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Automated machine learning
(AutoML) can predict 90-day
mortality after gastrectomy
for cancer
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Early postoperative mortality risk prediction is crucial for clinical management of gastric cancer.

This study aims to predict 90-day mortality in gastric cancer patients undergoing gastrectomy

using automated machine learning (AutoML), optimize models for preoperative prediction, and
identify factors influential in prediction. National Cancer Database was used to identify stage I-IlI
gastric cancer patients undergoing gastrectomy between 2004 and 2016. 26 features were used to
train predictive models using H20.ai AutoML. Performance on validation cohort was measured. In
39,108 patients, 90-day mortality rate was 8.8%. The highest performing model was an ensemble
(AUC=0.77); older age, nodal ratio, and length of inpatient stay (LOS) following surgery were most
influential for prediction. Removing the latter two parameters decreased model performance (AUC
0.71). For optimizing models for preoperative use, models were developed to first predict node ratio
or LOS, and these predicted values were inputted for 90-day mortality prediction (AUC of 0.73-0.74).
AutoML performed well in predicting 90-day mortality in a larger cohort of gastric cancer patients that
underwent gastrectomy. These models can be implemented preoperatively to inform prognostication
and patient selection for surgery. Our study supports broader evaluation and application of AutoML to
guide surgical oncologic care.

Although the incidence of gastric cancer is decreasing, it remains the fourth leading cause of cancer-related
death world-wide'. Surgery is the only curative treatment; however, postoperative mortality rates remain high
with a 90-day mortality of 9.1% following total gastrectomy?. The risk of significant perioperative morbidity
makes the decision for proceeding with gastric resection challenging in some patients. Studies have shown that
aggressive treatments and delayed hospice care can decrease quality of life for patients with advanced cancers
and their families®*, and thus accurate early mortality risk prediction following gastrectomy is crucial for clinical
management of gastric cancer.

Machine learning (ML) has the potential to more accurately make predictions when compared to traditional
statistical methodologies, as it is designed to capture multifaceted non-linear relationships and complex interac-
tions between variables®®. ML has been applied to improve prognostication in various disease states® within
gastric cancer specifically, ML models have been shown to improve endoscopic/pathology-based diagnosis” and
predict postoperative disease recurrence®® and lymph node metastasis'®. Despite its advantages, some criticisms
of ML include difficulty with selecting and training appropriate models, managing a complex set of input features
and pre-processing data, and scaling fitted models to production®. Moreover, despite the availability of extensive
data within electronic health records, the need for expertise in ML has been proposed to be one of the major
factors limiting the widespread application of ML models in healthcare'.

Automated Machine learning (AutoML) is an emerging field within ML that provides user-friendly tools for
training high quality, scalable models and decreases the reliance on human experts'!. Numerous open-source
and industry-produced AutoML tools have been developed in recent years; however, their application to clinical
prediction have been limited!!. H20.ai’s AutoML!? is a freely available, easy-to-use interface that allows users
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to train a variety of pre-developed candidate models. It has also been reported to have improved performance'?
and more versatile features compared to other AutoML tools'. The primary objective of this study was to assess
whether AutoML can predict 90-day mortality in patients with gastric cancer undergoing gastric resection.
Secondary objectives included optimizing models for preoperative prediction and identifying factors that most
strongly contribute to predictions of mortality after gastric cancer surgery.

Materials and methods

The National Cancer Database (NCDB) was used to identify stage I-III gastric cancer patients undergoing
gastrectomy between 2004 and 2016. The NCDB is a hospital-based cancer registry developed by the American
College of Surgeons Commission on Cancer (CoC) and the American Cancer Society. Data are made available
publicly to investigators associated with a CoC-accredited cancer program. It includes data from over 1500
CoC-accredited programs and captures approximately 70% of patients with new cancer diagnoses in the United
States'®. Patients with metastatic disease and palliative-intent surgery were excluded. 26 input features were
selected and used to predict 90-day mortality (Table 1). Characteristics of patients alive at 90 days versus those
that died were compared using two-tailed t-tests or chi-square analysis for continuous and categorical variables
respectively. IBM SPSS Version 28.0 was utilized for descriptive statistical analyses. This study was reviewed
and approved by the Medical College of Wisconsin Institutional Review Board with waiver of informed consent
(retrospective study with non-identifiable patient records) and conducted in accordance with relevant guidelines
and regulations.

The H2Oai’s AutoML'® package for RStudio was utilized to train 20 ML algorithms that were either linear,
decision tree-, or neural network- based. While the linear models are most suited for characterizing linear rela-
tionship, the decision trees are better suited for multi-level categorical variables (i.e. yes/no decisions), and the
neural networks can best handle complex variable interactions'’. Stacked ensembles, which are a combination of
the trained models, were also generated. Data were split into training and validation sets. fivefold cross-validation
was used during model training. Model performance of the top ensemble and top independent model type on
the validation set was evaluated using area under the receiver operating characteristic curve (AUC), positive
and negative predictive values as well as sensitivity and specificity. To do so, a binary classifier based on 90-day
mortality was generated and performance measured based on an F1-threhold optimized for specificity and nega-
tive predictive value. Shapley additive explanations plots (SHAP), variable importance heatmaps, and partial
dependence plots were generated for model interpretability. Detailed documentation as well as directions for
implementation of H20.ai are freely available online!®.

Conference presentation. Society of Alimentary Tract Annual Meeting 2022, San Diego, California.

Results
39,108 patients with gastric cancer that underwent gastrectomy for gastric cancer between 2004 and 2016 were
included in the study (Table 1). Of those patients, 3473 (8.8%) died within 90 days postoperatively. There was
a greater proportion of males than females (67.5% vs. 32.5%) in the study, with no significant differences in sex
among patients who were and were not alive at 90 days post-surgery. Compared to the patients who were alive
90 days postoperatively, those who died were older (73.5+10.9 years vs. 67.04 £ 12.17 years, p <0.001), had
longer postoperative hospital length of stay (15.85+13.56 days vs. 11.3+10.5, p <0.001), had a shorter duration
between diagnosis and start of treatment (25.9+30.2 days vs. 32.79 +£32.51 days, p<0.001), and greater nodal
ratio of positive nodes to nodes examined (0.323 +0.364 vs. 0.176 £0.270, p <0.0001; Table 1). A higher propor-
tion of patients that were alive at 90 days also received neoadjuvant radiation therapy (16% vs. 10%, p<0.001)
and chemotherapy (21% vs. 14%, p <0.001), had smaller tumor sizes (64.26 + 125.86 mm vs. 79.41 + 151.99 mm,
p<0.001), and lived in urban areas (56% vs. 51%, p <0.001) with a median household income > $63,000 for their
residential area (32% vs. 27%, p <0.001). Other differences between patient groups are highlighted in Table 1.
Ninety-day mortality varied based on type of surgery; 16,352 patients underwent total gastrectomy (1352,
8.3% 90-day mortality), 8160 patients underwent distal gastrectomy (659, 8.1% 90-day mortality), 3972 patients
underwent en bloc gastrectomy (448, 11.3% 90-day mortality), and 10,669 patients underwent partial gas-
trectomy (1014, 9.5% 90-day mortality). Variations in 90-day mortality were also seen based on facility type,
with 6.7% (1179/17,472) 90-day mortality in community cancer programs, 13.6% (319/2349) in comprehensive
community cancer programs, 3.6% (1422/39108) in academic/research programs (including NCI-designated
comprehensive cancer centers), 9.9% (532/5374) in Integrated Network Cancer Programs, 3.0% (21/705) in
Unspecified facility types.

AutoML can be feasibly used for predicting 90-day mortality. To assess if 90-day mortality can
be predicted using H20.ai AutoML, 10 models were fit with 31,396 patients in the training set and 7712 in the
validation set. The best performing model was a stacked ensemble (fivefold cross validation AUC 0.78; model
performance on validation set AUC 0.77; Fig. 1A). The ensemble, when optimized based on F1 threshold (0.34),
had a positive predictive value of 28%, negative predictive value of 94%, sensitivity of 43%, and specificity of 89%
(Fig. 1B). Patient age, nodal ratio, and length of inpatient stay days since surgery were the three most influential
variables across models (Fig. 1C). Partial dependency plots show that greater nodal ratio and longer inpatient
stay (up to 90 days) greatly influenced model prediction (Fig. 1D,E).

Prediction of 90-day mortality preoperatively can not only inform patient prognosis, but also help improve
patient selection for surgery. Thus, we created models without nodal ratio or inpatient length of stay. Perfor-
mance of the leading ensemble declined (fivefold cross validation and model performance on validation set AUC
0.71; Fig. 1F), and when optimized based on F1 threshold (0.29), the model had a positive predictive value of
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Variables All patients (N=39,108) | Alive at 90 days (N=35,635) | 90-day mortality (N=3473) | p-value
Age (Mean * Std. Deviation) 67.61+£12.21 67.04+12.174 73.5+10.9 <0.0001
Sex 0.276
Female 12,728 (33%) 11,569 (32%) 1159 (33%)
Male 26,380 (68%) 24,066 (68%) 2314 (67%)
Partial gastrectomy 10,669 (27%) 9655 (27%) 1014 (29%) 0.008
Distal gastrectomy 8160 (21%) 7501 (21%) 659 (19%) 0.004
Total gastrectomy 16,352 (42%) 15,000 (42%) 1352 (39%) <0.001
En bloc gastrectomy 3927 (10%) 3479 (10%) 448 (13%) <0.001
Charlson-Deyo score <0.001
0 25,075 (64%) 23,083 (65%) 1992 (57%)
1 9864 (25%) 8950 (25%) 914 (26%)
2 2945 (8%) 2567 (7%) 378 (11%)
3 1224 (3%) 1035 (3%) 189 (5%)
Days from diagnosis to treatment (Mean + Std. Deviation) 32.18+32.37 32.79+32.51 25.9+30.2 <0.0001
Length of surgical inpatient stay, in days (Mean # Std. Deviation) 11.7+10.8 11.3+10.5 15.85+13.56 <0.0001
Neoadjuvant radiation therapy 6132 (16%) 5769 (16%) 363 (10%) <0.001
Neoadjuvant chemotherapy 8011 (21%) 7521 (21%) 490 (14%) <0.001
AJCC clinical T <0.001
1 5864 (15%) 5513 (15%) 351 (10%)
2 4959 (13%) 4615 (13%) 344 (10%)
3 8809 (23%) 8226 (23%) 583 (17%)
4 1395 (4%) 1206 (3%) 189 (5%)
5 18,081 (46%) 16,075 (45%) 2006 (58%)
AJCC clinical N <0.001
0 16,634 (43%) 15,438 (43%) 1196 (34%)
1 22,474 (58%) 20,197 (57%) 2277 (66%)
Grade <0.001
ﬁell type not determined, not stated or not applicable, unknown primaries, 2314 (6%) 2166 (6%) 148 (4%)

igh grade dysplasia
I‘;@oderatglx differentiated, moderately well differentiated, intermediate 13,430 (34%) 12,342 (35%) 1088 (31%)

ifferentiation
Poorly differentiated 20,158 (52%) 18,159 (51%) 1999 (58%)
Undifferentiated, anaplastic 572 (2%) 497 (1%) 75 (2%)
Well differentiated, differentiated, NOS 2634 (7%) 2471 (7%) 163 (5%)
Tumor size (mm; Mean + Std. Deviation) 65.61 +128.46 64.26+125.86 79.41+151.99 <0.001
Node ratio (Mean + Std. Deviation) 0.19+0.28 0.176£0.270 0.323+0.364 <0.0001
RACE <0.001
White 29,067 (74%) 26,313 (74%) 2754 (79%)
Black 5772 (15%) 5267 (15%) 505 (15%)
American Indian, Aleutian, or Eskimo 3445 (9%) 3268 (9%) 177 (5%)
Chinese 824 (2%) 787 (2%) 37 (1%)
Hispanic 5727 (15%) 5237 (15%) 490 (14%) 0.35
Insurance <0.001
Not insured 2002 (5%) 1850 (5%) 152 (4%)
Private insurance/managed care 12,938 (33%) 12,245 (34%) 693 (20%)
Medicaid 2446 (6%) 2291 (6%) 155 (4%)
Medicare 21,722 (56%) 19,249 (54%) 2473 (71%)
Medicaid expansion 25,111 (64%) 22,906 (64%) 2205 (63%) 0.354
URBAN 21,559 (55%) 19,789 (56%) 1770 (51%) <0.001
LOCATION <0.001
New England 17,426 (45%) 15,944 (45%) 1482 (43%)
Middle Atlantic 14,504 (37%) 13,077 (37%) 1427 (41%)
South Atlantic 7178 (18%) 6614 (19%) 564 (16%)
Median household income for each patient’s area of residence <0.001

<$38,000 7517 (19%) 6785 (19%) 732 (21%)
>$63,000 12,263 (31%) 11,316 (32%) 947 (27%)
$38,000-$47,999 8787 (23%) 7899 (22%) 888 (26%)
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Variables All patients (N=39,108) | Alive at 90 days (N=35,635) | 90-day mortality (N=3473) | p-value
$48,000-$62,999 10,342(26%) 9454 (27%) 888 (26%)

Measure of educational attainment for each patient’s area of residence 0.001
<7.0% 8157 (21%) 7511 (21%) 646 (19%)

>=21.0% 8414 (22%) 7659 (21%) 755 (22%)

13.0-20.9% 10,194 (26%) 9207 (26%) 987 (28%)

7.0-12.9% 12,160 (31%) 11,092 (31%) 1068 (31%)

Residence to Hospital Distance (miles; Mean + Std. Deviation) 34.14+113.12 35.03+116.72 25.01 +64.85 <0.001
FACILITY TYPE <0.001

Academic/Research Program (includes NCI-designated comprehensive
cancer centers)

17,472 (45%)

16,293 (46%)

1179 (34%)

Community Cancer Program

2349 (6%)

2030 (6%)

319 (9%)

Comprehensive Community Cancer Program

13,208 (34%)

11,786 (33%)

1422 (41%)

Integrated Network Cancer Program

5374 (14%)

4842 (14%)

532 (15%)

Not available

705 (2%)

684 (2%)

21 (1%)

Table 1. Preoperative features of stage I-III gastric cancer patients undergoing gastrectomy between 2004 and
2016. Characteristics of patients alive at 90 days versus those that died were compared using two-tailed t-tests
or chi-square analysis for continuous and categorical variables respectively.

21%, negative predictive value of 94%, sensitivity of 42%, and specificity of 85% (Fig. 1G). Patient age remained
highly influential in model prediction, along with clinical disease burden and time from diagnosis to treatment
(Fig. 1H).

Inclusion of predicted length of stay partially improves AutoML model prediction of 90-day
mortality. Given the importance length of stay had on model performance, we assessed whether a two-step
approach could be used where: (1) prediction of patient length of stay using preoperative features (pLOS) fol-
lowed by (2) prediction of 90-day mortality using input features that included pLOS (Fig. 2A). Performance of
AutoML for predicting LOS is shown in Supplemental Fig. 1. Variables most important for predicting length of
stay included patient’s income quartile, distal or en bloc gastrectomy, and race.

The pLOS values were then added as an additional input feature for predicting 90-day mortality. 10 models
were tested, and the best performing models were a stacked ensemble (fivefold cross validation AUC 0.69 and
model performance on validation set AUC 0.74; Fig. 3A) and XGboost (fivefold cross validation AUC 0.69 and
model performance on validation set AUC 0.73; Fig. 3C). The ensemble, when optimized based on F1 threshold
(0.29), had a positive predictive value of 21%, negative predictive value of 94%, sensitivity of 49%, and specificity
of 82% (Fig. 3B). The XGboost model, when optimized based on a F1 threshold of 0.28, had a positive predictive
value of 23%, negative predictive value of 94%, sensitivity of 38%, and specificity of 88% (Fig. 3D). The variables
that were most influential for predicting 90-day mortality in this multi-layered model included older age, longer
pLOS, lower time from diagnosis to treatment, and larger tumor size (Fig. 3E,F). Partial dependency plot for the
pLOS confirmed that longer pLOS greatly influenced prediction of 90-day mortality (Fig. 3G).

Inclusion of predicted nodal ratio partially improves AutoML model prediction of 90-day mor-
tality. Given that the inclusion of pLOS only partially improved model prediction of 90-day mortality, we
tested whether inclusion of predicted nodal ratio improved performance (Fig. 2B). Performance of AutoML
for predicting nodal ratio is shown in Supplemental Fig. 2. The pNodeRatio values were then used as an addi-
tional input feature for predicting 90-day mortality. 10 models were tested, and the best performing model was
a stacked ensemble (fivefold cross validation AUC 0.70 and model performance on validation set AUC 0.73;
Fig. 4A). The best performing XGboost model had an AUC of 0.68 on fivefold cross validation AUC of 0.71 when
tested on validation set (Fig. 4C). The ensemble, when optimized based on F1 threshold (0.29), had a positive
predictive value of 19%, negative predictive value of 95%, sensitivity of 54%, and specificity of 79% (Fig. 4B). The
XGboost model, when optimized based on F1 threshold (0.27), had a positive predictive value of 20%, negative
predictive value of 94%, sensitivity of 42%, and specificity of 84% (Fig. 4D). The variables that were most influ-
ential for predicting 90-day mortality in this multi-layered model included older age, pNodeRatio, and clinical
disease burden (Fig. 4E,F). Partial dependency plot for the pNodeRatio confirmed that higher nodal ratio greatly
influenced prediction of 90-day mortality (Fig. 4G).

Inclusion of both predicted length of stay and nodal ratio does not further improve AutoML
model prediction of 90-day mortality compared to models with either variable along. Given
incremental improvements in 90-day mortality prediction with models that either had pLOS or pNodeRatio, we
next included both predicted variables as input features Fig. 2C). This approach did not significantly improve
model performance (leading ensemble AUC of 0.73 on validation set, and leading gradient-boosting model
AUC of 0.71; Fig. 5A,C). The ensemble, when optimized based on F1 threshold (0.29), had a positive predictive
value of 24%, negative predictive value of 91%, sensitivity of 39%, and specificity of 83% (Fig. 5B). The gradient
boosting model, when optimized based on F1 threshold (0.28), had a positive predictive value of 22%, negative
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Figure 1. Exploratory prediction of 90-day mortality using AutoML. (a) Receiver operating curve and (b) F1
optimized confusion matrix showing the performance of leading ensemble model. (c) Variable importance

heat map highlighting variables that were most influential for 90-day mortality prediction within each model
generated. (d, e) partial dependency plots highlighting the importance of length of surgical inpatient stay and
nodal ratio of positive nodes:nodes examined in predicting 90-day mortality. *The plateau seen within length

of surgical inpatient stay represents patients that were alive and still admitted to the hospital after 90 days. (f)
Receiver operating curve, (g) F1 optimized confusion matrix, and (h) variable importance plot for prediction of
90-day mortality without including length of surgical inpatient stay and nodal information in the model. Figures
generated using H20-R package version 3.40.0.4 (https://docs.h20.ai/h20/latest-stable/h20-r/docs/articles/h20-

r-package.html).

Scientific Reports|  (2023) 13:11051 | https://doi.org/10.1038/s41598-023-37396-3 nature portfolio


https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html
https://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/articles/h2o-r-package.html

www.nature.com/scientificreports/

National Cancer Database:

Patients with gastric cancer undergoing non-palliative intent surgery

Data pre-processing
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Figure 2. Multi-layered model-workflow. Multi-layered workflows that first predicts postoperative
characteristics (A-length of stay; B-nodal ratio) and uses these predicted values to then predict 90-day
mortality. Workflow C uses both predicted length of stay and nodal ratio. These multi-layered models allow for
preoperative prediction of patients that are at risk for early postoperative mortality.

predictive value of 94%, sensitivity of 38%, and specificity of 87% (Fig. 5D). Both increased pNodeRatio and
higher pLOS were influential in predicting 90-day mortality (Fig. 5E-H).

Finally, we completed sensitivity analyses stratified by facility type and surgical approach, given the afore-
mentioned heterogeneity in 90-day mortality based on these factors (Supplemental Fig. 3). Model performance
was maintained across facility type and surgical approach.

Discussion
The major findings of this study are: (1) in a cohort of stage I-III gastric cancer patients that underwent gastrec-
tomy, AutoML performed well in predicting early postoperative mortality; (2) the generated AutoML models
produced predictions that could help with clinical patient prognostication and counseling of those predicted to
be high risk; (3) the variables most influential in predicting 90-day mortality include older age, high nodal ratio
of positive nodes to nodes examined, and prolonged hospital length of stay following surgery; (4) a multi-step
approach that first predicts a postoperative characteristic (i.e. pLOS and pNodeRatio) and then 90-day mortality
can be used to design models for preoperative use. Our work shows that AutoML can be feasibly, efficiently, and
easily be used for training and validating ML models using commonly collected perioperative factors. To our
knowledge, our study is the first to demonstrate the applicability of AutoML for early postoperative mortality
prediction in cancer surgery. Thus, in addition to its potential utility for surgical treatment of patients with gas-
tric cancer, our study supports broader evaluation and application of AutoML to guide surgical oncologic care.
Numerous studies have highlighted the importance of predicting mortality among patients with advanced
cancers to assist with appropriate treatment planning and patient counseling®*8. Post-gastrectomy outcomes
and mortality have been associated with several factors including stage of the disease, lymph node metastases,
co-morbidities from neoadjuvant therapy, and age of the patient>'*-!, but few clinical support tools or algorithms
have been developed to accurately inform patient prognostication based on perioperative variables. Niu et al’s
review on the application of artificial intelligence within gastric cancer highlights several studies that used ML
models to diagnose gastric cancer and predict recurrence and metastasis; however, most of these studies utilized
endoscopy or computed tomography images, pathology slices, or genetic features’. Image-based prediction
models require large quantities of accurately annotated data’?, and acquiring genetic features for all patients
adds to the cost of patient care and requires substantial time. One of the most widely used surgical risk calcula-
tors was developed by the American College of Surgeons National Surgical Quality Improvement Program (ACS
NSQIP). The ACS NSQIP risk calculator previously has been studied for the purpose of predicting mortality
following gastrectomy. In comparison to our reported models, the ACS NSQIP risk calculator shows similar,
and sometimes worse, performance in predicting mortality in this population®*. An advantage to our approach
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is the inclusion of cancer-specific variables including staging, receipt of preoperative oncologic therapies, and
tumor characteristics. Furthermore, Lu et al’s systemic review of 15 articles that utilized ML models to predict
early mortality in patients with cancer using electronic health record data showed that model performance
ranged from AUCs of 0.71 to 0.92%*. Unlike those studies, we utilized common data elements found within
readily available real world data sources to train our ML models in patients with gastric cancer that underwent
non-palliative gastrectomy. While many prior studies of ML models rely on small sample sizes, our study with
39,108 patients highlights promising abilities of AutoML models to predict early-mortality among cancer patients
using data from population-level registries. Our approach provides a template for developing cost-effective and
easy-to-implement decision-support tools for guiding patient selection for surgical treatment in this population.

Our use of an interpretable machine learning approach facilitates the identification of potentially targetable
risk factors. Older patient age, higher nodal ratio, and greater number of days between surgery and discharge
were the three most influential variables across models in predicting 90-day mortality. This is consistent with
Shannon et al’s multivariate retrospective analysis of patients within NCD with stage I-III gastric adenocarci-
noma that underwent total gastrectomy; their results showed that increasing age and a lower number of lymph
nodes examined are associated with 90-day mortality’. Shu et al. further showed that older age (> 70 years) was
associated with increased rate of complications (20% vs. 11% in those <70 years), and higher 90-day mortality
(3.7% vs. 0.5%) in a cohort of 534 patients at a single-institution. Notably, age independently predicted mortality
after controlling for tumor biology, cancer stage, adjuvant therapy, and postoperative complications®, thereby
highlighting the need for careful evaluation and counseling of older patients prior to gastrectomy.

For ensuring clinical utility, the timing of implementing predictive models is crucial. The initial model in
this study can inform postoperative patient prognostication and highlighted the importance of postoperative
length of stay and nodal ratio in predicting 90-day mortality. This is consistent with previous efforts to enhance
prognostication in gastric cancer which reported that the number of nodes examined and nodal positivity inde-
pendently influence survival in gastric cancer®®*. However, preoperative prediction is necessary to assist with
both patient prognostication and selection of surgery. To ensure that our predictive models are useful in the
preoperative setting, we used a multi-step modeling strategy where we first predicted length of stay and nodal
ratio only using parameters available preoperatively. These predicted features were then used as input features
in our final model for predicting mortality, which showed high discriminatory capability. This complex strategy
was easy to implement through H20O.ai’s AutoML tools.

Despite better performance in prediction of pNodeRatio compared to pLOS, inclusion of pLOS provided the
most improvement in model performance in predicting 90-day mortality. This suggests that patients that are at
higher risk for longer hospital stays are highly susceptible to early postoperative mortality. Our work highlighted
that patient’s income quartile, undergoing distal or en bloc gastrectomy as well as racial background influenced
length of stay predictions. This is in-line with prior studies that show that the extent of resection and type of
surgical procedure are independently predictive of postoperative length of stay in patients with gastric cancer?.
In addition to these factors, patients’ preoperative physical function/strength and co-morbidities influence both
postoperative complications and length of hospital stay*>*°. Future models that incorporate these preoperative
characteristics may enhance pLOS prediction and subsequent early mortality prediction. Importantly, the congru-
ence between prior research and the variables that were most influential in AutoML models provide confidence
in these models’ clinical utility.

The influence of hospital length of stay on predicting early mortality also provides an opportunity for imple-
menting clinical programs that help reduce this duration, to then potentially reduce early postoperative mor-
tality. Enhanced Recovery After Surgery (ERAS) protocols have been implemented following gastrectomy®"*2,
and they incorporate preoperative counseling and nutrition, earlier mobilization and feeding following surgery,
avoidance of abdominal drains, and nasogastric/nasojejunal decompression®***. Wee et al’s meta-analysis com-
paring conventional postoperative care versus ERAS protocols showed that ERAS programs decreased length
of stay and care costs but did not significantly alter 30-day postoperative mortality or postoperative morbidity™.
Weindelmayer’s single-institution study of 351 gastric cancer patients reported a reduction in 90-day mortality
among patients in the ERAS program (0.8% vs. 4.8% control); however, their overall 90-day mortality was only
2%%. Further research is necessary to optimize ERAS programs and to assess whether they reduce early postop-
erative mortality. Within our dataset, there was a cohort of patients that were still admitted to the hospital past
90 days postoperatively, and while the primary aim of this study was to assess early mortality, further research
is necessary to understand predictors of prolonged hospital stays as well as morbidity, mortality, and quality of
life outcomes among these populations.

Numerous studies have piloted clinical implementation of machine learning tools. Avati et al. developed a
deep neural network that screens electronic health records from of all admitted patients at Stanford Hospital and
predicts all-cause mortality within 3-12 months. They implemented the ML algorithm as a screening tool that
notifies palliative care of positive predictions®, thereby streamlining patient-referrals and demonstrating how
ML-based early mortality predictions can improve the efficiency of patient care. Manz et al. developed an ML-
algorithm to predict 180-day mortality among oncology clinic patients within a health system in Pennsylvania.
Their randomized clinical trial implementing this model along with behavioral nudges (weekly performance
feedback to clinicians) showed increased rates of serious illness conservations with high mortality risk patients—a
positive clinician behavior that improves end-of-life care??. Our results provide the necessary first step towards
bedside application by demonstrating the feasibility of using AutoML to produce robust mortality predictions.
Specifically, AutoML-based predictions could be used to augment perioperative risk stratification and postopera-
tive treatment planning. Models can be implemented through direct integration with electronic health records
as well as through development of websites/applications (as done with NSQIP risk calculators) for bedside use.
Future work will focus on developing these strategies for implementation of the model developed in this study.
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A crucial point to emphasize is that we do not advocate for strictly following the output of our model-derived
prediction to make clinical decisions. Frequently, clinicians, patients, and caregivers are faced with difficult
conversations to decide on the optimal treatment trajectory to pursue. Estimating surgical risk using clinical
factors and surgeon judgment is frequently part of these discussions—even in the absence of ML tools. How
AutoML can be useful in these circumstances is through augmentation and providing another parameter to help
inform shared decisions.

Our results must be interpreted while considering the limitations. While NCDB allows us to train ML models
on a large cohort of heterogenous patients, the database itself is limited by missing data?’, lack of information on
the cause of death, and biases introduced by retrospective analysis®. Additionally, the database does not include
information on patient transfers to hospice care, so we cannot discern what proportion of patients underwent
hospice deaths. While our results were consistent with prior work that utilized NCDB?, the nearly 9% 90-day
mortality seen in our patient cohort is higher compared to other series®®*. Although, the other studies had
smaller sample sizes and less heterogeneity in treatment centers. Given our goal of making this model broadly
applicable, we elected to include all types of gastric resection and type of center where surgery was performed.
As expected, 90-day mortality greatly varied across resection and center types. Our sensitivity analysis showed
similar model performance in low mortality centers (academic)/ resection types (total/distal gastrectomy). None-
theless, prior to clinical implementation, models should be validated and optimized based on institutional data;
this process is simplified given the easy-to-use nature of the AutoML platform. Finally, while NCDB captures
approximately 70% of cancer patients, it only has data from patients that were treated at accredited CoC facilities,
and thus is not generalizable to the entire US population®”. Nonetheless, AutoML is able to handle missing data
and reasonably predict early mortality in this heterogenous population using only the available features. Our
work only focused on one AutoML approach, and further studies are necessary to understand the applicability
of other models within surgical risk prediction. Lastly, while we focused on mortality prediction, it is not the
only outcome of interest for patients and families considering gastric surgery. Thus, future studies focused on
morbidity and quality of life predictions are needed.

Conclusion

While surgery is the only curative therapy for patients with gastric cancer, 90-day postoperative mortality remains
high, and prediction of early postoperative mortality is challenging. While machine learning algorithms have the
potential to make predictions more accurately when compared to traditional statistical methodologies, the need
for computational and statistical expertise has been suggested to limit the widespread application of machine
learning within healthcare. In a large cohort of gastric cancer patients that underwent gastrectomy, our study
shows that AutoML performs well in predicting mortality. Models can further be optimized for preoperative
prediction, thereby not only allowing for robust patient prognostication but also informing patient selection for
surgery. We were also able to identify key perioperative variables that were influential in outcome prediction to
guide future interventions that mitigate risks of early postoperative mortality. Our work provides a framework
for effective, scalable, easy-to-implement, and explainable machine learning to inform clinical decision-making.

Data availability

The datasets generated and/or analyzed during the current study are available in the National Cancer Database
Participant Use Files for eligible users: https://www.facs.org/quality-programs/cancer-programs/national-can-
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