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Genetic diversity of Helicobacter 
pylori type IV secretion system 
cagI and cagN genes and their 
association with clinical diseases
Yasaman Azizimoghaddam 1, Sadaf Kermanpour 1, Nasrin Mirzaei 1, Hamidreza Houri 1, 
Ali Nabavi‑Rad  1, Hamid Asadzadeh Aghdaei 2, Abbas Yadegar  1* & Mohammad Reza Zali 3

A number of cagPAI genes in the Helicobacter pylori genome are considered the most evolved genes 
under a diversifying selection and evolutionary pressure. Among them, cagI and cagN are described as 
a part of the two different-operon of cagPAI that are involved in the T4SS machinery, but the definite 
association of these factors with clinical manifestations is still unclear. A total of 70 H. pylori isolates 
were obtained from different gastroduodenal patients. All isolates were examined for the presence 
of primary H. pylori virulence genes by PCR analysis. Direct DNA sequence analysis was performed 
for the cagI and cagN genes. The results were compared with the reference strain. The cagI, cagN, 
cagA, cagL, vacA s1m1, vacA s1m2, vacA s2m2, babA2, sabA, and dupA genotypes were detected in 
80, 91.4, 84, 91.4, 32.8, 42.8, 24.4, 97.1, 84.3, and 84.3% of the total isolates, respectively. The most 
variable codon usage in cagI was observed at residues 20–25, 55–60, 94, 181–199, 213–221, 241–268, 
and 319–320, while the most variable codon usage in CagN hypervariable motif (CagNHM) was 
observed at residues 53 to 63. Sequencing data analysis of cagN revealed a hypothetical hexapeptide 
motif (EAKDEN/K) in residues of 278–283 among six H. pylori isolates, which needs further studies to 
evaluate its putative function. The present study demonstrated a high prevalence of cagI and cagN 
genes among Iranian H. pylori isolates with gastroduodenal diseases. Furthermore, no significant 
correlation between cagI and cagN variants and clinical diseases was observed in the present study. 
However, all patients had a high prevalence of cagPAI genes including cagI, cagN, cagA, and cagL, 
which indicates more potential role of these genes in disease outcome.

Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that can chronically colonize the 
human stomach. This recalcitrant pathogen infects more than 50% of the world’s population and is considered the 
primary cause of chronic active gastritis, gastric and duodenal ulcers, mucosa-associated lymphoid tissue (MALT) 
lymphoma, and gastric adenocarcinoma1,2. H. pylori infection is recognized as the main risk factor for the 
development of gastric cancer, which is the fifth most common malignancy and the third leading cause of cancer-
associated morbidity worldwide3. The severity of H. pylori-induced gastric disorders seems to be associated with 
several parameters, including host genetic polymorphism, host inflammatory responses, environmental factors, 
and bacterial virulence genotype4,5.

H. pylori is associated with high genetic variability including virulence genes due to genetic plasticity, 
rearrangement of DNA, and high transformation and recombination frequency. Thus, H. pylori-infected patients 
exhibit different patterns of disease progression and clinical outcomes geographically. To date, several virulence 
factors coding genes have been identified in the genome of H. pylori such as cagA, vacA, babA, sabA, and 
dupA4,6. CagA oncoprotein is the best-studied virulence-associated factor of H. pylori that is translocated into 
the host gastric epithelial cells via the type 4 secretion system (T4SS). The H. pylori T4SS machinery is encoded 
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by a gene cluster that comprises an approximately 40 kb chromosomal region named cag Pathogenicity Island 
(cagPAI)7,8. cagPAI encodes about 27–31 genes, by which a subset of these genes encodes the main components 
of the T4SS apparatus spanning bacterial membranes. Moreover, about 15 to 16 different proteins of the T4SS 
are required for the translocation of CagA and peptidoglycan fragments into the host cell9. Upon translocation, 
CagA modulates the host cell signaling pathways which ultimately results in the loss of membrane polarity, cell 
elongation, secretion of inflammatory cytokines, and development of gastric adenocarcinoma10. cagPAI encodes 
several unique Cag components that have no sequence similarities to any other bacterial proteins involved in 
T4SS. However, a number of cagPAI genes such as cagI and cagN were proposed to be the most probably evolved 
genes under a diversifying selection and evolutionary pressure11. CagI, a 41.5 kDa protein encoded by the cagI 
(cag19/hp0540) gene, does not share any sequence and topological homology with any other known proteins12,13. 
On the other hand, CagN (Cag17/HP0538), a 32–35 kDa protein encoded by the cagN gene (hp0538), is a poorly 
characterized component of the T4SS that appears to be localized to the bacterial inner membrane rather than 
the periplasm9,12,14,15.

There are conflicting reports regarding the precise role of CagI and CagN in CagA translocation, IL-8 
secretion from gastric epithelial cells, and H. pylori T4SS machinery14,16–20. Recent studies have revealed that 
CagI is involved in the pilus biogenesis of T4SS and is essential for CagA translocation by binding to β1 integrins 
of the host cell21,22. On the other hand, the deletion of cagN can reduce the phosphorylation degree of CagA in the 
host cell and it is not considered a substrate for the T4SS14. However, the putative role of CagI and CagN in CagA 
translocation and H. pylori pathogenesis is yet to be fully elucidated. The oncogenic potential of H. pylori strains 
is associated with their virulence capacity, genetic diversity, and specific sequence polymorphisms within the key 
genes involved in the translocation and phosphorylation of T4SS effectors23–26. Therefore, we aimed to determine 
the prevalence of cagI and cagN genes and their amino acid sequence polymorphisms in Iranian H. pylori-infected 
patients with various gastroduodenal diseases. We further investigated the probable association between the 
genetic variants of cagI and cagN and other virulence genotypes of H. pylori with clinical consequences.

Materials and methods
H. pylori clinical isolates and biopsy specimens.  Gastric biopsy specimens were obtained from 70 
patients who underwent upper gastroduodenal endoscopy at the Research Institute for Gastroenterology and 
Liver Diseases in Tehran between January 2017 and May 2019. Three antral biopsies were taken from each 
patient and immediately placed in transport media containing Thioglycolate supplemented with 3% yeast extract 
(Oxoid Ltd., Basingstoke, UK) and 1.3  g/L agar (Merck, Germany). All patients provided written informed 
consent. The study was approved by the Institutional Ethical Review Committee of the Research Institute for 
Gastroenterology and Liver Diseases at Shahid Beheshti University of Medical Sciences (Project No. IR.SBMU.
RIGLD.REC.1398.023). All methods were performed in accordance with the relevant guidelines and regulations.

H. pylori culture and identification.  Biopsy specimens were carefully homogenized and inoculated 
onto Brucella agar plates (Merck, Germany) supplemented with 7% (v/v) horse blood, 10% fetal calf serum 
(FCS), Campylobacter-selective supplement (vancomycin 2.0 mg, polymyxin 0.05 mg, trimethoprim 1.0 mg), 
and amphotericin B (2.5 mg/l). The incubation was performed at 37 °C for 3–7 days under a microaerophilic 
atmosphere (5% O2, 10% CO2, and 85% N2) in a CO2 incubator (Innova® CO-170; New Brunswick Scientific, 
USA). The suspected colonies were identified as H. pylori based on colony morphology, Gram staining, positive 
reaction for oxidase, catalase, as well as urease tests, and also by H. pylori gene-specific PCR following the 
previously described protocols27,28. Pure cultures from confirmed isolates were kept in 0.5  ml of brain heart 
infusion (BHI) medium (Merck, Germany) containing 15% glycerol plus 20% FCS, and stored at − 80 °C until 
further analysis.

Genomic DNA extraction.  Genomic DNA was extracted from freshly harvested colonies on agar plates, 
using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. 
The quality of DNA was checked by using a NanoDrop® ND-1000 spectrophotometer (Thermo Fisher Scientific, 
USA). The extracted DNA samples were stored at − 20 °C until PCR assay.

Genotyping of H. pylori virulence‑associated genes.  PCR analysis was performed to detect virulence 
target genes including cagL, cagA, vacA alleles (s1/s2 and m1/m2), babA2, sabA, and dupA genes using specific 
primers (Table S1). Briefly, PCR mixtures in a volume of 25 µl consisted of 2 µl of template DNA (approximately 
200  ng), 0.1  mM of each primer, 2.5  µl of a tenfold concentrate PCR buffer, 100  mM of deoxynucleotide 
triphosphates, 1 mM MgCl2, and 1.5 U of Super-Taq™ DNA polymerase (HT Biotechnology Ltd., Cambridge, 
UK). PCR amplifications were performed in a thermocycler (Eppendorf, Hamburg, Germany) under the 
following conditions: initial denaturation at 94 °C for 4 min, followed by 30 cycles of denaturation at 94 °C for 
1 min, annealing at the indicated temperature for each reaction in Table S1 for 45 s, extension at 72 °C for 1 min. 
A final extension step was performed at 72 °C for 10 min to ensure the full extension of the PCR products. PCR 
amplicons were electrophoresed on a 1.2% TBE agarose gel, stained with ethidium bromide, and examined 
under a UV transilluminator. H. pylori J99 (CCUG 47,164) and a no-template mixture served as positive and 
negative controls in each PCR experiment, respectively.

Primer designation for cagI and cagN genotyping.  The NCBI GenBank database (http://​www.​ncbi.​
nlm.​nih.​gov/​genba​nk/) and the DNA Data Bank of Japan (http://​www.​ddbj.​nig.​ac.​jp/) were searched for all 
available complete and partial cagI and cagN sequences of H. pylori strains. Based on pairwise and multiple 
nucleotide sequence alignments of cagI and cagN genes from different H. pylori strains and using the complete 
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relevant sequence of H. pylori P12 (CP001217.1) as the reference strain, two pairs of specific primers were 
designed from the conserved regions for detection of complete related sequences using CLC Sequence Viewer 
8 software (https://​www.​qiage​nbioi​nform​atics.​com/). The selected primer target sites were compared to all 
available complete and partial cagI and cagN sequences of H. pylori strains with the Basic Local Alignment 
Search Tool (http://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi).

Analysis of cagI and cagN diversity by PCR sequencing.  For DNA sequencing of cagI and cagN, PCR 
amplification was carried out in a final volume of 25 µl using designed specific primers including 5′-CAT​TTG​
ACT​TAC​CTT​GAT​TAC-3′ (cagI-F) and 5′-TTT​GAG​CAC​TTG​TTG​GTT​GG-3′ (cagI-R), 5′-GAG​CGA​CAA​
AAC​AAC​TAT​GC-3′ (cagN-F) and 5′-GAT​CCC​TAG​AAC​AAA​GTA​AGC-3′ (cagN-R) yielding DNA fragments 
of about 1377 and 1192 bp in length, respectively. The PCR products were purified using the Silica Bead DNA Gel 
Extraction Kit (Thermo Scientific, Fermentas, USA) followed by sequencing on both strands using an automated 
sequencer (Macrogen, Seoul, Korea). DNA sequences were edited by Chromas Lite version 2.5.1 (Technelysium 
Pty Ltd, Australia) and BioEdit version 7.2.529. The cagI and cagN nucleotide and amino acid sequences were 
aligned to H. pylori strain P12 as a reference strain (GenBank: CP001217.1). The single nucleotide variations and 
codon usage of the sequences were examined using BioEdit version 7.2.5.

Phylogenetic analysis.  Phylogenetic trees were generated for CagI and CagN nucleotide and amino acid 
sequences using Molecular Evolutionary Genetics Analysis version 7.0 (MEGA7)30. The evolutionary history 
was inferred by the Maximum Likelihood trees using the Tamura 3-parameter model and Poisson correction 
method for nucleotide and amino acid sequences, respectively.

Nucleotide sequence accession numbers.  The complete and partial nucleotide sequences of cagI and 
cagN genes from H. pylori strains determined in this study were deposited in the NCBI GenBank database under 
the accession numbers MG573078-MG573107 (cagI) and MG559675-MG559720 (cagN).

Statistical analysis.  The statistical associations between H. pylori virulence genotypes and different clinical 
statuses were determined by the Chi-square and Fisher’s exact tests. A two-sided P value of less than 0.05 was 
regarded as statistically significant. The IBM SPSS Statistics for Windows version 21.0 (Armonk, NY: IBM Corp.) 
was used for all statistical analyses.

Ethics approval and consent to participate.  This work deals with clinical bacterial strains isolated 
from human gastric biopsies. No tissue material or other biological material was stored from the patients, 
only subcultured bacterial isolates. Informed consent was obtained from all individual participants included 
in the study. All procedures performed were following the ethical standards retrieved from the Institutional 
Ethical Review Committee of the Research Institute for Gastroenterology and Liver Diseases (RIGLD) at Shahid 
Beheshti University of Medical Sciences (Project No. IR.SBMU.RIGLD.REC.1398.023).

Results
Demographic and clinical characteristics of patients.  The median age of the patients was 45.6 years 
(ranging from 14 to 75 years). Of the study cohort, 32.8% (n = 23) were male and 67.2% (n = 47) were female. 
According to the endoscopic and histopathology findings, 39 patients (55.7%) were diagnosed with non-ulcer 
dyspepsia (NUD), 23 patients (32.9%) had peptic ulcer disease (PUD), 7 patients (10%) had intestinal metaplasia 
(IM), and 1 patient (1.4%) had gastric cancer. Three patients (4.3%) suffered from gastritis and duodenitis 
simultaneously. Table S2 indicates the demographic characteristics and clinical status of the included subjects. 
From each of the 70 cases, H. pylori were isolated by culture, and the isolates were approved by detection of the 
glmM and 16S rRNA genes.

Virulence genotypes and variants.  The molecular analysis revealed that the cagA, cagI, cagN, cagL, 
vacA s1m1, vacA s1m2, and vacA s2m2 positive strains had a prevalence of, respectively, 84% (n = 59), 80% 
(n = 56), 91.4% (n = 64), 91.4% (n = 64), 32.8% (n = 23), 42.8% (n = 30), and 24.4% (n = 17) while babA2, dupA, 
and sabA were detected in, respectively, 97.1% (n = 68), 84.3% (n = 59), and 84.3% (n = 59) of the isolates included 
in this investigation (Table 1). There was no statistically significant association between the H. pylori virulence 
genotypes and the clinical status of the patients (P > 0.05). In the present study, 100% (23/23) of the PUD and 
94.9% (37/39) of the NUD strains were positive for the babA2 gene by PCR. Furthermore, the prevalence of cagN 
and cagL genes for PUD strains is attributed to 95.6% (22/23) and 91.3% (21/23), respectively. In the meantime, 
patients suffering from NUD showed a frequency of 89.7% (35/39) and 94.9% (37/39) for the same genes as 
PUD. When it comes to vacA allelic combinations, vacA s1m2 was found to be the most common allele among 
the strains recovered from the PUD patients (52.2%), whereas 42.8 and 33.3% of allelic combinations were 
assigned to vacA s1m1 and vacA s2m2, within the IM and NUD strains, respectively.

cagI variants in patients with different clinical status.  Out of 56 cagI-positive H. pylori strains, 
the cagI gene of 30 strains was randomly selected and sequenced. The full-length cagI gene was successfully 
sequenced in 27 H. pylori strains. Moreover, the cagI gene was partially sequenced in three strains due to poor-
quality of sequence data or sequencing errors. According to our sequencing data, there was no insertion or 
deletion in the full-length cagI fragment from 27 H. pylori studied, and sequence alignments were therefore 
straightforward. In addition, we performed in-frame translation for the cagI gene into amino acid sequences 
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and investigated rates and locations of CagI variants. The distribution of amino acid polymorphisms in CagI of 
H. pylori strains is represented in Fig. S1 and Table 2. The most variable codon usage was observed at residues 
G20–I25, Q55–E60, G94, M181–A199, K213–T221, and Q241–A268. As we expected, the SKVIVK hexapeptide 
motif (376–381) located at the C-terminal of CagI was completely conserved among the cagI-sequenced H. 
pylori strains.

cagN variants in patients with different clinical status.  Regarding cagN sequence analysis, 46 strains 
were randomly sent for direct DNA sequencing from 64 cagN-positive H. pylori strains. The complete cagN gene 
was successfully sequenced in 43 H. pylori strains. Furthermore, the cagN gene fragments of three strains were 
partially sequenced for the same reasons as the cagI gene. The cagN sequencing findings showed a high level of 
variability in CagN nucleotide and protein sequences. The most variable codon usage was observed at residues 53 
to 63, the so-called CagN hypervariable motif (CagNHM). Moreover, a hypothetical hexapeptide (EAKDEN/K) 
was inserted in residues 278–283 among six H. pylori strains. Interestingly, this motif was observed two times in 
a row in one of these clinical strains (EAKDENEAKDEN). The other insertion sequences were detected between 
residues 224–225 and 234–235 for KV and KN amino acids in one of the strains. The sequencing data analysis 
revealed that these insertion sequences in the cagN gene caused no frameshift mutations as compared to the P12 
reference strain. Figure S2 and Table 3 showed the distribution of amino acid polymorphisms of CagN among 
43 H. pylori strains in this study.

Phylogenetic analysis of H. pylori CagI and CagN.  The phylogenetic trees of cagI nucleotide and amino 
acid sequences from H. pylori isolates are illustrated in Figs. 1 and 2, respectively. Generally, no characteristic 
clusters were observed between DNA and amino acid sequences of CagI and different clinical statuses. 
Furthermore, based on the CagN nucleotide and amino acid sequences, phylogenetic trees were reconstructed 
using the Maximum Likelihood method, which are illustrated in Figs. 3 and 4, respectively. Similar to CagI 
sequences, the CagN phylogenetic analysis indicated no characteristic clusters concerning the clinical status.

Discussion
Virulent H. pylori strains harbor the cagPAI (cag+) encoding a type IV secretion apparatus, which has been 
shown to inject CagA and possibly other virulence effectors into infected gastric epithelial cells31. It has been 
well documented that cag+ H. pylori strains augment the risk for severe gastritis, peptic ulceration, atrophic 
gastritis, dysplasia, and gastric adenocarcinoma compared to strains that lack the cagPAI (cag−)32–34. Previously, 
it has been described that CagI forms a functional protein complex at the bacterial cell surface by interacting 
with CagL, which is another important Cag secretion apparatus component. Accordingly, solid evidence 
suggested that CagI can interact with CagL protein and allow it to bind to integrin receptors on the target cell 
surface8,17. CagI and CagL proteins contain N-terminal signal peptides; therefore, they might be transported 
to the periplasm. However, these two proteins are disproportionately distributed on the bacterial cell surface35. 
Considering different views on CagI, Kumar et al.36 found that CagI does not participate in CagA translocation 
from cytoplasm to bacterial cell surface. Additionally, it has been discovered that mutation in cagN did not 
interrupt CagA delivery or IL-8 secretion and the CagN-deficient H. pylori strains could cause an infection 
similar to wild-type H. pylori strains. Some experiments have also indicated that CagN is not conclusively 
required for H. pylori T4SS function16. In another study conducted by Kutter et al. CagN was established to 
interact with two other cagPAI proteins, including CagV and CagY35. Thus, the biological function of CagN 
requires further in-depth investigation. In the current study, attempts were made to detect possible variants of 
CagI and CagN, as uncharacterized cagPAI-encoded factors, on both nucleotide and amino acid sequence levels 
among H. pylori isolates in Iran. We also investigated the distribution and variations in H. pylori virulence factors. 
Our findings revealed that 80% of H. pylori isolates harbored the cagI gene, whilst 91.4% of strains had the cagN 
gene. To the best of our knowledge, the cagI and cagN variants in H. pylori isolates in the subset of patients with 
different gastroduodenal diseases are not available in the literature. Based on our molecular findings, CagI E221 

Table 1.   Distribution of virulence genotypes in relation to clinical status among 70 H. pylori strains. GC 
gastric cancer, IM intestinal metaplasia, NUD nonulcer dyspepsia, PUD peptic ulcer disease.

Virulence genotypes

Clinical status

Total (n = 70)NUD (n = 39) PUD (n = 23) IM (n = 7) GC (n = 1)

cagI-positive 32 (82%) 17 (73.9%) 6 (85.7%) 1 (100%) 56 (80%)

cagN-positive 35 (89.7%) 22 (95.6%) 6 (85.7%) 1 (100%) 64 (91.4%)

cagA-positive 33 (84.6%) 19 (82.6%) 6 (85.7%) 1 (100%) 59 (84.3%)

cagL-positive 37 (94.9%) 21 (91.3%) 5 (71.4%) 1 (100%) 64 (91.4%)

vacA s1m1 12 (30.8%) 8 (34.8%) 3 (42.8%) 0 (0%) 23 (32.8%)

vacA s1m2 14 (35.9%) 12 (52.2%) 3 (42.8%) 1 (100%) 30 (42.8%)

vacA s2m2 13 (33.3%) 3 (13%) 1 (14.3%) 0 (0%) 17 (24.3%)

babA2-positive 37 (94.9%) 23 (100%) 7 (100%) 1 (100%) 68 (97.1%)

sabA-positive 32 (82%) 20 (87%) 6 (85.7%) 1 (100%) 59 (84.3%)

dupA-positive 32 (82%) 20 (87%) 6 (85.7%) 1 (100%) 59 (84.3%)
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(21.0% vs. 0.0%), and V268 (26.3% vs. 14.2%) amino acid polymorphisms occurred at a higher rate in H. pylori 
isolates from NUD individuals, compared to those isolated from PUD patients. On the contrary, CagI amino 
acid changes G22 (42.8% vs. 5.2%), A23 (42.8% vs. 5.2%), S57 (71.4% vs. 47.3%), and S94 (85.7% vs. 52.6%) were 
detected at higher rates in H. pylori isolates from PUD patients, compared to NUD subjects.

Despite cagN and cagM being demonstrated to be conserved in the cagPAI throughout all cag+ H. pylori 
strains that have been sequenced so far11, a high level of variability in CagN nucleotide and protein sequences 
was observed in the present study. Furthermore, the most variable region in CagN amino acid sequence, so-called 
here CagNHM, was found at residues 53 to 63 and contained many missense mutations. This region is postulated 
to contain the GDEEITEEEKK sequence in the P12 reference strain but varied among the sequenced strains in 
the current study.

Our findings elucidated that there was no significant correlation between clinical diseases and cagI and cagN 
variants at both nucleotide and amino acid levels (P > 0.05), which is in accordance with a previously conducted 

Table 2.   The frequency of amino acid substitutions of CagI among clinical strains of H. pylori (n = 27) from 
patients with different clinical status. NUD nonulcer dyspepsia, PUD peptic ulcer disease, IM intestinal 
metaplasia. a Positions of amino acid residues correspond to the H. pylori P12 reference strain. b Positions of 
amino acid residues similar to the H. pylori P12 reference strain.

Residuea Reference Variant NUD (n = 19) PUD (n = 7) IM (n = 1)

2 K N 1 –b –

3 C S/F 1/1 – –

6 S D 1 – –

9 S F 1 – –

12 T I 1 – –

22 E G 1 3 –

23 V A/I 1/1 3/1 –

25 I M 2 1 –

34 I N 1 – –

40 A V 1 – –

44 T A 1 – –

51 A V 2 – –

57 N S 9 5 1

94 G S 10 6 1

116 A G 1 – –

162 A T 1 – –

166 A V – 1 –

182 E K 1 – –

187 A T 1 – –

190 S N – 1 –

192 S F 1 – –

195 A T 2 1 –

199 A T 1 – –

204 G S 1 – –

213 K E 3 – –

221 T E 4 – –

243 A T 4 2 –

246 A V – 1 –

254 S N 2 – –

257 A T 1 – –

262 I F 1 – –

263 E Q 1 – –

268 A V/E 5/1 1/– 1/–

305 D G/N –/1 1/1 –

319 G E 1 2 –

320 E Q 1 2 –

351 L F 1 – –

353 K T 1 – –

368 T M/K 1/1 – –

375 S G – 2 1
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Residuea Reference Variant NUD (n = 24) PUD (n = 14) IM (n = 4) GC (n = 1)

8 L I – 1 –b –

15 S F 2 – – –

17 V A/I 3/1 1/1 – –

18 I V 11 7 2 –

32 S N – 1 – –

33 E K 1 – – –

36 E K 9 1 2 –

38 A V 24 14 4 1

39 A V – 1 – –

46 K T – 1 1 –

48 L F 8 6 1 1

49 H Y 7 4 1 1

52 H R – 1 – –

53 G D 24 14 4 1

54 D N 1 – – –

55 E K 7 3 – –

57 I V 16 10 2 –

59 E K 17 13 3 –

61 E K 3 – – –

63 K E 16 12 3 –

80 A V – 2 1 –

98 V I 18 9 1 1

102 A V 2 – – –

103 A T/S 8/– 5/1 1/– –

106 K R 3 1 – –

114 I T 3 6 – –

117 T N/H 7/14 3/9 3/1 1/–

118 P S – 1 – –

121 D N 2 – – –

125 S G 3 2 – –

129 A T 16 11 4 1

134 N H 2 – – –

137 D G 1 – – –

140 D N 2 2 – –

148 E G 13 6 2 –

149 A S 7 4 2 –

154 A T/V 2/1 4/– 1/– 1/–

155 A T – 1 – –

160 N D 18 11 4 –

161 E K – 1 – –

170 I V 3 – – –

174 C G 1 – – –

182 D N – 1 1 –

191 G D – 2 1 –

194 D E 1 – – –

199 A T/V 5/– 5/1 2/– –

203 E K 1 – 1 –

208 I V 1 – – –

221 S N 2 – – –

224 K R 1 – – –

225 L F 1 – – –

226 A V 1 – – –

227 L F – 2 1 1

228 N H – 1 – –

232 N S – 1 – –

233 R K – 1 – –

Continued
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Table 3.   The frequency of amino acid substitutions of CagN among clinical strains of H. pylori (n = 43) 
from patients with different clinical status. NUD nonulcer dyspepsia, PUD peptic ulcer disease, IM intestinal 
metaplasia, GC gastric cancer. a Positions of amino acid residues correspond to the H. pylori P12 reference 
strain. The inserted sequences are not indicated in the table. b Positions of amino acid residues similar to the H. 
pylori P12 reference strain.

Residuea Reference Variant NUD (n = 24) PUD (n = 14) IM (n = 4) GC (n = 1)

241 T A 22 13 4 1

248 K R – 1 – –

259 T I 1 – – –

262 A T 2 1 – –

263 S G – – 1 –

264 K E 23 14 4 1

267 T A 15 11 2 1

268 T A 1 12 – –

273 N S 1 – – –

279 T A/V 7/1 5/– 2/– 1/–

280 F S 1 1 1 –

284 R H 4 2 – –

285 S F/P 2/– – –/1 –

287 S F 1 1 – –

288 E D 1 – – –

302 A V 1 – – –

304 E G 24 14 4 1

Figure 1.   Phylogenetic tree of H. pylori clinical strains (n = 27) based on cagI nucleotide sequences. The 
maximum likelihood tree of concatenated sequences was constructed using MEGA7 software with the bootstrap 
method at 1000 replications. The evolutionary distances were computed using the Tamura 3‐parameter model.
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study25. Pham et al. stated that the C-terminal motif (SKVIVK) in CagI is essential for T4SS function, and thus 
is completely conserved among H. pylori strains. Remarkably, the C-terminal motif of CagI is reported to be 
similar to the C-terminal motifs of CagL SK(I/V)IVK and CagH TKIIVK, representing the possibility that the 
amino acid sequences essentially act as binding motifs for a common interaction partner of all three proteins17. 
In agreement with the aforementioned study, our findings also confirmed that the CagI C-terminal motif was 
completely conserved among all H. pylori isolates25. Sequencing analysis of the present study also showed that 
a hypothetical hexapeptide motif (EAKDEN/K) was detected in residues 278–283 in CagN among 13.9% of 
H. pylori isolates. Although Bats et al. implied that the mutations and truncations in the CagN sequence were 
irrelevant to folding properties or the overall shape of CagN37, further studies are required to assess the impact 
of this hexapeptide motif on CagN protein structure and its role in H. pylori T4SS activity. Despite the alterations 
in various cag sequences, it is noticeable that all patients who had a high prevalence of cagPAI genes including 
cagI, cagN, cagA, and cagL that indicates more potential role of these genes in disease outcome.

In the present study, we further investigated the presence of various H. pylori virulence genotypes. In 
accordance with our previous studies among Iranian populations38,39, we detected a high prevalence of vacA s1 
(77.1%) and vacA m2 (65.7%) allelic genotypes. The vacA s1 allele has been reported to be associated with more 
severe atrophic gastritis in peptic ulcer patients40,41. In our study, the vacA s1 genotype was found to be more 
prevalent among PUD patients; however, there was no significant association between the presence of other 
virulence genes and clinical disease outcomes. The mosaic combination of s- and m-region allelic genotypes also 
has been established to be associated with the pathogenicity of H. pylori42,43. Accordingly, type s1m1 H. pylori 
strains express large amounts of VacA toxin and are strongly associated with a higher level of inflammation and 
mucosal ulceration, while vacA s1m2-harboring strains produce a moderate amount of toxin and vacA s2m2 
strains are virtually non-toxic and rarely associated with clinical disease44. A majority of H. pylori strains in the 
current study contained the vacA s1m2 genotype and this was mainly observed in NUD patients. On the contrary, 
allelic combination s1m1 or s2m2 genotypes were detected among the majority of clinical isolates of H. pylori 
in other parts of the world, and the hypervirulent vacA s1m1 genotype was commonly associated with PUD 
patients45. Hence, it can be inferred that the correlation between H. pylori genotyping and clinical outcomes of 
the patients varies in different geographical regions.

Figure 2.   Phylogenetic tree of H. pylori clinical strains (n = 27) based on translated CagI amino acid sequences. 
The maximum likelihood tree of concatenated sequences was constructed using MEGA7 software with the 
bootstrap method at 1000 replications. The evolutionary distances were computed using the Poisson correction 
method.
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Conclusion
This study investigated the diversity of cagI and cagN sequences in clinical H. pylori isolates from Iranian patients 
with different clinical diseases. We detected several putative variants of cagI and cagN sequences in H. pylori 
isolates; however, there was no significant relevance between these variants and clinical phenotypes. Our findings 
also demonstrated that the C-terminal SKVIVK motif within the CagI protein is conserved among all tested H. 
pylori strains. Meanwhile, the motif EAKDEN was a typical attribute identified in the C-terminal sequence of 
CagN protein among some of the H. pylori strains, which its potential impact on T4SS activity and translocation 
of effectors requires further in-depth investigations. Although the present study has successfully elaborated the 
genetic diversity of cagI and cagN genes, it has certain limitations in terms of insufficient sample size. Accordingly, 
exploring the possible effects of CagI and CagN variants on the T4SS activity as well as their potential interactions 
with other cagPAI components in a large number of H. pylori isolates appears mandatory.

Figure 3.   Phylogenetic tree of H. pylori clinical strains (n = 43) based on cagN nucleotide sequences. The 
maximum likelihood tree of concatenated sequences was constructed using MEGA7 software with the bootstrap 
method at 1000 replications. The evolutionary distances were computed using the Tamura 3‐parameter model.
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Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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