descriptive statistical analyses. This study was reviewed 
and approved by the Medical College of Wisconsin Institutional Review Board with waiver of informed consent 
(retrospective study with non-identifiable patient records) and conducted in accordance with relevant guidelines 
and regulations.

The H2Oai’s  AutoML16 package for RStudio was utilized to train 20 ML algorithms that were either linear, 
decision tree-, or neural network- based. While the linear models are most suited for characterizing linear rela-
tionship, the decision trees are better suited for multi-level categorical variables (i.e. yes/no decisions), and the 
neural networks can best handle complex variable  interactions17. Stacked ensembles, which are a combination of 
the trained models, were also generated. Data were split into training and validation sets. fivefold cross-validation 
was used during model training. Model performance of the top ensemble and top independent model type on 
the validation set was evaluated using area under the receiver operating characteristic curve (AUC), positive 
and negative predictive values as well as sensitivity and specificity. To do so, a binary classifier based on 90-day 
mortality was generated and performance measured based on an F1-threhold optimized for specificity and nega-
tive predictive value. Shapley additive explanations plots (SHAP), variable importance heatmaps, and partial 
dependence plots were generated for model interpretability. Detailed documentation as well as directions for 
implementation of H2O.ai are freely available  online16.

Conference presentation. Society of Alimentary Tract Annual Meeting 2022, San Diego, California.

Results
39,108 patients with gastric cancer that underwent gastrectomy for gastric cancer between 2004 and 2016 were 
included in the study (Table 1). Of those patients, 3473 (8.8%) died within 90 days postoperatively. There was 
a greater proportion of males than females (67.5% vs. 32.5%) in the study, with no significant differences in sex 
among patients who were and were not alive at 90 days post-surgery. Compared to the patients who were alive 
90 days postoperatively, those who died were older (73.5 ± 10.9 years vs. 67.04 ± 12.17 years, p < 0.001), had 
longer postoperative hospital length of stay (15.85 ± 13.56 days vs. 11.3 ± 10.5, p < 0.001), had a shorter duration 
between diagnosis and start of treatment (25.9 ± 30.2 days vs. 32.79 ± 32.51 days, p < 0.001), and greater nodal 
ratio of positive nodes to nodes examined (0.323 ± 0.364 vs. 0.176 ± 0.270, p < 0.0001; Table 1). A higher propor-
tion of patients that were alive at 90 days also received neoadjuvant radiation therapy (16% vs. 10%, p < 0.001) 
and chemotherapy (21% vs. 14%, p < 0.001), had smaller tumor sizes (64.26 ± 125.86 mm vs. 79.41 ± 151.99 mm, 
p < 0.001), and lived in urban areas (56% vs. 51%, p < 0.001) with a median household income ≥ $63,000 for their 
residential area (32% vs. 27%, p < 0.001). Other differences between patient groups are highlighted in Table 1.

Ninety-day mortality varied based on type of surgery; 16,352 patients underwent total gastrectomy (1352, 
8.3% 90-day mortality), 8160 patients underwent distal gastrectomy (659, 8.1% 90-day mortality), 3972 patients 
underwent en bloc gastrectomy (448, 11.3% 90-day mortality), and 10,669 patients underwent partial gas-
trectomy (1014, 9.5% 90-day mortality). Variations in 90-day mortality were also seen based on facility type, 
with 6.7% (1179/17,472) 90-day mortality in community cancer programs, 13.6% (319/2349) in comprehensive 
community cancer programs, 3.6% (1422/39108) in academic/research programs (including NCI-designated 
comprehensive cancer centers), 9.9% (532/5374) in Integrated Network Cancer Programs, 3.0% (21/705) in 
Unspecified facility types.

AutoML can be feasibly used for predicting 90‑day mortality. To assess if 90-day mortality can 
be predicted using H2O.ai AutoML, 10 models were fit with 31,396 patients in the training set and 7712 in the 
validation set. The best performing model was a stacked ensemble (fivefold cross validation AUC 0.78; model 
performance on validation set AUC 0.77; Fig. 1A). The ensemble, when optimized based on F1 threshold (0.34), 
had a positive predictive value of 28%, negative predictive value of 94%, sensitivity of 43%, and specificity of 89% 
(Fig. 1B). Patient age, nodal ratio, and length of inpatient stay days since surgery were the three most influential 
variables across models (Fig. 1C). Partial dependency plots show that greater nodal ratio and longer inpatient 
stay (up to 90 days) greatly influenced model prediction (Fig. 1D,E).

Prediction of 90-day mortality preoperatively can not only inform patient prognosis, but also help improve 
patient selection for surgery. Thus, we created models without nodal ratio or inpatient length of stay. Perfor-
mance of the leading ensemble declined (fivefold cross validation and model performance on validation set AUC 
0.71; Fig. 1F), and when optimized based on F1 threshold (0.29), the model had a positive predictive value of 
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Variables All patients (N = 39,108) Alive at 90 days (N = 35,635) 90-day mortality (N = 3473) p-value

Age (Mean ± Std. Deviation) 67.61 ± 12.21 67.04 ± 12.174 73.5 ± 10.9 < 0.0001

Sex 0.276

 Female 12,728 (33%) 11,569 (32%) 1159 (33%)

 Male 26,380 (68%) 24,066 (68%) 2314 (67%)

Partial gastrectomy 10,669 (27%) 9655 (27%) 1014 (29%) 0.008

Distal gastrectomy 8160 (21%) 7501 (21%) 659 (19%) 0.004

Total gastrectomy 16,352 (42%) 15,000 (42%) 1352 (39%) < 0.001

En bloc gastrectomy 3927 (10%) 3479 (10%) 448 (13%) < 0.001

Charlson-Deyo score < 0.001

 0 25,075 (64%) 23,083 (65%) 1992 (57%)

 1 9864 (25%) 8950 (25%) 914 (26%)

 2 2945 (8%) 2567 (7%) 378 (11%)

 3 1224 (3%) 1035 (3%) 189 (5%)

Days from diagnosis to treatment (Mean ± Std. Deviation) 32.18 ± 32.37 32.79 ± 32.51 25.9 ± 30.2 < 0.0001

Length of surgical inpatient stay, in days (Mean ± Std. Deviation) 11.7 ± 10.8 11.3 ± 10.5 15.85 ± 13.56 < 0.0001

Neoadjuvant radiation therapy 6132 (16%) 5769 (16%) 363 (10%) < 0.001

Neoadjuvant chemotherapy 8011 (21%) 7521 (21%) 490 (14%) < 0.001

AJCC clinical T < 0.001

 1 5864 (15%) 5513 (15%) 351 (10%)

 2 4959 (13%) 4615 (13%) 344 (10%)

 3 8809 (23%) 8226 (23%) 583 (17%)

 4 1395 (4%) 1206 (3%) 189 (5%)

 5 18,081 (46%) 16,075 (45%) 2006 (58%)

AJCC clinical N < 0.001

 0 16,634 (43%) 15,438 (43%) 1196 (34%)

 1 22,474 (58%) 20,197 (57%) 2277 (66%)

Grade < 0.001

 Cell type not determined, not stated or not applicable, unknown primaries, 
high grade dysplasia 2314 (6%) 2166 (6%) 148 (4%)

 Moderately differentiated, moderately well differentiated, intermediate 
differentiation 13,430 (34%) 12,342 (35%) 1088 (31%)

 Poorly differentiated 20,158 (52%) 18,159 (51%) 1999 (58%)

 Undifferentiated, anaplastic 572 (2%) 497 (1%) 75 (2%)

Well differentiated, differentiated, NOS 2634 (7%) 2471 (7%) 163 (5%)

Tumor size (mm; Mean ± Std. Deviation) 65.61 ± 128.46 64.26 ± 125.86 79.41 ± 151.99 < 0.001

Node ratio (Mean ± Std. Deviation) 0.19 ± 0.28 0.176 ± 0.270 0.323 ± 0.364 < 0.0001

RACE < 0.001

 White 29,067 (74%) 26,313 (74%) 2754 (79%)

 Black 5772 (15%) 5267 (15%) 505 (15%)

 American Indian, Aleutian, or Eskimo 3445 (9%) 3268 (9%) 177 (5%)

 Chinese 824 (2%) 787 (2%) 37 (1%)

Hispanic 5727 (15%) 5237 (15%) 490 (14%) 0.35

Insurance < 0.001

Not insured 2002 (5%) 1850 (5%) 152 (4%)

 Private insurance/managed care 12,938 (33%) 12,245 (34%) 693 (20%)

 Medicaid 2446 (6%) 2291 (6%) 155 (4%)

 Medicare 21,722 (56%) 19,249 (54%) 2473 (71%)

Medicaid expansion 25,111 (64%) 22,906 (64%) 2205 (63%) 0.354

URBAN 21,559 (55%) 19,789 (56%) 1770 (51%) < 0.001

LOCATION < 0.001

 New England 17,426 (45%) 15,944 (45%) 1482 (43%)

 Middle Atlantic 14,504 (37%) 13,077 (37%) 1427 (41%)

 South Atlantic 7178 (18%) 6614 (19%) 564 (16%)

Median household income for each patient’s area of residence < 0.001

 < $38,000 7517 (19%) 6785 (19%) 732 (21%)

 ≥ $63,000 12,263 (31%) 11,316 (32%) 947 (27%)

 $38,000–$47,999 8787 (23%) 7899 (22%) 888 (26%)

Continued
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21%, negative predictive value of 94%, sensitivity of 42%, and specificity of 85% (Fig. 1G). Patient age remained 
highly influential in model prediction, along with clinical disease burden and time from diagnosis to treatment 
(Fig. 1H).

Inclusion of predicted length of stay partially improves AutoML model prediction of 90‑day 
mortality. Given the importance length of stay had on model performance, we assessed whether a two-step 
approach could be used where: (1) prediction of patient length of stay using preoperative features (pLOS) fol-
lowed by (2) prediction of 90-day mortality using input features that included pLOS (Fig. 2A). Performance of 
AutoML for predicting LOS is shown in Supplemental Fig. 1. Variables most important for predicting length of 
stay included patient’s income quartile, distal or en bloc gastrectomy, and race.

The pLOS values were then added as an additional input feature for predicting 90-day mortality. 10 models 
were tested, and the best performing models were a stacked ensemble (fivefold cross validation AUC 0.69 and 
model performance on validation set AUC 0.74; Fig. 3A) and XGboost (fivefold cross validation AUC 0.69 and 
model performance on validation set AUC 0.73; Fig. 3C). The ensemble, when optimized based on F1 threshold 
(0.29), had a positive predictive value of 21%, negative predictive value of 94%, sensitivity of 49%, and specificity 
of 82% (Fig. 3B). The XGboost model, when optimized based on a F1 threshold of 0.28, had a positive predictive 
value of 23%, negative predictive value of 94%, sensitivity of 38%, and specificity of 88% (Fig. 3D). The variables 
that were most influential for predicting 90-day mortality in this multi-layered model included older age, longer 
pLOS, lower time from diagnosis to treatment, and larger tumor size (Fig. 3E,F). Partial dependency plot for the 
pLOS confirmed that longer pLOS greatly influenced prediction of 90-day mortality (Fig. 3G).

Inclusion of predicted nodal ratio partially improves AutoML model prediction of 90‑day mor‑
tality. Given that the inclusion of pLOS only partially improved model prediction of 90-day mortality, we 
tested whether inclusion of predicted nodal ratio improved performance (Fig. 2B). Performance of AutoML 
for predicting nodal ratio is shown in Supplemental Fig. 2. The pNodeRatio values were then used as an addi-
tional input feature for predicting 90-day mortality. 10 models were tested, and the best performing model was 
a stacked ensemble (fivefold cross validation AUC 0.70 and model performance on validation set AUC 0.73; 
Fig. 4A). The best performing XGboost model had an AUC of 0.68 on fivefold cross validation AUC of 0.71 when 
tested on validation set (Fig. 4C). The ensemble, when optimized based on F1 threshold (0.29), had a positive 
predictive value of 19%, negative predictive value of 95%, sensitivity of 54%, and specificity of 79% (Fig. 4B). The 
XGboost model, when optimized based on F1 threshold (0.27), had a positive predictive value of 20%, negative 
predictive value of 94%, sensitivity of 42%, and specificity of 84% (Fig. 4D). The variables that were most influ-
ential for predicting 90-day mortality in this multi-layered model included older age, pNodeRatio, and clinical 
disease burden (Fig. 4E,F). Partial dependency plot for the pNodeRatio confirmed that higher nodal ratio greatly 
influenced prediction of 90-day mortality (Fig. 4G).

Inclusion of both predicted length of stay and nodal ratio does not further improve AutoML 
model prediction of 90‑day mortality compared to models with either variable along. Given 
incremental improvements in 90-day mortality prediction with models that either had pLOS or pNodeRatio, we 
next included both predicted variables as input features Fig. 2C). This approach did not significantly improve 
model performance (leading ensemble AUC of 0.73 on validation set, and leading gradient-boosting model 
AUC of 0.71; Fig. 5A,C). The ensemble, when optimized based on F1 threshold (0.29), had a positive predictive 
value of 24%, negative predictive value of 91%, sensitivity of 39%, and specificity of 83% (Fig. 5B). The gradient 
boosting model, when optimized based on F1 threshold (0.28), had a positive predictive value of 22%, negative 

Table 1.  Preoperative features of stage I–III gastric cancer patients undergoing gastrectomy between 2004 and 
2016. Characteristics of patients alive at 90 days versus those that died were compared using two-tailed t-tests 
or chi-square analysis for continuous and categorical variables respectively.

Variables All patients (N = 39,108) Alive at 90 days (N = 35,635) 90-day mortality (N = 3473) p-value

 $48,000-$62,999 10,342(26%) 9454 (27%) 888 (26%)

Measure of educational attainment for each patient’s area of residence 0.001

 < 7.0% 8157 (21%) 7511 (21%) 646 (19%)

 >  = 21.0% 8414 (22%) 7659 (21%) 755 (22%)

 13.0–20.9% 10,194 (26%) 9207 (26%) 987 (28%)

 7.0–12.9% 12,160 (31%) 11,092 (31%) 1068 (31%)

Residence to Hospital Distance (miles; Mean ± Std. Deviation) 34.14 ± 113.12 35.03 ± 116.72 25.01 ± 64.85 < 0.001

FACILITY TYPE < 0.001

 Academic/Research Program (includes NCI-designated comprehensive 
cancer centers) 17,472 (45%) 16,293 (46%) 1179 (34%)

 Community Cancer Program 2349 (6%) 2030 (6%) 319 (9%)

 Comprehensive Community Cancer Program 13,208 (34%) 11,786 (33%) 1422 (41%)

 Integrated Network Cancer Program 5374 (14%) 4842 (14%) 532 (15%)

 Not available 705 (2%) 684 (2%) 21 (1%)
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Figure 1.  Exploratory prediction of 90-day mortality using AutoML. (a) Receiver operating curve and (b) F1 
optimized confusion matrix showing the performance of leading ensemble model. (c) Variable importance 
heat map highlighting variables that were most influential for 90-day mortality prediction within each model 
generated. (d, e) partial dependency plots highlighting the importance of length of surgical inpatient stay and 
nodal ratio of positive nodes:nodes examined in predicting 90-day mortality. *The plateau seen within length 
of surgical inpatient stay represents patients that were alive and still admitted to the hospital after 90 days. (f) 
Receiver operating curve, (g) F1 optimized confusion matrix, and (h) variable importance plot for prediction of 
90-day mortality without including length of surgical inpatient stay and nodal information in the model. Figures 
generated using H2O-R package version 3.40.0.4 (https:// docs. h2o. ai/ h2o/ latest- stable/ h2o-r/ docs/ artic les/ h2o-
r- packa ge. html).

https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html
https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html
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predictive value of 94%, sensitivity of 38%, and specificity of 87% (Fig. 5D). Both increased pNodeRatio and 
higher pLOS were influential in predicting 90-day mortality (Fig. 5E-H).

Finally, we completed sensitivity analyses stratified by facility type and surgical approach, given the afore-
mentioned heterogeneity in 90-day mortality based on these factors (Supplemental Fig. 3). Model performance 
was maintained across facility type and surgical approach.

Discussion
The major findings of this study are: (1) in a cohort of stage I–III gastric cancer patients that underwent gastrec-
tomy, AutoML performed well in predicting early postoperative mortality; (2) the generated AutoML models 
produced predictions that could help with clinical patient prognostication and counseling of those predicted to 
be high risk; (3) the variables most influential in predicting 90-day mortality include older age, high nodal ratio 
of positive nodes to nodes examined, and prolonged hospital length of stay following surgery; (4) a multi-step 
approach that first predicts a postoperative characteristic (i.e. pLOS and pNodeRatio) and then 90-day mortality 
can be used to design models for preoperative use. Our work shows that AutoML can be feasibly, efficiently, and 
easily be used for training and validating ML models using commonly collected perioperative factors. To our 
knowledge, our study is the first to demonstrate the applicability of AutoML for early postoperative mortality 
prediction in cancer surgery. Thus, in addition to its potential utility for surgical treatment of patients with gas-
tric cancer, our study supports broader evaluation and application of AutoML to guide surgical oncologic care.

Numerous studies have highlighted the importance of predicting mortality among patients with advanced 
cancers to assist with appropriate treatment planning and patient  counseling3,4,18. Post-gastrectomy outcomes 
and mortality have been associated with several factors including stage of the disease, lymph node metastases, 
co-morbidities from neoadjuvant therapy, and age of the  patient2,19–21, but few clinical support tools or algorithms 
have been developed to accurately inform patient prognostication based on perioperative variables. Niu et al.’s 
review on the application of artificial intelligence within gastric cancer highlights several studies that used ML 
models to diagnose gastric cancer and predict recurrence and metastasis; however, most of these studies utilized 
endoscopy or computed tomography images, pathology slices, or genetic  features7. Image-based prediction 
models require large quantities of accurately annotated  data7,22, and acquiring genetic features for all patients 
adds to the cost of patient care and requires substantial time. One of the most widely used surgical risk calcula-
tors was developed by the American College of Surgeons National Surgical Quality Improvement Program (ACS 
NSQIP). The ACS NSQIP risk calculator previously has been studied for the purpose of predicting mortality 
following gastrectomy. In comparison to our reported models, the ACS NSQIP risk calculator shows similar, 
and sometimes worse, performance in predicting mortality in this  population23. An advantage to our approach 

Figure 2.  Multi-layered model-workflow. Multi-layered workflows that first predicts postoperative 
characteristics (A-length of stay; B-nodal ratio) and uses these predicted values to then predict 90-day 
mortality. Workflow C uses both predicted length of stay and nodal ratio. These multi-layered models allow for 
preoperative prediction of patients that are at risk for early postoperative mortality.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11051  | https://doi.org/10.1038/s41598-023-37396-3

www.nature.com/scientificreports/

Fi
gu

re
 3

. 
 A

ut
oM

L 
m

od
el

 p
re

di
ct

io
n 

of
 9

0-
da

y 
m

or
ta

lit
y 

w
ith

 p
re

di
ct

ed
 le

ng
th

 o
f s

ta
y. 

(a
) R

ec
ei

ve
r o

pe
ra

tin
g 

cu
rv

e a
nd

 (b
) F

1 
op

tim
iz

ed
 co

nf
us

io
n 

m
at

rix
 sh

ow
in

g 
th

e p
er

fo
rm

an
ce

 o
f l

ea
di

ng
 

en
se

m
bl

e m
od

el
. (

c)
 R

ec
ei

ve
r o

pe
ra

tin
g 

cu
rv

e a
nd

 (d
) F

1 
op

tim
iz

ed
 co

nf
us

io
n 

m
at

rix
 o

f l
ea

di
ng

 X
gB

oo
st

 m
od

el
. (

e)
 V

ar
ia

bl
e i

m
po

rt
an

ce
 h

ea
t m

ap
 h

ig
hl

ig
ht

in
g 

va
ria

bl
es

 th
at

 w
er

e m
os

t 
in

flu
en

tia
l f

or
 9

0-
da

y 
m

or
ta

lit
y 

pr
ed

ic
tio

n 
w

ith
in

 ea
ch

 m
od

el
 g

en
er

at
ed

. (
f)

 S
ha

pl
ey

 a
dd

iti
ve

 ex
pl

an
at

io
ns

 p
lo

t f
or

 le
ad

in
g 

Xg
bo

os
t m

od
el

. V
ar

ia
bl

es
 o

f i
m

po
rt

an
ce

 ar
e r

an
ke

d 
in

 d
es

ce
nd

in
g 

or
de

r; 
w

ith
in

 ea
ch

 v
ar

ia
bl

e, 
pi

nk
 d

ot
s r

ep
re

se
nt

 h
ig

he
r v

al
ue

s, 
w

hi
le

 b
lu

e d
ot

s r
ep

re
se

nt
 lo

w
er

 v
al

ue
s. 

(g
) P

ar
tia

l d
ep

en
de

nc
y 

pl
ot

 h
ig

hl
ig

ht
in

g 
th

e i
m

po
rt

an
ce

 o
f p

re
di

ct
ed

 le
ng

th
 o

f s
ur

gi
ca

l 
in

pa
tie

nt
 st

ay
 in

 p
re

di
ct

in
g 

90
-d

ay
 m

or
ta

lit
y. 

Fi
gu

re
s g

en
er

at
ed

 u
sin

g 
H

2O
-R

 p
ac

ka
ge

 v
er

sio
n 

3.
40

.0
.4

 (h
ttp

s:/
/ d

oc
s. h

2o
. ai

/ h
2o

/ la
te

st
- s

ta
bl

e/
 h2

o-
r/

 do
cs

/ a
rt

ic
 le

s/
 h2

o-
r-

 pa
ck

a g
e. h

tm
l).

https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html


8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11051  | https://doi.org/10.1038/s41598-023-37396-3

www.nature.com/scientificreports/

Fi
gu

re
 4

. 
 A

ut
oM

L 
m

od
el

 p
re

di
ct

io
n 

of
 9

0-
da

y 
m

or
ta

lit
y 

w
ith

 p
re

di
ct

ed
 n

od
al

 ra
tio

. (
a)

 R
ec

ei
ve

r o
pe

ra
tin

g 
cu

rv
e a

nd
 (b

) F
1 

op
tim

iz
ed

 co
nf

us
io

n 
m

at
rix

 sh
ow

in
g 

th
e p

er
fo

rm
an

ce
 o

f l
ea

di
ng

 
en

se
m

bl
e m

od
el

. (
c)

 R
ec

ei
ve

r o
pe

ra
tin

g 
cu

rv
e a

nd
 (d

) F
1 

op
tim

iz
ed

 co
nf

us
io

n 
m

at
rix

 o
f l

ea
di

ng
 X

gB
oo

st
 m

od
el

. (
e)

 V
ar

ia
bl

e i
m

po
rt

an
ce

 h
ea

t m
ap

 h
ig

hl
ig

ht
in

g 
va

ria
bl

es
 th

at
 w

er
e m

os
t 

in
flu

en
tia

l f
or

 9
0-

da
y 

m
or

ta
lit

y 
pr

ed
ic

tio
n 

w
ith

in
 ea

ch
 m

od
el

 g
en

er
at

ed
. (

f)
 S

ha
pl

ey
 a

dd
iti

ve
 ex

pl
an

at
io

ns
 p

lo
t f

or
 le

ad
in

g 
Xg

bo
os

t m
od

el
. V

ar
ia

bl
es

 o
f i

m
po

rt
an

ce
 ar

e r
an

ke
d 

in
 d

es
ce

nd
in

g 
or

de
r; 

w
ith

in
 ea

ch
 v

ar
ia

bl
e, 

pi
nk

 d
ot

s r
ep

re
se

nt
 h

ig
he

r v
al

ue
s, 

w
hi

le
 b

lu
e d

ot
s r

ep
re

se
nt

 lo
w

er
 v

al
ue

s. 
(g

) P
ar

tia
l d

ep
en

de
nc

y 
pl

ot
 h

ig
hl

ig
ht

in
g 

th
e i

m
po

rt
an

ce
 o

f p
re

di
ct

ed
 n

od
al

 ra
tio

 in
 

pr
ed

ic
tin

g 
90

-d
ay

 m
or

ta
lit

y. 
Fi

gu
re

s g
en

er
at

ed
 u

sin
g 

H
2O

-R
 p

ac
ka

ge
 v

er
sio

n 
3.

40
.0

.4
 (h

ttp
s:/

/ d
oc

s. h
2o

. ai
/ h

2o
/ la

te
st

- s
ta

bl
e/

 h2
o-

r/
 do

cs
/ a

rt
ic

 le
s/

 h2
o-

r-
 pa

ck
a g

e. h
tm

l).

https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11051  | https://doi.org/10.1038/s41598-023-37396-3

www.nature.com/scientificreports/

Fi
gu

re
 5

. 
 A

ut
oM

L 
m

od
el

 p
re

di
ct

io
n 

of
 9

0-
da

y 
m

or
ta

lit
y 

w
ith

 b
ot

h 
pr

ed
ic

te
d 

le
ng

th
 o

f s
ta

y 
an

d 
pr

ed
ic

te
d 

no
da

l r
at

io
. (

a)
 R

ec
ei

ve
r o

pe
ra

tin
g 

cu
rv

e a
nd

 (b
) F

1 
op

tim
iz

ed
 co

nf
us

io
n 

m
at

rix
 

sh
ow

in
g 

th
e p

er
fo

rm
an

ce
 o

f l
ea

di
ng

 en
se

m
bl

e m
od

el
. (

c)
 R

ec
ei

ve
r o

pe
ra

tin
g 

cu
rv

e a
nd

 (d
) F

1 
op

tim
iz

ed
 co

nf
us

io
n 

m
at

rix
 o

f l
ea

di
ng

 g
ra

di
en

t b
oo

st
in

g 
m

od
el

 (G
BM

). 
(e

) V
ar

ia
bl

e i
m

po
rt

an
ce

 
he

at
 m

ap
 h

ig
hl

ig
ht

in
g 

va
ria

bl
es

 th
at

 w
er

e m
os

t i
nfl

ue
nt

ia
l f

or
 9

0-
da

y 
m

or
ta

lit
y 

pr
ed

ic
tio

n 
w

ith
in

 ea
ch

 m
od

el
 g

en
er

at
ed

. (
f)

 S
ha

pl
ey

 a
dd

iti
ve

 ex
pl

an
at

io
ns

 p
lo

t f
or

 le
ad

in
g 

gr
ad

ie
nt

 b
oo

st
in

g 
m

od
el

. V
ar

ia
bl

es
 o

f i
m

po
rt

an
ce

 ar
e r

an
ke

d 
in

 d
es

ce
nd

in
g 

or
de

r; 
w

ith
in

 ea
ch

 v
ar

ia
bl

e, 
pi

nk
 d

ot
s r

ep
re

se
nt

 h
ig

he
r v

al
ue

s, 
w

hi
le

 b
lu

e d
ot

s r
ep

re
se

nt
 lo

w
er

 v
al

ue
s. 

(g
, h

) P
ar

tia
l d

ep
en

de
nc

y 
pl

ot
s 

hi
gh

lig
ht

in
g 

th
e i

m
po

rt
an

ce
 o

f p
re

di
ct

ed
 le

ng
th

 o
f s

ta
y 

an
d 

pr
ed

ic
te

d 
no

da
l r

at
io

 in
 p

re
di

ct
in

g 
90

-d
ay

 m
or

ta
lit

y. 
Fi

gu
re

s g
en

er
at

ed
 u

sin
g 

H
2O

-R
 p

ac
ka

ge
 v

er
sio

n 
3.

40
.0

.4
 (h

ttp
s:/

/ d
oc

s. h
2o

. ai
/ 

h2
o/

 la
te

st
- s

ta
bl

e/
 h2

o-
r/

 do
cs

/ a
rt

ic
 le

s/
 h2

o-
r-

 pa
ck

a g
e. h

tm
l).

https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html
https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11051  | https://doi.org/10.1038/s41598-023-37396-3

www.nature.com/scientificreports/

is the inclusion of cancer-specific variables including staging, receipt of preoperative oncologic therapies, and 
tumor characteristics. Furthermore, Lu et al.’s systemic review of 15 articles that utilized ML models to predict 
early mortality in patients with cancer using electronic health record data showed that model performance 
ranged from AUCs of 0.71 to 0.9224. Unlike those studies, we utilized common data elements found within 
readily available real world data sources to train our ML models in patients with gastric cancer that underwent 
non-palliative gastrectomy. While many prior studies of ML models rely on small sample sizes, our study with 
39,108 patients highlights promising abilities of AutoML models to predict early-mortality among cancer patients 
using data from population-level registries. Our approach provides a template for developing cost-effective and 
easy-to-implement decision-support tools for guiding patient selection for surgical treatment in this population.

Our use of an interpretable machine learning approach facilitates the identification of potentially targetable 
risk factors. Older patient age, higher nodal ratio, and greater number of days between surgery and discharge 
were the three most influential variables across models in predicting 90-day mortality. This is consistent with 
Shannon et al.’s multivariate retrospective analysis of patients within NCD with stage I–III gastric adenocarci-
noma that underwent total gastrectomy; their results showed that increasing age and a lower number of lymph 
nodes examined are associated with 90-day  mortality2. Shu et al. further showed that older age (> 70 years) was 
associated with increased rate of complications (20% vs. 11% in those < 70 years), and higher 90-day mortality 
(3.7% vs. 0.5%) in a cohort of 534 patients at a single-institution. Notably, age independently predicted mortality 
after controlling for tumor biology, cancer stage, adjuvant therapy, and postoperative  complications25, thereby 
highlighting the need for careful evaluation and counseling of older patients prior to gastrectomy.

For ensuring clinical utility, the timing of implementing predictive models is crucial. The initial model in 
this study can inform postoperative patient prognostication and highlighted the importance of postoperative 
length of stay and nodal ratio in predicting 90-day mortality. This is consistent with previous efforts to enhance 
prognostication in gastric cancer which reported that the number of nodes examined and nodal positivity inde-
pendently influence survival in gastric  cancer26,27. However, preoperative prediction is necessary to assist with 
both patient prognostication and selection of surgery. To ensure that our predictive models are useful in the 
preoperative setting, we used a multi-step modeling strategy where we first predicted length of stay and nodal 
ratio only using parameters available preoperatively. These predicted features were then used as input features 
in our final model for predicting mortality, which showed high discriminatory capability. This complex strategy 
was easy to implement through H2O.ai’s AutoML tools.

Despite better performance in prediction of pNodeRatio compared to pLOS, inclusion of pLOS provided the 
most improvement in model performance in predicting 90-day mortality. This suggests that patients that are at 
higher risk for longer hospital stays are highly susceptible to early postoperative mortality. Our work highlighted 
that patient’s income quartile, undergoing distal or en bloc gastrectomy as well as racial background influenced 
length of stay predictions. This is in-line with prior studies that show that the extent of resection and type of 
surgical procedure are independently predictive of postoperative length of stay in patients with gastric  cancer28. 
In addition to these factors, patients’ preoperative physical function/strength and co-morbidities influence both 
postoperative complications and length of hospital  stay29,30. Future models that incorporate these preoperative 
characteristics may enhance pLOS prediction and subsequent early mortality prediction. Importantly, the congru-
ence between prior research and the variables that were most influential in AutoML models provide confidence 
in these models’ clinical utility.

The influence of hospital length of stay on predicting early mortality also provides an opportunity for imple-
menting clinical programs that help reduce this duration, to then potentially reduce early postoperative mor-
tality. Enhanced Recovery After Surgery (ERAS) protocols have been implemented following  gastrectomy31,32, 
and they incorporate preoperative counseling and nutrition, earlier mobilization and feeding following surgery, 
avoidance of abdominal drains, and nasogastric/nasojejunal  decompression33,34. Wee et al.’s meta-analysis com-
paring conventional postoperative care versus ERAS protocols showed that ERAS programs decreased length 
of stay and care costs but did not significantly alter 30-day postoperative mortality or postoperative  morbidity33. 
Weindelmayer’s single-institution study of 351 gastric cancer patients reported a reduction in 90-day mortality 
among patients in the ERAS program (0.8% vs. 4.8% control); however, their overall 90-day mortality was only 
2%35. Further research is necessary to optimize ERAS programs and to assess whether they reduce early postop-
erative mortality. Within our dataset, there was a cohort of patients that were still admitted to the hospital past 
90 days postoperatively, and while the primary aim of this study was to assess early mortality, further research 
is necessary to understand predictors of prolonged hospital stays as well as morbidity, mortality, and quality of 
life outcomes among these populations.

Numerous studies have piloted clinical implementation of machine learning tools. Avati et al. developed a 
deep neural network that screens electronic health records from of all admitted patients at Stanford Hospital and 
predicts all-cause mortality within 3–12 months. They implemented the ML algorithm as a screening tool that 
notifies palliative care of positive  predictions36, thereby streamlining patient-referrals and demonstrating how 
ML-based early mortality predictions can improve the efficiency of patient care. Manz et al. developed an ML-
algorithm to predict 180-day mortality among oncology clinic patients within a health system in Pennsylvania. 
Their randomized clinical trial implementing this model along with behavioral nudges (weekly performance 
feedback to clinicians) showed increased rates of serious illness conservations with high mortality risk patients—a 
positive clinician behavior that improves end-of-life  care22. Our results provide the necessary first step towards 
bedside application by demonstrating the feasibility of using AutoML to produce robust mortality predictions. 
Specifically, AutoML-based predictions could be used to augment perioperative risk stratification and postopera-
tive treatment planning. Models can be implemented through direct integration with electronic health records 
as well as through development of websites/applications (as done with NSQIP risk calculators) for bedside use. 
Future work will focus on developing these strategies for implementation of the model developed in this study.
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A crucial point to emphasize is that we do not advocate for strictly following the output of our model-derived 
prediction to make clinical decisions. Frequently, clinicians, patients, and caregivers are faced with difficult 
conversations to decide on the optimal treatment trajectory to pursue. Estimating surgical risk using clinical 
factors and surgeon judgment is frequently part of these discussions—even in the absence of ML tools. How 
AutoML can be useful in these circumstances is through augmentation and providing another parameter to help 
inform shared decisions.

Our results must be interpreted while considering the limitations. While NCDB allows us to train ML models 
on a large cohort of heterogenous patients, the database itself is limited by missing  data37, lack of information on 
the cause of death, and biases introduced by retrospective  analysis2. Additionally, the database does not include 
information on patient transfers to hospice care, so we cannot discern what proportion of patients underwent 
hospice deaths. While our results were consistent with prior work that utilized  NCDB2, the nearly 9% 90-day 
mortality seen in our patient cohort is higher compared to other  series38,39. Although, the other studies had 
smaller sample sizes and less heterogeneity in treatment centers. Given our goal of making this model broadly 
applicable, we elected to include all types of gastric resection and type of center where surgery was performed. 
As expected, 90-day mortality greatly varied across resection and center types. Our sensitivity analysis showed 
similar model performance in low mortality centers (academic)/ resection types (total/distal gastrectomy). None-
theless, prior to clinical implementation, models should be validated and optimized based on institutional data; 
this process is simplified given the easy-to-use nature of the AutoML platform. Finally, while NCDB captures 
approximately 70% of cancer patients, it only has data from patients that were treated at accredited CoC facilities, 
and thus is not generalizable to the entire US  population2,37. Nonetheless, AutoML is able to handle missing data 
and reasonably predict early mortality in this heterogenous population using only the available features. Our 
work only focused on one AutoML approach, and further studies are necessary to understand the applicability 
of other models within surgical risk prediction. Lastly, while we focused on mortality prediction, it is not the 
only outcome of interest for patients and families considering gastric surgery. Thus, future studies focused on 
morbidity and quality of life predictions are needed.

Conclusion
While surgery is the only curative therapy for patients with gastric cancer, 90-day postoperative mortality remains 
high, and prediction of early postoperative mortality is challenging. While machine learning algorithms have the 
potential to make predictions more accurately when compared to traditional statistical methodologies, the need 
for computational and statistical expertise has been suggested to limit the widespread application of machine 
learning within healthcare. In a large cohort of gastric cancer patients that underwent gastrectomy, our study 
shows that AutoML performs well in predicting mortality. Models can further be optimized for preoperative 
prediction, thereby not only allowing for robust patient prognostication but also informing patient selection for 
surgery. We were also able to identify key perioperative variables that were influential in outcome prediction to 
guide future interventions that mitigate risks of early postoperative mortality. Our work provides a framework 
for effective, scalable, easy-to-implement, and explainable machine learning to inform clinical decision-making.
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