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Identification of hub genes 
and potential ceRNA networks 
of diabetic cardiomyopathy
Jun Hou 1,2,8, Wan Yi Liang 3,8, Shiqiang Xiong 1,8, Pan Long 2, Tian Yue 2, Xudong Wen 4, 
Tianchen Wang 5 & Haoyu Deng 6,7*

Diabetic cardiomyopathy (DCM), a common complication of diabetes, is defined as ventricular 
dysfunction in the absence of underlying heart disease. Noncoding RNAs (ncRNAs), including long 
noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play a crucial role in the development of 
DCM. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify key modules in 
DCM-related pathways. DCM-related miRNA-mRNA network and DCM-related ceRNA network were 
constructed by miRNA-seq to identify hub genes in these modules. We identified five hub genes that 
are associated with the onset of DCM, including Troponin C1 (Tnnc1), Phospholamban (Pln), Fatty acid 
binding proteins 3 (Fabp3), Popeye domain containing 2 (Popdc2), and Tripartite Motif-containing 
Protein 63 (Trim63). miRNAs that target the hub genes were mainly involved in TGF-β and Wnt 
signaling pathways. GO BP enrichment analysis found these miRNAs were involved in the signaling 
of TGF-β and glucose homeostasis. Q-PCR results found the gene expressions of Pln, Fabp3, Trim63, 
Tnnc1, and Popdc2 were significantly increased in DCM. Our study identified five hub genes (Tnnc1, 
Pln, Fabp3, Popdc2, Trim63) whose associated ceRNA networks are responsible for the onset of DCM.

Diabetic cardiomyopathy (DCM) is clinically defined as the existence of abnormal myocardial structure and 
performance in the absence of other cardiac diseases, including coronary artery disease, hypertension, and 
significant valvular diseases, in individuals with diabetes mellitus1. It is established that the prevalence of heart 
failure in diabetic patients ranges from 19 to 26% worldwide2. Clinically, DCM is usually asymptomatic in the 
early stages of its evolution through left ventricle (LV) hypertrophy and decreased LV compliance, which are 
characterized by impaired early diastolic filling. Subsequently, LV dilation and symptomatic heart failure occur 
after the development of systolic dysfunction3. Unfortunately, screening approaches including B-type natriuretic 
peptide, exercise stress testing, and echocardiography, do not seem to be sufficiently sensitive in identifying 
subclinical dysfunction in diabetic patients4. As a result, ongoing studies are vital to understanding the precise 
mechanisms that initiate and progress DCM and to developing novel strategies to reduce the risk of heart failure 
in diabetic patients.

Noncoding RNAs, including long noncoding RNAs (lncRNAs) and microRNA (miRNA), play an important 
role in many biological processes and diseases including diabetes and its complications5–7. It has been shown 
that diverse RNA molecules harboring miRNA Recognition Elements (MREs) can act as competing endogenous 
RNAs (ceRNAs) against the common pool of miRNAs for communication, engendering the ceRNA hypothesis8,9. 
More recently, a growing body of evidence has also found that ceRNA activity of lncRNAs can serve as natural 
miRNA decoys in human development and pathophysiological conditions10,11. The ceRNA hypothesis plays 
an impactful role in diabetes and diabetic complications. For example, Zhou et al.12 reported that lncRNA 
myocardial infarction–associated transcript (MIAT) functions as a competing endogenous RNA to up-regulate 
DAPK2 by sponging miR-22-3p in DCM; Feng et al.13 found that lncRNA DCM-related factor (DCRF) regulates 
cardiomyocyte autophagy by targeting miR-551b-5p in DCM; Yang et al.14 demonstrated that lncRNA, Kcnq1ot1, 
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is over-expressed in DCM, and silencing Kcnq1ot1 inhibits pyroptosis by regulating miR-214-3p and caspase-1 
expressions. In addition, a recent study15 showed that lncRNA, ZFAS1, acts as a ceRNA to sponge miR-150-5p 
and down-regulate CCND2, consequently promoting cardiomyocyte ferroptosis and DCM development. These 
studies indicate that noncoding RNA through the ceRNA hypothesis may play an important role in DCM.

In this study, we performed RNA-seq and miRNA sequencing on heart tissue from db/db mice to explore the 
transcriptome alterations in DCM pathogenesis, including lncRNA, miRNA, and mRNA. We further analyzed 
possible mechanisms by which altered immune cell infiltration may trigger DCM. This study provides a potential 
novel understanding of the pathogenesis of DCM and proposes several potential therapeutic targets. The research 
design is shown in Fig. 1.

Figure 1.   Flowchart describing the schematic overview of the study design. DPN, diabetic peripheral 
neuropathy, DN, diabetic nephropathy.
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Materials and methods
Animals and tissue samples.  All procedures were performed under the guidelines for animal care 
and approved by the Animal Care and Ethics Committee of Southwest Jiaotong University. The present study 
was reported in accordance with the ARRIVE 2.0 Essential 10 guidelines. Two murine strains with C57BL/6 
background including db/m and db/db mice were used as the spontaneous diabetic cardiomyopathy model and 
healthy control model, respectively. Three newborn healthy male db/m mice and three newborn healthy male 
db/db mice were purchased from Shanghai Nanfang Model Biotechnology Co. LTD (Shanghai, China). Db/m 
mice were given ad libitum access to tap water and laboratory feed for 16 weeks. Db/db mice were fed a high-fat 
diet for 16 weeks. The ultrasound system (VisualSonics, Toronto, ON, Canada) was used for echocardiographic 
measurements. After anesthetic treatment with avertin, the mice were shaved to expose the chest area and fixed 
onto a flat plate. Left ventricular systolic diameter (LVDs), LV diastolic diameter (LVDd), LV ejection fraction 
(EF), and LV fractional shortening (FS) were determined and averaged from 6 consecutive cardiac cycles16.

Data preparation.  The data set, GSE123853, was retrieved and downloaded from the Gene Expression 
Omnibus (GEO) database17. This dataset was employed to identify distinct molecular pathways regulating 
diabetic peripheral neuropathy (DPN) and nephropathy (DN). This dataset also included RNA-seq data of four 
diabetic complication-prone tissues (sciatic nerve (SCN), dorsal root ganglia (DRG), kidney glomeruli (Glom), 
and kidney cortex (Cortex)). Raw data of GSE123853 were downloaded from the Sequence Read Achieve (SRA) 
with accession SRP173448 and subsequently converted to FASTQ with sratoolkit18.

RNA‑Seq pipeline.  RNA was isolated from the left ventricle of three db/db mice and three db/m mice, 
respectively. RNA was used to generate barcoded complementary DNA (cDNA) libraries using the NEBNext 
Ultra RNA library prep with rRNA depletion (New England Biolabs). Indexed libraries were sequenced in 
2 × 150 bp configuration on the Illumina HiSEQ platform. Briefly, first-strand and second-strand cDNA were 
synthesized from the input RNA, and single primer isothermal amplification (SPIA) of the resultant cDNA was 
performed, followed by mechanical shearing of double-stranded cDNA (ds-cDNA) (Covaris E220 ultrasonicator; 
Covaris Inc, MA). Subsequently, end repair and A-tailing of sheared cDNA and construction of unique barcoded 
libraries by addition of adapters and PCR amplification (8 cycles) were conducted. The Agencourt AmPure XP 
bead (Beckmann Coulter) purified libraries were quantified by quantitative PCR (q-PCR) and size distribution 
was checked using the Agilent TapeStation 2200 system. The libraries were subjected to paired-end 150  bp 
sequencing on HiSeq 2500 sequencing system (Illumina). For all samples, including public data, paired-end reads 
were mapped to the mm 10 genome assembly using RNA-seq aligner, STAR, with default parameters. Duplicate 
and multi-mapped reads were removed with samtools19. Following alignment, reads were counted per gene and 
fragments, per kilobase per million (FPKM), with featureCounts tool and GENCODE m28 and NONCODE v6 
annotation20,21. Gene counts were then normalized and analyzed for identified differential expression mRNAs 
(DE-mRNAs) and lncRNAs (DE-lncRNAs) using the Bioconductor package edger, which is operated with 
a > 1.5-fold change and P-value < 0.05 cut-offs22. FPKM was used for Weighted Gene Co-Expression Network 
Analysis (WGCNA).

miRNA‑seq pipeline.  miRNA was isolated from the left ventricle (3 db/db mice and 3 db/m mice). The 
libraries were generated using NEBNext®Multiplex Small RNA Library Prep Set for Illumina® (NEB, USA). 
After library preparation and pooling of different samples, the samples were subjected to Illumina NextSeq500 
sequencing. Raw data with fastq format containing N, low quality, 5’ adapter contaminants, ploy A, and low-
quality reads were removed from the reads. Raw data without a 3’adapter or the insert tag was also removed 
from the reads as well. The small RNA tags from rRNA, tRNA, small nuclear RNA (snRNA), and small nucleolar 
RNA (snoRNA) were detected by mapping with the Rfam database and further mapped to the reference genome, 
mm10, by Bowtie software23. Known miRNA was identified by mapping to the miRBase database with R package, 
miRDeep224. MiRDeep2 was also used to count the reads numbers mapped to each miRNA. R package edgeR 
was used for differential expression analysis. A cut-off with fold change ≥ 1.5 and P-value < 0.05 was used for 
identifying differential expression miRNAs (DE-miRNAs).

WGCNA.  We used the WGCNA package (version 1.60) in R to find and combine highly correlated mRNAs 
into mRNA modules, which permitted an examination for correlation between each module and diabetic 
complication-prone25. Before using the WGCNA, we used surrogate variable analysis (sva) package and object-
oriented microarray and proteomics analysis (oompaBase) package to remove the batch effect between different 
samples26. The power of β = 5 (scale-free R2 = 0.8) was selected as the soft threshold to ensure a scale-free network 
(Figure S1). The dynamic tree cutting method was used to cluster the mRNAs in layers, using 50 as a minimum 
size cutoff, and the cut height = 0.3 was applied to merge highly similar modules. Different mRNA modules 
were labeled with varying colors; the gray module represents mRNAs that could not be merged27. Pearson 
correlation analysis was implemented to evaluate the correlation between mRNAs and susceptibility to diabetic 
complications.

Functional enrichment analysis.  Gene Ontology (GO), including cellular components, molecular 
function, biological process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway28,29, were 
analyzed using the R package clusterProfiler (version 3.2.14), as described previously30. Gene set enrichment 
analysis (GSEA) was performed using KEGG pathway annotation data, analyzed with the package clusterProfiler, 
and displayed on ridgeline plot31. Cell senescence related genes were download from CSGene database32. Heart 
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regeneration-related genes were download from Regeneration Roadmap33. DE-lncRNAs have a high positive 
correlation (correlation coefficient > 0.9) with cell senescence-related genes and heart regeneration-related 
genes, identifying potential cell senescence-related or heart regeneration-related lncRNAs.

Immune cell infiltration.  The immune cell infiltration status was acquired from bulk RNA-sequencing 
data by applying the single-sample gene set enrichment approach to the transcriptomes based on single-
sample GSEA (ssGSEA), and ultimately acquired through the R package, gene set variation analysis (GSVA)34 
(Table S1.). A total of 25 immune cells were used in this study, which include activated B cell, activated CD4+ T 
cell, activated CD8+ T cell, central memory CD4+ T cell, central memory CD8+ T cell, effector memory CD4+ T 
cell, effector memory CD8+ T cell, immature B cell, memory B cell, T follicular helper cell, Tγδ, Th1, Th2, Th17, 
Treg, natural killer (NK) cell, eosinophil, activated dendritic cell (DC), immature DC, neutrophil, plasmacytoid 
DC, macrophage, mast cell, monocyte, and NKT cell35.

Prediction of target miRNAs and construction of ceRNA networks.  According to the ceRNA 
hypothesis, miRNAs can induce gene silencing and down-regulate gene expression by binding to mRNA, and 
lncRNAs that are rich in miRNA binding sites can act as a miRNA sponge, leading to changes in expression 
levels of miRNA-target mRNAs. We first identified differentially expressed miRNAs (DE-miRNAs) in DCM 
and then calculated the Pearson correlation coefficient between these DE-miRNAs and hub genes. DE-miRNAs 
paired with correlation coefficient < -0.5 and P < 0.05 were considered as potential miRNAs that can down-
regulate the expression of the target hub gene. The ability to bind target hub gene was established by RNAhybrid 
(energy threshold = -20, G: U in seed)36,37. Furthermore, DE-lncRNAs that have a high positive correlation 
coefficient (correlation coefficient > 0.99) with hub genes that bound the same miRNAs were used to construct 
ceRNA networks. The result was presented as a mRNA-miRNA co-expressed network and ceRNA networks by 
Cytoscape38.

qRT‑PCR assay.  Transcript One-Step gDNA Removal (YEASEN, shanghai, China) and cDNA Synthesis 
SuperMix (YEASEN, shanghai, China) were employed during the reverse transcription process according to 
the manufacturer’s instructions. cDNA was amplified with SYBR q-PCR Master Mix (EnzyArtisan, shanghai, 
China) in StepOnePlus (Applied Biosystems) equipment. The 2-ΔΔCt method was used to calculate the relative 
lncRNA expression, and each hole was repeated three times to ensure quantitative accuracy. The sequences of 
primers used for qRT-PCR are listed in Table S2, and GAPDH was used as an internal reference gene.

Statistics analysis.  Statistical analyses were accomplished using R. The student’s t-test was used for 
comparison between two independent groups. A P < 0.05 was considered statistically significant.

Ethics approval and consent to participate.  All animal experiments were performed according to 
procedures approved by the Laboratory Animal Ethics Committee of Southwest Jiaotong University.

Results
DCM model evaluation.  Representative echocardiographic images were selected to display the impairment 
of cardiac function in DCM (Figure S2A). Echocardiographic data show that the ejection fraction (EF%) was 
significantly decreased in db/db mice (37.31 ± 1.84%), as compared with db/m counterparts (85.60% ± 3.57%). 
Similarly, fraction shortening (FS%) was also markedly reduced in db/db (26.28% ± 1.42%) than in db/m 
(47.73% ± 1.81%) mice, suggesting that cardiac function was impaired in DCM (Figure S2B).

Gene expression analysis of DCM.  To distinguish expressed genes between DCM and healthy controls, 
we performed RNA-seq experiments using db/db mice model and its corresponding control db/m model. Our 
results reflect that 1493 genes were up-regulated and 1609 genes were down-regulated in DCM mice compared 
with control mice (Fold Change ≥ 1.5, P < 0.05) (Fig.  2A and Table  S3). We performed the KEGG pathway 
analysis to determine possible regulation mechanisms of these differentially expressed genes (DEGs) in the 
process of DCM. The top 10 pathways that involved up-regulated DEGs included oxidative phosphorylation and 
reactive oxygen species (Fig. 2B). On the other hand, the top 10 pathways associated with down-regulated DEGs 
included NOD-like receptor signaling pathway (Fig. 2C). Similar results were obtained by performing GSEA 
of KEGG pathway. The results reveal that the genes associated with oxidative phosphorylation and reactive 
oxygen species were mainly up-regulated in DCM mice (Fig. 2D). GO analysis found up-regulated DEGs were 
associated with some biological processes, which include ATP metabolic process, mitochondrion organization, 
and mitochondrial ATP synthesis, while down-regulated DEGs were associated with biological processes 
including the regulation of immune effector (Fig. 2E). Besides, the analysis also found abnormal expression in 
an abundant of genes associated with senescence and heart regeneration in db/db mice (Figure S3).

Since DCM can be facilitated by alterations in both adaptive and innate immune systems, we further examined 
the difference of immune cell infiltration in left ventricle between DCM mice model and control model. The 
results reveal that activated CD8 + T cells infiltration was significantly increased in the DCM compared to control, 
while the infiltration of memory B cells, NKT natural killer cells, monocytes, and mast cells was significantly 
decreased, indicating an impaired profile of innate immunity in DCM (Fig. 2F).

The difference of KEGG pathway and immune cell infiltration between DCM and other diabetic 
complications.  At present, most studies have focused on a specific diabetic complication. For example, 
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Figure 2.   Screening of differentially expressed genes in DCM. (A) Volcano of the DCM. (B,C) Results of 
the KEGG pathway analysis of the up-regulation DEGs and down-regulation DEGs. The colors indicate the 
significance [− log10(P-value)], and the size of the circles represents the number of genes enriched in the 
corresponding annotation. (D) Ridge plots of the results of the GSEA analysis. (E) GO BP enrichment analysis 
of the DEGs. Up-regulated GO BP is shown with horizontal axis > 0, and down-regulated GO BP is shown with 
horizontal axis < 0, respectively. The size of the horizontal axis is set to − log10(P value). (F) Boxplot showed the 
different immune cell infiltration in DCM and control. *P < 0.05; **P < 0.01.
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Li et al. have identified the hub genes of diabetic nephropathy. Yet, few studies have compared the potential 
pathogenesis of hyperglycemia-induced diabetic complications among different organs. Hence, in order to 
compare the potential causative roles of dysregulated genes between DCM and other diabetic complications, 
including diabetic peripheral neuropathy (DPN, including SCN and DRG) and diabetic nephropathy (DN, 
including Glom and Cortex), we determined the different gene expression files in each diabetic complication by 
comparing with respective health control organs. Moreover, we performed enrichment analysis to identify the 
difference in biological processes among five tissues from diabetic complications that differed based on DEGs. 
The results demonstrate that up-regulated DEGs in DCM were enriched in multiple signaling pathways, including 
oxidative phosphorylation and reactive oxygen metabolism, as compared to other diabetic complications 
(Fig. 3A). In addition, we found that down-regulated DEGs in DCM were associated with NOD-like receptor 
signaling and chemokine signaling, while down-regulated DEGs in other diabetic complications mainly focused 
on other pathways, such as fluid shear stress, atherosclerosis, nucleocytoplasmic transport, and nucleotide 
excision repairment (Fig. 3B). Given the discovery that down-regulated DEGs in DCM is highly associated with 
the host innate immunity pathway, we further performed immune cell infiltration analysis to determine specific 
immune cell subtypes. The results show that the infiltration of activated CD8+ T cells was significantly increased 
in DCM, as compared to other diabetic complications (Fig. 3C). This indicates that excessive specific immune 
cell infiltration within the heart may contribute to the development of DCM.

Identification of key module promoting DCM development.  Next, we performed WGCNA to 
further determine the key factors regulating DCM development. The sample cluster tree was constructed and 
demonstrated in Fig.  4A. Through WCNA analysis, 15 co-expression modules were constructed (Fig.  4B). 
Module-trait relationship analysis revealed that purple modules were positively correlated to DCM, while the 
magenta module was negatively associated with DCM (Fig.  4C). In addition, gene expression in the purple 
module was significantly up-regulated in DCM compared to other diabetic complications. Contrarily, gene 
expression in the magenta module was significantly down-regulated in DCM compared to other diabetic 
complications (Fig. 4D). Altogether, these results suggest that genes in the purple and magenta module may 
affect DCM development.

Functional enrichment analysis of Co‑DEGs.  To further explore the biological function of co-expressed 
DEGs (Co-DEGs), Co-DEGs were first obtained from the intersection of purple and magenta modules (Fig. 5A). 
Next, KEGG pathway analysis revealed that Co-DEGs in the purple module were mainly enriched in the cardiac 
muscle contraction pathway, while Co-DEGs in the magenta module were mainly enriched in extracellular 
matrix (ECM) receptor interaction pathway (Fig. 5B,C). GO Biological Process (BP) analysis found that the 
Co-DEGs in the purple module were mainly enriched in biological processes involved in muscle system process, 
and Co-DEGs in the magenta module were mainly enriched in biological processes in amino acid transportation 
(Fig. 5D,E).

Hub gene identification and validation.  In order to screen out the core genes in DCM, Co-DEGs in 
the intersection of purple and magenta modules were used to construct a co-expression network by WGCNA. 
The resulting data file was then processed with Cytoscape and demonstrated in Fig. 6A. In this largest connected 
master network, we identified 5 hub genes by cytoHubba (Table S4). Afterward, we performed real-time PCR to 
check the expression of the five hub genes in the cardiomyocytes derived from either db/db or db/m mice. The 
results (Fig. 6B) show that there were significant increases in Phospholamban (Pln), Fatty acid binding proteins 3 
(Fabp3), Tripartite Motif-containing Protein 63 (Trim63), Popeye domain containing 2 (Popdc2), and Troponin 
C1 (Tnnc1) gene expression in DCM compared to control (P ≤ 0.05). All these results were analyzed according 
to bioinformatics methods.

Prediction of target miRNAs based on hub genes.  To further delineate the network between 
identified hub genes and potential target miRNAs, we used miRNA-seq to predict the target miRNAs of the hub 
genes mentioned above. First, we identified 52 DE-miRNAs (Fold Change ≥ 1.5, P < 0.05) in DCM (Table S5). 
According to these results, we predicted that the expression of hub genes was most likely regulated by miRNAs. 
Under this prediction, we constructed a co-expressed network between 55 hub genes and miRNAs through 
Cytoscape (Fig.  7A). These hub genes were linked together by shared miRNAs. Next, we performed KEGG 
enrichment analysis to determine the functional role of these miRNAs in the pathogenesis of DCM. The results 
show that the target genes of these miRNAs were mainly involved in the TGF-β signaling pathway and Wnt 
signaling pathway (Fig. 7B). Moreover, GO BP enrichment analysis found that these miRNAs participated in the 
signaling of TGF-β and glucose homeostasis (Fig. 7C). Collectively, these results suggest that these miRNAs may 
promote the DCM process by affecting metabolic pathways and hub gene expressions.

Construction of CeRNA networks.  Subsequently, according to the ceRNA hypothesis, we constructed 
ceRNA networks based on mRNA-miRNA co-expression network and related lncRNAs (Fig. 8). This network 
comprises 48 nodes and 517 edges and consists of five hub genes, 24 lncRNAs, and 15 miRNAs. Annotations of 
lncRNAs in ceRNA-network are shown in Table S6.
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Discussion
RNA-seq results have identified 3102 DEGS, 1135 DE-lncRNAs, and 52 DE-miRNAs between DCM mice and 
control. Among the DEGs, we found that up-regulated DEGs are mainly associated with oxygen metabolism, 
diabetes, and other pathways related to metabolic disease, consistent with previous studies39,40. Conversely, 
down-regulated DEGs are correlated to the immunity-related pathway. Recently, senolytic agents and stem cell 
therapy demonstrated highly promising treatments for DCM41,42. We found abnormal expression in an abundant 
of cell senescence-related genes in DCM, indicating the close association and impact of senescence on DCM43. 

Figure 3.   Compare the differences among different diabetic complications. (A) Heatmap showed the p-value of 
the top 5 up-regulated KEGG pathway from different diabetic complications. (B) Heatmap showed the p-value 
of the top 5 down-regulated KEGG pathway from different diabetic complications. (C) Heatmap showed the 
fold change of immune cell infiltration in different diabetic complication groups, compared to control. *P < 0.05; 
**P < 0.01.
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Figure 4.   Identified DCM-related module. (A) Cluster dendrogram of samples based on their Euclidean 
distance. Sample dendrogram and trait heatmap. (B) Cluster dendrogram of co-expression network modules 
with dissimilarities based on topological overlap, in addition to assigned module colors. Top: cluster 
dendrogram shows the result of hierarchical clustering with each line representing one gene. Bottom: colored 
row below the dendrogram indicates the module membership identified. Different colors represent different 
co-expression network modules for the significant genes. (C) Module-trait relationships. Each row represents 
a color module (normal and diabetic nephropathy) and every column represents a clinical trait (DCM, SCN, 
DRG, Glom, and Cortex), respectively. Each cell contains the corresponding value of correlation in the first line 
and p-value in the second line, respectively. The cell color presents the correlation according to the color legend. 
(D) Median fold change of genes from the purple module (top) and the magenta module (bottom) in different 
diabetic complication groups, compared to control.
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Figure 5.   Identified Co-DEGs. (A) Venn diagram of common DEGs (Co-DEGs) among DEGs of the purple 
module (top) and the magenta module (bottom). (B) Results of KEGG pathway analysis on Co-DEGs based 
on the purple module. (C) Results of KEGG pathway analysis of Co-DEGs based on the magenta module. (D) 
Results of GO BP analysis of Co-DEGs based on the purple module. (E) Results of GO BP analysis of Co-DEGs 
based on the magenta module. The circles indicate the gene expression distribution in each term. Z-score value 
is calculated from the difference in the number of up-regulated and down-regulated genes divided by the square 
root of the total count.
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Additionally, among 5 genes related to myocardial repair in mice (Hdac4, Mesp1, Ngf, Pim1, and Yap1), Ngf 
and Pim1 were significantly down-regulated, implying a decreased repair ability of cardiomyocytes in DCM and 
suggesting a potential treatment target to restore repairment in DCM.

In addition, we further performed immune cell infiltration analysis and revealed that activation of CD8+ T 
cells plays a predominant role in the development of DCM. Therefore, the development of diabetes is associated 
with abnormalities in the immune system. However, the role of immune cells in diabetic myocarditis is still 
unclear. T lymphocyte infiltration into the myocardium has been observed in a left coronary artery occlusion-
induced murine myocardial infarction model and a transverse aortic constriction-induced murine pressure 
overload model44. Tang et al.45 reported that CD8+ T cells in ischemic failing human hearts may contribute 

Figure 6.   Identified and validated hub genes from co-expression network based on Co-DEGs. (A) 
Co-expression PPI network based on Co-DEGs by WGCNA. (B) PCR quantification of the 5 hub genes. All 
results are represented by at least three independent experiments. Values are presented as mean ± SD. *P ≤ 0.05.
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Figure 7.   mRNA-miRNA co-expression network. (A) mRNA-miRNA co-expressed network constructed by 
Cytoscape. (B) Potential regulatory KEGG pathway of miRNAs from the mRNA-miRNA co-expressed network. 
(C) Potential regulatory GO BP of miRNAs from the mRNA-miRNA co-expressed network.

Figure 8.   Construction of ceRNA Networks. The color intensity in each node represents the fold change of the 
gene in DCM, compared to control non-tumor samples (up-regulation of a gene is shown in red and down-
regulation of a gene is shown in blue). The size of the circle is proportional to the score of ceRNA network.
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to the progression of heart failure. Abdullah et al.46 showed that conditional T-cell sS1p1 knockout mice that 
exhibited sustained deficiency of both CD4+ and CD8+ T cells, had improved cardiac function and alleviated 
cardiac fibrosis after 11 weeks of diabetic induction, indicating that T cell Ss1p1 activation exacerbates fibrosis 
under hyperglycemia. Although current knowledge supports that CD4+ T cells play a more important role in 
the development of DCM, mainly via the subtype of CD4+Foxp3+ T cells47, we speculate that CD8+ T cells may 
be involved in the development of DCM via the following mechanisms: (1) CD8+ T cell can directly damage 
cardiomyocytes via its cytotoxicity effect; (2) CD8+ T cell can regulate macrophage migration via stimulating the 
production of nitric oxide; (3) CD8+ T cell can up-regulate CD11b, CD64, and CD62L on neutrophils mainly 
through the secretion of inflammatory factors and resultantly maintain their survival.

The current study focuses on individual diabetic complications. We analyzed the differences between tissues 
affected by diabetic complications by comparing them with public databases. As expected, there were differences 
in pathways and immune cell infiltration for each complication abnormality. We further clarified the key genes 
and key modules responsible for DCM by WGCNA, which were mostly differentially expressed in DCM and 
normally expressed in other diabetic complications. Enrichment analysis showed that up-regulation of genes 
related to DCM in key modules were mainly involved in calcium signaling, senescence pathways and hypertrophy 
related pathways, consistent with our previous comparison on DCM with DPN and DN. A recent study 
implementing RNA sequencing on STZ mice type 2 diabetes DCM model demonstrated that these pathways 
were down-regulated, which comments on the different underlying pathogenic mechanisms in type 2 diabetes, 
such as insulin resistance for db/db mice and islet β-cell reduction in STZ mice, that may influence DCM48.

Furthermore, we identified and validated 5 hub genes (Tnnc1, Pln, Fabp3, Popdc2, and Trim63) from the 
DCM-related key module. Mutations in Tnnc1, a complex that is known as Cardiac Troponin C and contains the 
component, troponin C, was confirmed to be associated with hypertrophic or dilated cardiomyopathy49,50. Pln is 
a 52-amino acid sarcoplasmic reticulum (SR) membrane protein expressed abundantly in cardiac muscle and a 
crucial regulator of cardiac function by modulating the rate of cardiac relaxation and size of the SR Ca2+ store51,52. 
Increased expression of Pln has been identified to reduce cardiac contractility and correlates with the over-
expression of NF-SLN, raising the possibility that induced expression of SLN in human hearts can impair cardiac 
function53,54. Jia et al.55 also reported that the expression of Pln was significantly increased in a time-dependent 
manner in diabetic groups. Fatty acid-binding protein 3 (Fabp3) participates in cell metabolism by binding free 
long-chain fatty acids (LCFAs) and transporting them for cell metabolism56. Fabp3-defect exacerbates cardiac 
hypertrophy and heart dysfunction, but over-expression of Fabp3 can up-regulate the phosphorylation of the 
MAPK signaling pathway and decrease phosphorylated Akt levels, which may account for the augmentation 
of apoptosis and remodeling after myocardial infarction57,58. Popdc2, one of the Popeye domain-containing 
(Popdc) gene families, was highly expressed particularly in the sinoatrial node of the mouse and represented 
as a novel arrhythmia gene for cardiac conduction disorders59,60. A recent study61 showed that Popdc2 was a 
fasting-induced gene, which suggests that the abnormal expression of popdc2 may be related to blood glucose. 
Trim63, also known as MuRF1, was significantly increased not only in cardiac muscle of diabetic mice, but also 
in diabetic limb muscle and STZ-Diabetes62,63. Previous studies have demonstrated that abnormalities in these 
genes were strongly associated with the development of diabetes or cardiovascular disease. Our results classify 
these genes as key factors in the pathogenesis of DCM and potential drug targets for DCM treatment. However, 
there are only a few reports on the regulation of these genes with miRNA or ceRNA, except Trim6364.

In this study, we first reported the potential regulatory network among DCM hub genes, DCM-related 
miRNAs, and ceRNA networks. Most of these miRNAs, such as miR-3064-5p65, miR-69066, miR-119567,68, miR-
69669,70, miR-708-3p71, miR-7225-5p72, miR-466 (including miR-466b-3p, miR-466c-3p, miR-466p-3p, miR-
466a-3p, miR-466e-3p, miR-466o-3p)73, have been reported to be involved in diabetes or cardiovascular disease. 
This supports our speculation that these miRNAs may play an important role in DCM. On the other hand, most 
lncRNAs in the ceRNA network have yet identified to be participating in cardiovascular pathology. More in-depth 
research will be worth conducting to address the involvement of lncRNAs.

Conclusion
Overall, we systematically analyzed the characteristics of both mRNA and noncoding expression profiles in 
DCM. We identified the potential mechanisms and the hub genes in DCM pathogenesis, namely Phospholamban 
(Pln), Fatty acid binding proteins 3 (Fabp3), Tripartite Motif-containing Protein 63 (Trim63), Popeye domain 
containing 2 (Popdc2), and Troponin C1 (Tnnc1). Additionally, we also found potential mRNA-miRNA and 
ceRNA networks in DCM. Our results shed light on further studies of DCM pathogenesis and on the discovery 
of DCM therapeutic targets.

Data availability
The datasets generated and/or analyzed during the current study are available in the GEO datasets repository 
under accession GSE211108 [https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​1108], GSE211107 
[https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​1107], and GSE211106 [https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​1106].
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