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On the quantification 
of sample microstructure using 
single‑exposure x‑ray dark‑field 
imaging via a single‑grid setup
Ying Ying How *, David M. Paganin  & Kaye S. Morgan 

The size of the smallest detectable sample feature in an x‑ray imaging system is usually restricted by 
the spatial resolution of the system. This limitation can now be overcome using the diffusive dark‑field 
signal, which is generated by unresolved phase effects or the ultra‑small‑angle x‑ray scattering from 
unresolved sample microstructures. A quantitative measure of this dark‑field signal can be useful in 
revealing the microstructure size or material for medical diagnosis, security screening and materials 
science. Recently, we derived a new method to quantify the diffusive dark‑field signal in terms of 
a scattering angle using a single‑exposure grid‑based approach. In this manuscript, we look at the 
problem of quantifying the sample microstructure size from this single‑exposure dark‑field signal. 
We do this by quantifying the diffusive dark‑field signal produced by 5 different sizes of polystyrene 
microspheres, ranging from 1.0 to 10.8 µm, to investigate how the strength of the extracted dark‑field 
signal changes with the sample microstructure size, S . We also explore the feasibility of performing 
single‑exposure dark‑field imaging with a simple equation for the optimal propagation distance, 
given microstructure with a specific size and thickness, and show consistency between this model 
and experimental data. Our theoretical model predicts that the dark‑field scattering angle is inversely 
proportional to 

√

S , which is also consistent with our experimental data.

With advancements in x-ray generators and detectors, as well as the introduction of computed  tomography1,2, 
x-ray imaging has become a widely used technique that non-invasively reveals the internal structure of a sample. 
Conventional x-ray imaging manifests the difference in the attenuating ability of different materials in the sample, 
to create image contrast. It is now one of the standard imaging techniques used in clinical practice, materials 
science and security  screening3. However, the image contrast is significantly degraded for samples made of weakly 
attenuating materials, such as soft biological tissues. In recent decades, advanced x-ray imaging techniques 
known as phase contrast x-ray imaging (PCXI) have been developed, to enhance the image contrast for samples 
made up of materials that have similar attenuating properties. PCXI covers a set of techniques that convert the 
phase shift experienced by the x-ray wavefield while passing through the sample, into an intensity modulation 
that can be measured on a detector. Examples include propagation-based imaging (PBI)4–7, analyser-based 
imaging (ABI)8–11, grating-interferometry (GI)12–15, edge-illumination (EI)16–19, single-grid  imaging20,21, and 
speckle-based  imaging22,23.

The size of the smallest detectable sample feature, in an x-ray imaging system, is typically restricted by 
the spatial resolution of the system. Diffusive dark-field imaging (henceforth termed ‘dark-field imaging’ for 
simplicity) is a way around this limit. Such dark-field imaging looks at diffuse scattering—e.g. small-angle x-ray 
scattering (SAXS) or ultra-small-angle x-ray scattering (USAXS)—from sample microstructures, in order to 
detect their presence. The dark-field signal is useful since it can reveal the presence of spatially random sample 
microstructure, which is otherwise invisible when using the full-field conventional or phase-contrast x-ray 
imaging techniques. The dark-field modality has the potential to be dose-efficient, in that it allows for the use of 
a detector with a larger pixel size (and hence likely higher efficiency) than would be required if the dark-field-
generating features were to be resolved directly.

The dark-field signal has been measured qualitatively using most of the PCXI techniques, either via an 
approach where the dark-field information is extracted from contrast seen across a neighbourhood of pixels (such 
as  PBI24,25 and single-grid  imaging20,26,27), or via an approach where the dark-field is extracted on a pixel-by-pixel 
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basis from multiple exposures (such as  ABI28,  GI29, and  EI30–32). One interesting case is multiple-exposure speckle-
tracking, where dark-field is extracted from local neighbourhoods of pixels across multiple exposures. It is worth 
noting that the dark-field signal has been retrieved from speckle-based set-ups using both  explicit23,33,34 and 
 implicit35–37 approaches to analyse how the speckles change. In explicit speckle-tracking approaches, the changes/
motions in the speckles are tracked in each local neighbourhood of pixels, whereas in implicit speckle-tracking 
approaches, the changes in the speckles are tracked by looking at how the intensity translates and diffuses across 
the whole image, using one whole-image analysis step. Dark-field x-ray imaging finds additional applications 
if the dark-field signal is quantified, and related to the properties of the sample  microstructure38–44, in order to 
extract the size, material or the arrangement of the individual microstructures.

There are various fields that can potentially benefit from the quantification of dark-field signal, including 
medical diagnosis, security screening and materials science. Some possible biomedical applications include 
imaging lungs with emphysema to measure airway  size38,45, imaging breast tissues with microcalcifications for 
early detection of  cancer46,47, and imaging kidney stones of different compositions and microscopic morphology 
for  classification48. Multiple animal studies have shown that lung diseases such as lung  cancer49,  emphysema50 
and  fibrosis51 can result in a weaker dark-field signal from the lungs, due to the change in size or structure of 
the alveoli. Recently, the diagnostic capability of a quantitative dark-field signal has also been demonstrated on 
healthy  individuals52 and chronic obstructive pulmonary disease (COPD) patients with  emphysema53, where the 
dark-field signal was correlated to the lung volume and the diffusion capacity of carbon monoxide, respectively. 
Other possible safety or industrial applications include imaging and/or detecting goods that come in powder 
form, such as drugs or  explosives54, and imaging industrial parts made from carbon  fibres55.

A quantitative x-ray dark-field signal has been successfully extracted and related to the sample properties, 
using  ABI38,  GI39–43 and  EI44 techniques. The dark-field signal extracted from these techniques has been related to 
different sample microstructure properties, such as (i) the number of scattering interfaces, which can be related to 
the number of  microstructures38, (ii) the kurtosis, which is a statistical quantity of the scattering distribution that 
can be related to the microstructure  size44, (iii) the correlation length, which is the length at which the correlation 
between the microstructures is probed by  GI39,43, and (iv) the linear diffusion coefficient (or dark-field extinction 
coefficient), which is analogous to the linear attenuation coefficient, and relates to the second statistical moment 
or width of the scattering probability distribution function of the  sample40–42. However, the x-ray dark-field signal 
has not yet been quantitatively related to sample properties using the single-grid imaging technique.

The single-grid imaging  technique20,21 is a grating-based PCXI technique, which is similar to GI, but with 
a relatively simple setup compared to other dark-field imaging techniques, such as ABI, GI, and EI. See Fig. 2. 
As its name implies, the single-grid imaging technique only requires one optical element (a grid), and neither 
calibration nor alignment is required prior to the data acquisition. The detector needs to have a pixel size smaller 
than the grid period, so that the intensity pattern formed by the grid can be fully resolved. Both absorption 
 grids20,21,56 and phase  grids26,57,58 can be used in this technique and the grid can be placed immediately upstream 
or downstream of the sample. The grid can be replaced by any object that provides an intensity pattern with high 
visibility, for example, a piece of sandpaper, in which case the technique is known as speckle-based  imaging22,23. 
A grating can also be used in this technique, but it is less favourable than a grid, since the system will only be 
sensitive to the differential phase in one direction (perpendicular to the grating lines)59. The two-dimensional 
sensitivity provided by a grid is essential in the reconstruction of artefact-free projected phase  images60, which 
can be useful in quantifying microstructure when used in conjunction with dark-field  images38.

The data acquisition process of single-grid imaging involves only a single sample exposure, where the grid 
patterns the illumination. The sample-and-grid image is then compared to the reference image taken without the 
sample, where only the grid is present. This permits the simultaneous extraction of attenuation, phase-shift and 
dark-field signals produced by the sample. These three quantities result in a decrease in mean, a shifting, and a 
broadening of the intensity pattern, respectively. The short data acquisition time can minimise motion blurring 
and x-ray radiation dose, which makes this technique feasible for dynamic imaging.

Recently, a new retrieval algorithm by How and  Morgan61 was derived to quantify the x-ray dark-field signal 
in single-grid imaging and relate the signal to the number of microstructures, N . The algorithm was applied to a 
sample with unresolved microstructures, made up of 1.0 µm polystyrene microspheres. Below, we apply the same 
algorithm to samples made up of 5 different sizes of polystyrene microspheres, all smaller than the resolution 
of the imaging system. This allows us to investigate how the strength of the dark-field signal changes with the 
sample microstructure size, and determine the feasibility of performing single-exposure quantitative dark-field 
imaging using the single-grid imaging technique.

We first provide a mathematical model relating how the effective scattering angle extracted is related to the 
sample microstructure size. This is achieved by relating the number of microstructures in the beam path of an 
x-ray passing through the sample to the total number of microstructures in the sample, which is then related to 
the total volume of the microstructures and subsequently the total thickness of the microstructures. We show 
that the experimental data are consistent with this model, by plotting the scattering angle as a function of sample 
thickness rather than sample microstructure size. We then derive an expression for the propagation distance at 
which to perform single-exposure quantitative dark-field imaging with maximum sensitivity. This is achieved 
by analytically solving for the propagation distance at which the change in dark-field signal with respect to the 
change in scattering angle is maximised. Via this expression, we compute a range of suitable sample-to-detector 
distances for each sample microstructure size, and we verify this by comparing (i) the effective scattering angle 
extracted using a single exposure, to (ii) the effective scattering angle extracted by looking at the visibility loss 
over 24 sample-to-detector distances. Finally, we explore the effects of propagation-based phase contrast effects 
overlying the modelled grid and dark-field effects, discuss the properties of this technique, and look at potential 
applications as well as future research directions.
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Mathematical modelling
Here, we apply the algorithm developed by How and Morgan, to quantify the dark-field signal in single-grid 
 imaging61. In this approach, the dark-field signal is extracted using an explicit cross-correlation approach between 
the grid-only image and the grid-and-sample image. A summary of the algorithm is given below, with full details 
available in How and  Morgan61.

Extraction of the quantitative dark‑field signal using an explicit cross‑correlation 
approach. The x-ray intensities seen at the detector in the presence of the grid, Ig (x) , and the grid and 
sample, Isg (x) , are defined as sine functions in one-dimension, which are given by

and

respectively. Here, x is the position across the sample; a is the amplitude, b is the mean, and p is the period of 
the intensity oscillations due to the grid; A is the change in amplitude of the grid intensity oscillations that is 
introduced by the sample; t  is the transmission of the x-ray wavefield passing through the sample. The dark-field 
signal, DF , which is defined as the relative change in visibility between the sample-grid intensity (or stepping 
curve), Vs , and the grid-intensity (or stepping curve), Vr for a grating-based  method29, is

Here, the values of A and t  are determined by fitting the local cross-correlation results of the grid image Ig (x) 
both with itself, and with the sample and grid image Isg (x) . The dark-field visibility signal has a value between 0 
and 1 , where 1 represents no dark-field signal/scattering and 0 represents maximum dark-field signal, where the 
grid is invisible and the cross-correlation (or stepping curve) is ‘flat’.

By modelling the blurring kernel applied to the grid pattern in the presence of the sample as a normalised 
zero-centred Gaussian function (Kitchen et al.62, Fig. 5)63,64, and Isg (x) as the convolution between Ig (x) and the 
Gaussian function, the dark-field signal is

Above, we used the scattering width, d = zθ , where z is the sample-to-detector propagation distance and θ is the 
effective scattering angle. Equation (4) describes how the dark-field signal changes with propagation distance, 
which can be fitted to dark-field signals measured at one or many different propagation distances, to accurately 
extract the effective scattering angle.

The effective scattering angle can be related to the number of microstructures, N , in the paraxial ray path, a 
number which is proportional to the total sample thickness, T , if we assume these microstructures—which in 
our experiment are microspheres—to have the same size. It has been observed, using both crystal-analyser-based 
imaging and single-grid imaging, that the x-ray scattering angle is proportional to N to a power that is greater 
than 12

38,61. This deviates from the random-walk model proposed by von  Nardroff65, in which the scattering angle 
is proportional to 

√
N  . The relationship between the scattering angle and the number of microstructures can 

be written as

where k is defined by von  Nardroff65 as k = 2δ
√

(

log 2
δ
+ 1

)

 , δ is responsible for the phase shifts experienced by 
the x-ray wavefields passing through the sample as suggested by the definition of the refractive index, 
n = 1− δ + iβ , and α is an anomalous diffusion  constant66 that can be greater than or smaller than 0.

Relating the scattering angle to the sample microstructure size. The algorithm proposed in How 
and  Morgan61 has only been applied to a sample with microstructure size of 1.0 µm. Thus it is interesting to apply 
the algorithm to samples that have different microstructure sizes, to investigate how the strength of the dark-
field signal changes with microstructure size.

We start by deriving the relationship between N and the microsphere size. First, assume a rectangular cuboid 
with x-rays normally incident on an area, Ac , of one cuboid face. The x-rays pass through the thickness Tc , which 
is randomly filled with microspheres of diameter S . The average number of microspheres, N, along the ray path, 
is the ratio between (i) the total projected line-of-sight area of the spheres in the cuboid, and (ii) the area of the 
entrance face of the cuboid. Hence
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(

2πx

p

)

+ b

(2)Isg (x) = Aa sin
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p

)

+ tb,

(3)DF =
Vs

Vr
=

Aa
tb
a
b

=
A

t
.

(4)DF =
Vs

Vr
=

a exp
(

− 2π2(d/2)2

p2

)

b

b

a
= exp

(

−
2π2(d/2)2

p2

)

= exp

(

−
π2z2θ2

2p2

)

.

(5)θ = 2δ

√

(

log
2

δ
+ 1

)

N
1
2+α = kN

1
2+α ,



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11001  | https://doi.org/10.1038/s41598-023-37334-3

www.nature.com/scientificreports/

where nT is the total number of microspheres in the cuboid and VT is the total volume of microspheres. Note that, 
after the third equals sign, we replaced VT with AcT . We can imagine this volume as melting all microspheres 
into a rectangular cuboid with area Ac and width T , which is essentially the thickness of microspheres in the 
beam path of an x-ray wavefield passing through the cuboid (as would be measured in an attenuation signal).

Since we do not expect the anomalous diffusion coefficient α to change for microspheres of different sizes 
(as shown by Kitchen et al.38), we assume α to be 0 , which is consistent with the model of von  Nardroff65, to 
compare the strength of the dark-field signal from microstructures of different sizes via the k value in Eq. (5). 
Using Eq. (6), the α = 0 case of Eq. (5) gives

where K = k
√
3/(2S) . We see that θ is proportional to 1/

√
S.

Optimal distance for single‑exposure dark‑field imaging. Given the dependence of the dark-field 
signal on the propagation distance, it is important for us to find an optimal distance to perform single-exposure 
dark-field imaging for quantification of the sample. We have derived the propagation distance at which a change 
in the dark-field signal strength across the sample (parameterised by blur width) will maximise the change in 
observed dark-field (visibility). This not only places the dark-field signal in the centre of the dynamic range 
of the measurement system, but could also help in seeking an easily-measured, but not saturated visibility 
reduction due to the sample. In the case of a very short exposure, where the noise floor seen in Fig. 1a rises, a 
slightly longer distance may be preferable. While increasing the distance will increase the contrast-to-noise ratio 
between the background and the dark-field-inducing sample, this can potentially lead to saturation of the dark-

(6)N =
nTπ(S/2)

2

Ac
=

VT

4
3π(S/2)

3

π(S/2)2

Ac
=

AcT
4
3π(S/2)

3

π(S/2)2

Ac
=

3T

2S
,

(7)θ = k
√
N = k

√

3T

2S
= K

√
T ,

Figure 1.  The dark-field signal extracted at multiple propagation distances. (a) A typical example of the dark-
field signal measured as a loss in visibility (at a representative pixel (960, 1001)) from 24 propagation distances. 
The raw grid-only (lower left) and sample-grid (upper right) images collected at a propagation distance of (b) 
0.28 m, (c) 1.9 m, (d) 3.1 m, (e) 6.1 m and (f) 7.0 m, where the grid intensity pattern experienced minimum, 
moderate and significant blurring. Note that the gradient of the plot changes with the magnitude of the 
scattering angle. In particular, this pixel shows the saturation of the dark-field signal at larger distances and the 
‘visibility floor’. The exact pixel location is included only for the purposes of study repeatability. The dark-field 
signal starts to saturate at a propagation distance of around 3.1 m (labelled with the red cross) and thus the dark-
field signals measured at 3.1 m and beyond are not included in the fitting to extract the effective scattering angle 
using Eq. (4). The yellow cross labels the maximum-gradient point where the change in visibility with respect 
to the change in scattering angle/propagation distance is maximised. This specifies where the sensitivity of the 
dark-field imaging system is maximised, providing the optimal distance to perform single-exposure quantitative 
dark-field imaging. This optimal distance for sample microstructure of different sizes is given by Eq. (8). The 
orange line indicates the ‘visibility floor’, at which the decrease in visibility is limited by either sample-induced 
contrast like speckle (not seen here) or due to ‘losing’ the reference pattern features in one direction due to the 
asymmetric source-size blurring effect (as shown in panels (e) and (f)), meaning the signal retrieved is no longer 
representative of the sample.
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field signal, as explained in the next section. The optimal distance for single-exposure dark-field imaging is the 
distance at which the sensitivity of the imaging system towards the dark-field signal is maximised. This means 
that a change in the scattering angle produced by the sample (e.g. due to a different microstructure size) results 
in the biggest possible change in the measured dark-field visibility signal (see the yellow cross in Fig. 1a). This 
can be determined by analytically solving for the propagation distance, zopt , for which ∂

2(DF)
∂θ2

= 0 , where DF is 
defined in Eq. (4). Hence

Note, after the second equals sign, we used the expression for θ in Eq. (7). Furthermore, after the third equals 
sign, we substituted in K = 1/

√

2S
3k2

 , since by the definition of K just below Eq. (7),

where 2/(3k2) is the gradient of a plot of 1/K2 against microstructure size S (see Fig. 7b).

Saturation of dark‑field signal. Saturation of the dark-field signal can be observed at overly large 
propagation distances. This introduces a limit to where the equations described above are physically useful. 
Beyond this limit the grid intensity pattern becomes too blurred, with the propagation distance being so large 
that the algorithm can no longer recognise the reference pattern and thus fails to properly fit the cross-correlation 
curves. In grating interferometry, the sensitivity of the imaging system towards the dark-field signal is typically 
tuned accordingly, to make sure that the dark-field visibility signal is maintained above a given value, e.g. 0.1. In 
other words, the reduction in visibility of the stepping curve is kept below 90%67, to avoid obtaining a saturated 
dark-field signal. Similarly, in the single-grid imaging technique, we can tune the sensitivity to make sure the 
dark-field signal is maintained above 0.3 or 0.4 (as suggested by our data). We use a higher visibility threshold 
because the signal is extracted from a single exposure, which is more susceptible to noise compared to the signal 
extracted from the stepping curve obtained in GI using multiple exposures. Also, our technique requires the 
visibility of the grid to be stronger than the visibility of surrounding sample features, which is not the case in GI. 
This tuning can be achieved by taking the images at a suitable propagation distance. In this manuscript, when 
fitting across multiple distances we have excluded the dark-field signal measured beyond a certain threshold 
distance—where the dark-field signals begin to saturate (as shown in Fig.  1a)—during the extraction of the 
effective scattering angle. This threshold distance is determined by looking at how the dark-field signal from 
samples of different thicknesses changes with propagation distance. Note, the threshold distance for each sample 
is different (as shown in the Numerical analysis section) since the number of interfaces encountered by the x-ray 
beam is different for samples of the same projected thickness but different microstructure sizes.

We define the ‘visibility floor’ (see the orange line in Fig. 1a) to be the value at which the dark-field signal 
saturates. It was observed that as the blurring width increases with the propagation distance, the dark-field signal 
approaches the ‘visibility floor’ rather than zero, where zero would correspond to constant intensity without any 
variation. We propose that the non-zero ‘visibility floor’ can arise either from (i) the source-size blurring effect 
on the grid intensity pattern, as demonstrated in Fig. 1e and f, or (ii) the phase-contrast effect from the sample, 
resulting in rapidly changing intensity values, as shown in Fig. 7c-e of How and  Morgan61. When the source 
blurring approaches the dark-field blurring in width, it is more difficult to observe a change to the reference 
pattern when the sample is introduced, since the corresponding spatial frequencies have already been suppressed. 
In the case of asymmetric source blurring, the grid intensity patterns in Fig. 1e and f have higher visibility in the 
vertical direction compared to the horizontal direction. This is due to the source being more extended in the 
horizontal direction, resulting in a stronger source-size blurring in the horizontal direction and thus the dark-
field signal in the horizontal direction is saturated at a shorter distance compared to the signal in the vertical 
direction. Although the visibility in the horizontal direction is close to zero, the visibility in the vertical direction 
is not, and hence the average of the two directions is non-zero. Unfortunately the ‘visibility floor’ could not be 
well defined quantitatively and is best determined experimentally by collecting images at multiple propagation 
distances, ranging from the shorter distances where the dark-field signal is weaker to the larger distances where 
the grid intensity pattern is blurred out significantly.

The dark-field signal may also become saturated due to additional visibility contributed by the speckle pattern 
formed by the microspheres or other surrounding sample features. It has been demonstrated, via experiment and 
simulation, that a speckle pattern can be formed by randomly-packed glass microspheres due to multiple-beam 
refraction and free-space  propagation62. The intensity variations that make up the speckle pattern may locally 
enhance the visibility of the observed reference intensity pattern and thus result in an ‘increase’ of the dark-field 
visibility signal. A detailed  simulation62 is required to determine the contribution of the speckle pattern formed 
by the microspheres to the dark-field signal, which is outside of the scope of this manuscript.

Methods
We captured an experimental dataset of the sample shown in Fig. 2, which includes different microstructure 
sizes and a range of projected thicknesses. We imaged over a range of propagation distances, to investigate (i) 
how the dark-field signal changes with the size of microstructure, and (ii) at which distance quantitative single-
exposure imaging is optimum.
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Experimental setup. Our experimental setup is shown in Fig. 2. This is a typical single-grid imaging setup, 
with the addition that the propagation distance is allowed to change. The experiment was performed at the 
Australian Synchrotron Imaging and Medical Beamline (IMBL). An attenuating grid (a geological stainless steel 
sieve with square holes of width 90 µm and wires 48 µm thick, resulting in an effective period of 138 µm) was 
placed 43 cm upstream of the sample (i.e. as close as possible). The sample and grid were placed on two different 
stages which could be moved in a horizontal direction automatically, so that they could be moved out of the 
field of view to capture grid-only and flat-field images. A 25 µm thick Gadox phosphor was coupled to a pco.
edge 5.5 sCMOS detector to collect images and it was placed on a separate table which could be moved to adjust 
the propagation distance z between the sample and the detector. The energy of the x-rays was 34 keV, a suitable 
energy for imaging of research animals or mammography, and the effective pixel size of the setup was 9.8 µm.

Sample preparation. The polystyrene microspheres were purchased suspended in 10  ml of water 
(Microspheres-Nanospheres, Corpuscular Inc., Cold Spring New York, USA), with the spheres making up 2.5% 
of the volume. Sample tubes were placed into a centrifuge to separate the microspheres and water. The water 
was removed using a pipette and the cap was left off to allow any remaining water to evaporate. The sample 
tubes were placed in a water bath sonicator to break up clumps formed during the liquid evaporation process. 
Nevertheless, there were obvious clumps remaining, as seen in the inset of Fig. 2. The microspheres were then 
transferred into the sample holder.

A sample holder with five ‘cells’ was custom-made with a piece of Kapton sheet, which provides minimal 
attenuation to x-rays, with each ‘cell’ separated by rubber wedges, glued to the Kapton, to provide a range of 
sample thicknesses (0–14 mm) as shown in Fig. 2. The five ‘cells’ held microspheres of diameter 1.0 µm, 4.1 µm, 
6.2 µm, 8.0 µm and 10.8 µm.

Data acquisition. Flat-field (without grid or sample), grid-only and sample-grid images were taken at 
sample-to-detector propagation distances of 0.28 m, then 0.4 m to 7 m at steps of 0.3 m. One set of dark-current 
images was taken at the end of the experiment. The exposure time was chosen to be 160 ms to fill the dynamic 
range of the detector and 30 exposures were taken for each set of images, which were averaged together prior to 
analysis to reduce the noise level. Because the sample was wider than the field of view, two neighbouring sample-
grid images were taken at each distance (with the 6.2 µm sample appearing in both the left and right images). The 
images shown in this manuscript place the two sample images immediately next to each other.

Numerical analysis. The raw images were first flat and dark-corrected, demagnified to account for the 
subtle magnification effect seen especially at larger propagation distances, and cropped to reduce the processing 
time. The images taken at 24 propagation distances were analysed using the algorithm described in How and 
 Morgan61, with a cross-correlation window size of 14 pixels to match the grid period. The dark-field signals 
measured at 24 distances were then fitted to Eq. (4) to extract the effective scattering angle, θ . The dark-field 
images taken at different propagation distances were realigned using the linear alignment function in ImageJ 
software that applies the Scale Invariant Feature Transform (SIFT). The image transformation matrices used 
to realign the dark-field images were obtained from the alignment of the transmission images. The dark-field 
images were also smoothed by a median square kernel of size 14 pixels (i.e. the grid period) before the extraction 

Figure 2.  Experimental setup for single-grid imaging with the detector placed at multiple propagation 
distances, zn . Images are taken with and without the sample. Polystyrene microspheres of diameter 1.0 µm, 
4.1 µm, 6.2 µm, 8.0 µm and 10.8 µm (from left to right, viewed from the source) were placed in a custom-made 
sample holder made up of a Kapton sheet and rubber wedges. The inset shows the zoomed-in view of each 
sample ‘cell’ through the orange Kapton (visible-light photograph). The blur width increases as the propagation 
distance increases, resulting in the grid intensity pattern being smeared out more significantly and producing 
a stronger dark-field signal. Note that the scattering angle θ has been exaggerated for clarity. The x-ray images 
shown on the detector are experimental images and this figure was assembled in Inkscape v.1.2.1 (https:// inksc 
ape. org/).

https://inkscape.org/
https://inkscape.org/
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of the scattering angle, to reduce the noise level. As mentioned in the Saturation of dark-field signal section, a 
threshold distance was determined for each sample to avoid saturation of the dark-field signal, which was 1.6 m 
for the 1.0 µm microspheres, 2.5 m for the 4.1 µm microspheres and 3.1 m for the remaining samples. The dark-
field signals measured at the threshold distance and beyond are not included in the fitting to extract the effective 
scattering angle, as shown in Fig. 1a.

Results
Quantifying microstructure size from the x‑ray dark‑field signal. Figure  3 shows the results 
obtained from the images taken at propagation distances of 0.4 m, 2.5 m and 4.6 m, including the change in 
amplitude ( A ), transmission ( t  ), dark-field signal ( DF ) and the effective scattering angle ( θ ) extracted using 
the dark-field signals captured from a single distance and from 24 propagation distances. The sample with the 
smallest microstructure, 1.0 µm (first ‘cell’ from the left), produces the strongest dark-field signal and thus the 
largest effective scattering angle. The strength of the dark-field signal decreases with the sample microstructure 
size, which is consistent with the inverse square root relationship between θ and S in Eq. (7). This is because the 
x-rays are being scattered by more interfaces as they pass through a sample with a smaller microstructure size, 
compared to the sample of the same thickness but with a larger microstructure size. It is worth noting that the 
dark-field signals produced by the 8.0 µm and 10.8 µm samples are stronger compared to the 6.2 µm sample. This 
is due to the more effective packing of the microspheres in those two ‘cells’, seen by fewer ‘clumps’, resulting in 
fewer air gaps, more microstructures and greater sample thickness than the 6.2 µm sample.

To study the dependence of the dark-field signal on microstructure size, we want an accurate measure 
of sample thickness, based on all collected data. The sample thickness (shown in Fig. 4) is obtained using a 
Transport of Intensity Equation (TIE)-based single-material phase retrieval  algorithm7 on the transmission 

Figure 3.  Dark-field imaging results obtained from single-grid images of polystyrene microspheres of 5 
different sizes (with the 6.2 µm sample appearing in both the left and right images of the image pair), separated 
by rubber wedges, shown here for three different propagation distances—0.4 m, 2.5 m and 4.6 m. The diameter 
of the microspheres in each panel (from left to right, similarly for the rest of the figures in this paper unless 
specified otherwise) is 1.0 µm, 4.1 µm, 6.2 µm, 6.2 µm, 8.0 µm and 10.8 µm. The change in amplitude of intensity 
oscillations, A (a, b and c), is divided by the corresponding transmission of the x-ray wavefield, t  (d, e and f) 
to obtain the dark-field signal, DF (g, h and i). The effective scattering angles, θ , shown in panels (j), (k) and 
(l) are extracted from the DF signal in panels (g), (h) and (i) respectively, using Eq. (4), while θ in panel (m) is 
extracted from the DF images taken at 24 distances, using Eq. (4). The microspheres with a larger size produce 
a weaker dark-field signal and thus a smaller scattering angle, which agrees with Eq. (7). It is difficult to see 
this when comparing the 8.0 µm and 10.8 µm samples to the others, since these microspheres are more densely 
packed. The θ image extracted from the larger propagation distance has less noise than the smaller propagation 
distance, where the blurring effect is weak. The scattering angle extracted from a shorter propagation distance (j) 
is larger compared to those extracted from a larger distance or extracted using 24 sample-to-detector distances. 
The scattering angle extracted from a propagation distance of 2.5 m was consistent with the scattering angle 
extracted using 24 sample-to-detector distances (except the 1.0 µm sample), indicating that this is a suitable 
propagation distance for single-exposure dark-field imaging of sample microstructure of these sizes.
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image (e.g. Fig. 3d–f), and averaging the thickness retrieved from images collected at 1.9 m, 2.2 m, 2.5 m and 
2.8 m. Microsphere clumps are clearly seen in both the photographs of the sample tubes in Fig. 2, and the x-ray 
thickness image in Fig. 4. Since the rubber dividers were significantly more attenuating than the microspheres, 
they were excluded and those parts of the image were set to the average attenuation value, prior to the thickness 
retrieval process. This was done to obtain an accurate measure of the sample thickness from the single-material 
TIE algorithm, and avoid smoothing the contrast from the rubber into the region of the image containing 
microspheres, seen in Fig. 5, where the same cropping is not used. The 1.0 µm sample reaches a larger thickness 
compared to the other samples since the air-gaps between small microspheres are typically smaller. In Fig. 4b, 
the contrast across all parts of the sample is adjusted by normalising the thickness of each ‘cell’ between 0 and 1 , 
to better visualise the sample details.

Figure 5a shows the complementarity between the attenuation signal, shown in red, and the dark-field signal, 
shown in blue. The microspheres produce a stronger dark-field signal relative to the attenuation signal when 
compared to the rubber wedges, and thus the microspheres are shown in a stronger blue hue than the rubber 
wedges. It is worth noting that certain regions in the 1.0 µm and 10.8 µm microsphere ‘cells’ appear to have a 
slightly stronger red hue compared to the surrounding regions, as a result of the microspheres being packed 
more tightly together, potentially with some liquid remaining that reduces the relative strength of the dark-field 
signal compared to the attenuation signal. This agrees with what we observed in Fig. 4. In Fig. 5b, vertical red 
stripes (with no blue contribution) were observed near the inner edges of all rubber wedges surrounding the 
microspheres, suggesting maximum attenuation but minimum dark-field signal in these regions. We believe this 
is an artefact from the phase retrieval  algorithm7 as a result of our assumption that the whole sample is made 
up of a single material, polystyrene. Since the rubber wedges are more attenuating than the polystyrene, the 
phase retrieval algorithm oversmooths the phase near these edges, resulting in ‘extra’ attenuation, interpreted as 
thickness, along the inner edge of each ‘cell’.

Figure 4.  Sample thickness, averaged from the thicknesses retrieved using the transmission images obtained at 
1.9 m, 2.2 m, 2.5 m and 2.8 m, via the TIE-based single-material phase retrieval  algorithm7. (a) Sample thickness 
image with the same greyscale for the whole image. (b) Sample thickness image with grey level of each sample 
‘cell’ normalised between 0 and 1 for visualisation purposes. Clumps with greater thicknesses shown in the figure 
were consistent with the clusters of microspheres observed by visual inspection of the sample (see Fig. 2). The 
shape of the rubber wedges provides a wide range of projected sample thickness that increases gradually from 
the bottom to the top of the image. The 1.0 µm and 8.0 µm samples reach greater thicknesses compared to the 
other samples, due to the more effective packing of the microspheres.

Figure 5.  Colour image of the samples that demonstrates the complementarity of the attenuation and dark-
field signals. (a) Colour image with the same colour scale in the thickness and scattering angle image for all 
samples. (b) Colour image with the colour scale of thickness and scattering angle images normalised between 0 
and 1 separately for each sample ‘cell’. The red and blue channels of the image correspond to the sample phase-
retrieved thickness and scattering angle respectively. The rubber wedges have a stronger red hue but a weaker 
blue hue compared to the microspheres since they are more attenuating to x-rays, and contain fewer dark-field-
producing unresolved microstructures.
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We have now retrieved a quantitative measure of the scattering angle, which depends on both the sample 
and the x-ray illumination, so the next step is to relate the angle to the sample microstructure properties, such 
as the number of microstructures. The effective scattering angle extracted from each sample is then related to 
the sample thickness, which is proportional to the number of microstructures since we have microspheres of the 
same size. This is achieved by performing a least-squares fitting on the effective scattering angle as a function of 
sample thickness. We noticed that the least-squares fitting was greatly affected by the spread of data points. For 
example, the few data points describing smaller sample thicknesses would have less influence on the fit than the 
many data points at larger thicknesses since we have significantly fewer pixels measuring the smaller thicknesses. 
We overcame this by binning the data points based on their thickness and plotting the mean scattering angle 
value in each bin instead of plotting the values extracted from every pixel individually. The resulting plots are 
shown in Fig. 6. The uncertainty of each data point is set to be the same, which is the median of the standard 
deviation of the angles obtained from all the bins in the ‘cell’.

Figure  6 visibility plots are each fitted with both θ = K
√
T − b (i.e.  Eq.  (7)) (orange curves) and 

θ = K ′ p
√
T − b (red curves), which is similar to Eq.  (7) but with the exponent of T allowed to vary. The 

x-intercept, b , is first determined from the fitting of the orange curves, and is then subsequently used in the 
fitting of the red curves as a fixed value. The b value does not represent the physical projected thickness of 
the Kapton sheets (which is measured physically using a digital calliper to be 0.28 mm), but it only represents 
the thickness retrieved from the background region where no microspheres or rubber is present, under the 
assumption that the sample is made up of a single material (polystyrene) only. This results in an overestimation 
in the thickness, as shown in Supplementary Table S1 since Kapton ( β(34keV) = 1.0456× 10−10 ) is more 
attenuating than polystyrene ( β(34keV) = 7.3837× 10−11 ) of the same thickness. We will refer to this b value 
as the ‘background thickness’ for the rest of the discussion.

The variance in the background thickness from different samples can be attributed to the wide Point Spread 
Function (PSF) of the detector. This is demonstrated in the significantly larger background thickness seen around 
the 1.0 µm sample. The 1.0 µm sample has the greatest thickness among all samples (due to the closer packing 
of the microspheres) and this has resulted in an additional apparent attenuation in the background region as 
the wide PSF of the detector smears out the strong attenuation from the microspheres into the surrounding 
background region. This can also be observed from the 4.1 µm sample, which has a larger sample thickness 
compared to the rest of the samples (6.2 µm, 8.0 µm and 10.8 µm), which each have similar background 
thicknesses.

Note that the data points in the 6.2 µm samples with thickness larger than 2.4 mm were excluded during 
the fitting, since they only have a small number of pixels in each bin compared to the rest of the sample, which 
makes those data points less reliable. From Fig. 6, we can see that the red curves, which assume the anomalous 
diffusion coefficient, α , to be non-zero, provide a better fit to the data points than the orange curves. This 
suggests the potential presence of anomalous diffusion in the sample. We also observed that the exponent of T 
is different for each sample, ranging from 1

1.51 to 1
1.96 . However, the relationship between the exponent or α and 

the sample microstructure size S is difficult to test with this many free variables in the fit. We therefore focus 
on the orange curves which assume α = 0 and relate the fitted coefficient, K , to the size of the microspheres as 
shown in Fig. 7, which is consistent with a model where the effective scattering angle, θ , is inversely proportional 
to 
√
S as described in Eq. (7). From Fig. 7a, we observe an unexpectedly low value for K associated with a larger 

uncertainty value for the 6.2 µm sample, but also greater uncertainty in that measure, due to the presence of air 
gaps, as we explain in the ‘Speckle pattern in the dark-field images’ section of the Supplementary Information.

Single‑exposure quantitative dark‑field imaging. The technique described here can extract 
quantitative measurements from a single sample exposure, provided that the sample-to-detector propagation 
distance is (i) not so short as to provide insufficient signal, and (ii) not so long as to saturate the dark-field signal. 
In light of this tradeoff, this section examines the optimum distance for single-exposure imaging.

Figure 8 shows the scattering angle extracted from the single-exposure dark-field signal obtained at 4 
propagation distances. The scattering angle image retrieved from a shorter propagation distance (Fig. 8a) has 
significantly more noise compared to the image retrieved from a larger propagation distance (Fig. 8d) due to 
the weaker dark-field sensitivity at a shorter propagation distance. The scattering angle extracted from a shorter 
propagation distance (Fig. 8a) also has a greater magnitude compared to the scattering angle extracted from a 
larger propagation distance (Fig. 8d). The same trends and observations are echoed in Fig. 3. This suggests that 
the effective scattering angle may be overestimated at a propagation distance shorter than the optimal distance, 
and underestimated at a propagation distance larger than the optimal distance.

It is worth noting that the scattering angle from the 1.0 µm sample in Fig. 8a is consistent with the angle 
retrieved using the visibility reduction measurements for all 24 sample-to-detector distances (Fig. 3m), indicating 
that 1.0 m is a suitable propagation distance to extract quantitative dark-field signal for this sample. Similarly, 
the scattering angle extracted from the other samples at 2.5 m (Fig. 3k), 1.9 m and 3.1 m (Fig. 8b and c) are also 
consistent with Fig. 3m, which implies the robustness of our technique towards the distance at which we perform 
single-exposure dark-field imaging.

While there is some range of propagation distances that give qualitatively similar images, and a substantial 
range within that set that produce images that agree quantitatively, the choice of distance is important. In addition, 
it should be considered how the optimal single-exposure propagation distance changes for microstructures of 
different sizes.

We can use this experimental dataset to test the optimal-distance formula derived earlier in this paper. To do 
this, we substituted the median thickness and median ± 2 standard deviations of the thickness of each sample 
into Eq. (8), to calculate an optimal distance and a range of suitable distances for single-exposure quantitative 
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dark-field imaging for each sample, shown in green and blue respectively in Fig. 9, together with the optimal 
distance determined from the experimental data, shown in red. The experimental optimal distance is determined 
to be the distance at which the scattering angle, retrieved at such a distance using a single exposure, matches best 
with the scattering angle retrieved using 24 sample-to-detector distances: see Fig. 10. The optimal propagation 
distance obtained from the experimental data lies within the range of the theoretical optimal propagation 
distance calculated using Eq. (8), showing that our result agrees with the theory. Figure 9 shows that to extract a 

Figure 6.  Scattering angle, θ , extracted from microspheres of different diameters, S, as a function of sample 
thickness, T , which is proportional to the number of microstructures, N, along a paraxial ray. Each plot is 
fitted with both θ = K

√
T − b , where K is a constant, as suggested by von  Nardroff65 (orange curves), and 

with θ = K ′ p
√
T − b , where K ′ is a constant and the exponent is allowed to vary (red curves). The x-intercept, 

b , represents the ‘background thickness’, which is determined from the fitting of the orange curve and is 
subsequently used in the fitting of the red curve as a fixed value. The uncertainty (shown in blue) is constant for 
each data point to make sure all data points have the same weighting during the fitting. The red curves provide 
a better fit to the data, suggesting the presence of anomalous diffusion. However, we focus on the orange curves 
since we are more interested in how the strength of the dark-field signal changes with sample microstructure 
size. The coefficient K is then related to the sample microstructure size as shown in Fig. 7. The fitted parameters 
(within 68% confidence interval) for each panel can be found in Supplementary Table S1.
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Figure 7.  The relationship between the fitted coefficient, K (obtained from Fig. 6), and the sample 
microstructure size, S (in µm), (a) before and (b) after linearisation. The results are consistent with a model 
stating that K is inversely proportional to 

√
S , which agrees with Eq. (7). Note that the data for 6.2 µm shown 

here is extracted from Fig. 6d and the uncertainty in each coefficient value is obtained by fitting two new 
functions to the data ± uncertainties (green curves) in Fig. 6. The gradient of the line of best fit in (b) was then 
used to solve for the optimal distance to perform single-exposure dark-field imaging, as explained in the 
Optimal distance for single-exposure dark-field imaging section of the discussion. The fitted parameter values 
(within 68% confidence interval) from panel (a) are a = (0.00015± 0.00011) mrad and 
b = (0.00026± 0.00005) rad/

√
m , where K = a√

S
+ b and from panel (b) are m = (0.044± 0.027)× 10

7 
/ mrad

2 and c = (0.61± 0.21)× 10
7 m/rad2 , where 1

K2 = mS + c . Raw data for the two panels is provided in 
Supplementary Table S2.

Figure 8.  Dark-field scattering angle obtained at (a) 1.0 m, (b) 1.9 m, (c) 3.1 m and (d) 4.0 m, using a single 
exposure. A single exposure can be used to retrieve a quantitative dark-field signal, although the accuracy of 
quantitative measurements will be affected at very short distances (panel (a)) where the signal is weak, and 
very long distances (panel (d)) where the signal begins to saturate. At 1.0 m, only the scattering angle retrieved 
for the 1.0 µm sample was consistent with the angle retrieved using 24 sample-to-detector distances (Fig. 3m), 
whereas the scattering angle retrieved for the 4.1 µm sample in (b) and the other samples in (b) and (c) are 
consistent with Fig. 3m and the scattering angle retrieved in (d) is smaller compared to Fig. 3m. At larger 
propagation distances (c and d), the retrieved dark-field scattering angle image has a lower noise level compared 
to the images retrieved at shorter propagation distances (a and b). Although the magnitude of the scattering 
angle from the 1.0 µm sample decreases as the propagation distance increases, the measured scattering angle 
remains relatively consistent for the other samples between distances, despite having different noise levels. This 
implies our algorithm is robust in extracting quantitative dark-field signals, even when the propagation distance 
is not optimal.
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quantitative dark-field signal, a sample with a larger microstructure size or smaller thickness needs to be imaged 
at a larger propagation distance, while a sample with a smaller microstructure size or larger thickness needs to 
be imaged at a shorter propagation distance, as described in Eq. (8). However, this is not evident for the 8.0 µm 
and 10.8 µm experimental datasets, where both were found to match the multiple-distance data best at the same 
experimental optimal distance, 2.5 m, which is smaller than the optimal distance for the 6.2 µm sample. This 
may be due to the reference grid pattern being blurred out significantly at larger propagation distances due to 
source-size blurring, leaving a lower visibility reference pattern to image with. This effect, not incorporated in the 
optimal-distance equation, renders the cross-correlation less robust to noise and background intensity variations. 
A lower-visibility reference pattern is more likely to result in a saturated dark-field signal at a shorter distance, 
raising the ‘visibility floor’ indicated in Fig. 1a.

Discussion
We have extracted quantitative dark-field signals from polystyrene microspheres of 5 different sizes and 
related the effective scattering angle to the number of microstructures. The scattering angle and the number of 
microstructures of all samples follow a relationship that deviates either slightly or negligibly from the theoretical 
square-root relationship proposed by von  Nardroff65. As expected, it was observed that the sample with smaller 
microstructures produces a stronger dark-field signal and thus a larger effective scattering angle. Our theoretical 
model predicts that the scattering angle is inversely proportional to the square root of the microstructure size, and 
our data is consistent with this model. We have also determined a formula for the optimal propagation distance 
to perform quantitative single-exposure dark-field imaging. This was achieved by analytically solving for the 
distance at which the change in the dark-field visibility signal with respect to the change in scattering angle is 
maximised, and was confirmed with experimental data. For the remainder of the discussion, we will be exploring 
the saturated dark-field signal observed from our data, the properties of our single-exposure quantitative dark-
field imaging technique, potential applications and future research directions.

Observing saturated dark‑field signal. The saturation of the dark-field signal at a larger propagation 
distance was observed for all samples, and depending on the sample microstructure size, the dark-field signal 
began saturating at a different propagation distance. Samples with smaller microstructures produced a saturated 
dark-field from a shorter propagation distance than the samples with larger microstructures, for equivalent 
thickness.

As noted for the case of the lower-visibility reference pattern seen at large grid-to-detector distances, the 
visibility of the reference pattern relative to noise and background variations also affects the distance at which 
saturation is first observed. Therefore, we examined the origin of the speckle pattern observed from the sample 
and how that affects the extraction of the quantitative dark-field signal. A full discussion on this can be found 
in the Supplementary Information.

Properties of the technique. One could perform quantitative single-exposure dark-field imaging to 
characterise the sample microstructure following the steps outlined below. First, a calibration curve should 
be acquired (as shown in Fig. 7) using samples made of comparable material, with known sizes. This can be 

Figure 9.  Theoretical and measured optimal propagation distances to perform single-exposure quantitative 
dark-field imaging on samples with various microstructure sizes for the range of sample thicknesses measured 
here. The theoretical optimal propagation distance is calculated using Eq. (8) with T = median thickness, 
while the range of predicted viable propagation distances is obtained with T = median thickness ± 2 standard 
deviations in thickness. The experimental data (see Fig. 10 for the plot of each sample) agrees with the 
theoretical prediction. Raw data for this figure is provided in Supplementary Table S3.
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achieved by following the procedures provided in the Methods section. An effective scattering angle can then be 
extracted by fitting Eq. (4) to the dark-field signal measured from a single exposure. With the effective scattering 
angle and projected thickness retrieved for each pixel, a fit can be performed (as per Fig. 6) to evaluate the 
coefficient K , which maps to the sample microstructure size by using the calibration curve. Note that there are 
limitations on the precision of the results obtained, potentially due to the extra phase-induced distortions to the 
grid intensity pattern.

One main advantage of this technique is that it only requires a single sample exposure to extract the 
attenuation, phase-shift and dark-field signal. The short data acquisition time can minimise the radiation dose 
delivered to the sample and the potential motion blurring in the image, which makes this technique more feasible 
for dynamic imaging or time-sequence imaging, compared to other PCXI techniques that need multiple sample 

Figure 10.  Plots showing the dark-field scattering angle measured at the optimal propagation distance (red) 
using a single exposure, compared to the scattering angle extracted using the visibility-reduction measurements 
for all 24 sample-to-detector distances (Fig. 3m) (blue) for each sample. In all panels, the recovered scattering 
angle is plotted against the retrieved sample thickness. Note that the optimal propagation distances chosen here 
are the distances at which the two curves match the best. The two curves in all samples were in agreement with 
each other. Moreover, the optimal propagation distance for each sample falls within the range of theoretical 
prediction (see Fig. 9).
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exposures to extract dark-field images. This technique also has a relatively simple setup, compared to other dark-
field imaging techniques. It does not need any additional optical elements other than an attenuating or phase grid. 
Furthermore, no calibration or alignment is required for this technique, prior to the data acquisition process. 
The sensitivity of the imaging system to the dark-field signal can also be tuned, by changing the pixel size and the 
propagation distance. We can increase the sensitivity by using a smaller pixel size or a larger propagation distance.

The single-grid imaging technique can also be used in a laboratory-based setup having a polychromatic x-ray 
source with sufficiently small source  size20,68, since it only requires a certain degree of spatial coherence of the 
 source68, which could be improved by placing a second grid immediately downstream of the source. Although 
the single-grid imaging technique only has a weak requirement on the temporal coherence of the source, the 
polychromaticity of the source could be an issue for quantitative dark-field imaging, due to the beam hardening 
effect, which can contribute to a ‘pseudo’ dark-field  signal69–71.

Our technique is robust with respect to propagation distance, with the effective scattering angle extracted 
from a single exposure being consistent within a range of propagation distances, centred on the optimal distance. 
The optimal distance to perform single-exposure dark-field imaging for a sample with estimated thickness 
and microstructure size can be determined using Eq. (8), where the value of 2/(3k2) can be obtained from a 
calibration curve of samples made up of the same material, with known thickness and size. A simple general 
rule—in choosing a suitable sample-to-detector distance experimentally—is to image the sample at a propagation 
distance that is large enough such that the blurring from the sample can be observed clearly in the intensity 
pattern formed on the detector (as shown in Fig. 1c and d (cf. Fig. 1b, where the intensity pattern does not 
experience observable blurring)), but not so large that the intensity pattern is completely blurred out (as shown 
in Fig. 1e and f). More details about how the imaging system can be optimized experimentally can be found in 
the Supplementary Information.

Another advantage of this technique is that the spatial-mapping/explicit-tracking  method21 we applied here 
can provide a higher spatial resolution than a Fourier-analysis  approach72, since we are comparing the windows 
pixel-by-pixel. Such Fourier analysis can fail when the grid frequency overlaps with the sample feature frequency 
(as shown in Fig. 4 from Morgan et al.26). Although the results from Morgan et al.26 focused on phase imaging, 
we believe the same applies for dark-field imaging. This spatial-mapping approach also allows the algorithm 
to be successfully applied on images taken using speckle-based imaging, as shown in Section 6.2 of How and 
 Morgan61, where the grid is replaced with a piece of  sandpaper22,23.

However, the single-grid imaging technique has some limitations. One major limitation is that this technique 
is primarily suitable for millimetre-to-centimetre-sized samples. This is due to the fact that it requires a relatively 
small pixel size to capture the changes to the grid pattern directly. To obtain high-quality dark-field images, the 
pixel size usually has to be smaller than the blurring width introduced by the sample. Although technically this 
technique can be used to image a larger sample by using a detector with a larger area but a sufficiently small 
pixel size, this can introduce a higher radiation dose on the sample and may not be feasible due to the cost and/
or lack of availability of such a detector.

Potential applications and future directions. As explained in the previous section, the quantitative 
single-exposure x-ray dark-field imaging technique can be useful for imaging dynamic or irreversible processes, 
such as in vivo biological response to a  treatment73, chemical  reactions74,75 and the production of metal  foams76. 
This technique can also be extended into three dimensions to acquire fast tomography, which can be useful 
for biomedical applications, such as lung  imaging38,45, breast tissue imaging for early detection of  cancer46, and 
kidney stone imaging for  classification48. In particular, the dark-field signal can provide information about the 
size of  alveoli38,45, and thus quantitative dark-field imaging has the potential to be used as a diagnostic tool 
for lung diseases such as  emphysema50,  fibrosis51, chronic obstructive pulmonary disease (COPD)53, and lung 
 cancer49, which can produce changes in the size and structure of the alveoli. This dark-field imaging technique 
can also be used to study chemical reactions that involve the forming or decomposition of substances in an 
aqueous solution, which act as unresolved microstructures that provide the dark-field  signals74,75. Moreover, 
by quantifying the dark-field signal and relating the signal to the sample microstructure size and material, this 
technique can also be used to identify powder-like goods, which can be useful for airport security to detect 
explosive substances or powdered  drugs54.

In this manuscript, we have extracted the effective scattering angle from the dark-field signal using 24 
sample-to-detector distances, and related this angle to the sample microstructure size. However, this does not 
fully explain the relationship between the dark-field signal and the scattering from sample microstructures. 
It would be interesting to further understand how the single-grid dark-field signal described in this paper 
relates quantitatively to the small-angle or ultra-small-angle x-ray scattering (SAXS or USAXS), which is a 
topic of interest in x-ray dark-field imaging using  interferometry39,42,77,78 or two orthogonal  gratings79, and also 
in single-grating neutron dark-field  imaging80. In particular, we are interested in the quantitative relationship 
between (i) the blurring width/effective scattering angle extracted from the sample at given distances and 
(ii) the scattering distribution measured in the SAXS/USAXS pattern. This model can be further improved 
by investigating how the dark-field signal is related to the statistical moments that describe the shape of the 
SAXS or USAXS  distribution44,81. It would also be interesting to determine the fraction of the propagating x-ray 
wavefield that contributes to the dark-field  signal82. Given the similarities between single-grid imaging and 
grating interferometry, future work could explore those models used in grating interferometry to describe the 
visibility reduction, such as models based on the real-space correlation function of unresolved phase fluctuations, 
and compare our results to these models for systems such as monodispersed closely packed particle systems.

In applying the method to a range of sample sizes, it may be important to separate the edge-related phase 
effects from the dark-field effects. In some regimes, if a phase fringe has a length scale comparable to the reference 
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grid period, the fringe could be misinterpreted as a dark-field signal, although we have not seen that here 
(see Fig. S1 in the Supplementary Information). Future work could investigate how the strength of the dark-
field signal is determined by the sample material and microstructure shape, and how this relates to the optimal 
propagation distance to perform quantitative single-exposure dark-field imaging.

Another direction is to investigate quantities associated with directional dark-field  signal83,84, which comes 
from elongated microstructures that are oriented in a certain direction. By modelling the blurring function as 
a two-dimensional Gaussian  distribution84, Croughan et al.27 have successfully applied this technique to extract 
the directional dark-field signal, including both the angle at which the microstructures are oriented and the 
eccentricity of the blurring from the microstructures. This quantitative directional dark-field imaging technique 
can be used to determine the diameter of fibres, which have a length many times their width, and hence a 
scattering angle much larger in one direction.

Conclusion
This manuscript has derived and tested guidelines for performing single-exposure dark-field x-ray imaging to 
quantify the size of dark-field-generating microstructure. To provide experimental evidence, we have extracted 
the diffusive dark-field signal from polystyrene microspheres of diameter 1.0 µm, 4.1 µm, 6.2 µm, 8.0 µm 
and 10.8 µm, using 24 propagation distances, employing the single-grid algorithm developed by How and 
 Morgan61. We observed that smaller microstructures produce a stronger dark-field signal, compared to larger 
microstructures of the same projected thickness within our sample. The retrieved dark-field scattering angle was 
consistent with our theoretical model, which stated that the angle is inversely proportional to the square root of 
the sample microstructure size.

We determined an expression for the optimal sample-to-detector distance range for single-exposure dark-field 
imaging, by analytically solving for the distance at which the change in dark-field visibility signal with respect 
to the change in scattering angle is maximised. This also avoids both the insufficient signal seen at short sample-
to-detector distances and the dark-field saturation seen at large distances. According to the analytical solution, 
the optimal distance for single-exposure dark-field imaging depends on the grid period, sample microstructure 
size and sample thickness. Our result was consistent with the theoretical model when we compared the effective 
scattering angle extracted from a single exposure at a single distance, to the angle extracted from 24 propagation 
distances. Here, the experimental optimal distance falls within the theoretical optimal distance range, for all 
samples.

The manuscript provides a procedure for characterising sample microstructure using single-grid dark-field 
imaging. Once calibrated with known microstructures of comparable material and size to those we wish to 
investigate, a single sample exposure can be used, allowing time-sequence or low-dose imaging.

Data availability
Data underlying the results presented in this paper is not publicly available at this time but may be obtained from 
the corresponding author upon reasonable request.
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