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Classifying interpersonal 
synchronization states using 
a data‑driven approach: 
implications for social interaction 
understanding
Roi Yozevitch 1*, Anat Dahan 2, Talia Seada 1, Daniel Appel 1 & Hila Gvirts 3

This study presents a data‑driven approach to identifying interpersonal motor synchrony states 
by analyzing hand movements captured from a 3D depth camera. Utilizing a single frame from 
the experiment, an XGBoost machine learning model was employed to differentiate between 
spontaneous and intentional synchrony modes with nearly 90% accuracy. Our findings demonstrate a 
consistent pattern across subjects, revealing that movement velocity tends to be slower in synchrony 
modes. These insights support the notion that the relationship between velocity and synchrony is 
influenced by the cognitive load required for the task, with slower movements leading to higher 
synchrony in tasks demanding higher cognitive load. This work not only contributes to the limited 
literature on algorithms for identifying interpersonal synchrony but also has potential implications 
for developing new metrics to assess real‑time human social interactions, understanding social 
interaction, and diagnosing and developing treatment strategies for social deficits associated with 
conditions such as Autism Spectrum Disorder.

Interpersonal Synchrony (IS) is defined as ”the dynamic and reciprocal adaptation of the temporal structure 
of behavior between interactive partners”1. In simple words, interpersonal synchrony refers to the matching of 
behaviors, movements, and gestures between two or more people. Mirroring the body language of the person 
you’re talking to is a good example of the phenomenon. Interpersonal synchrony can create a feeling of connec-
tion and understanding between people and is often seen in close relationships such as romantic partnerships 
or friendships. It can also be used intentionally, for example, by a therapist, a salesperson, or when people follow 
instructions and possibly follow an external rhythm as in drumming or  dancing2.

The importance of interpersonal synchrony in social interactions cannot be overstated, as it plays a vital role 
in the development of  infants3,4, the formation of affiliative  bonds5, the encouragement of prosocial  behaviors6, 
and the recognition of  emotions7. In group settings, IS contributes to cohesion and overall  performance8. Both 
spontaneous and intentional synchrony are essential aspects of social behavior and have been linked to reward, 
motivation, and  collaboration9.

A notable framework for measuring synchronization is the mirror game where players mimic each other’s 
movements. Participants can either move alone, move together with no specific instruction, or be instructed to 
in synchronization. Variations of this game have been applied in several studies using different types of record-
ing devices. The evaluation of synchrony is usually quantified by extracting a time series that represents the 
movement of each participant and applying a measure of coherence or similarity between the two-time series.

Despite the wealth of research acknowledging the vital role of IS in social interaction, there is a notable gap in 
the literature regarding the application of machine learning (ML) algorithms to classify and understand various 
types of interpersonal synchrony. Current studies predominantly focus on ML application in participant-type 
classification, such as between individuals with and without Autistic Spectrum Disorder (ASD), rather than the 
specific synchronization states. In addition, these studies often utilize time series data, offering limited insights 
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into the individual characteristics of various synchrony states (see section "Machine learning for classification 
of synchronization" for details).

This work utilizes a dedicated 3D hand gesture device to capture each hand’s exact posture and velocity vectors 
(see section "The leap motion controller"). We apply ML algorithms to learn the different properties to distinguish 
between three synchronization states—Autonomous, Spontaneous, and Intentional synchrony. Unlike previous 
methods for evaluating synchronization that compares time series measurements, we base the classification on 
a single snap-shot of the experiment. The ability to classify synchronization states based on a single snapshot of 
the experiment marks a significant stride in IS research.

Crucially, the application of ML not only facilitates the classification of synchronization states but also pro-
vides a data-driven approach that offers valuable insights into the dynamics of the interaction. The features 
utilized for this model disclose a consistent pattern among subjects, wherein the movement velocity is typically 
slower in states of synchrony. This pattern tells an interesting story about the relationship between position and 
velocity in these states, thereby enhancing our existing comprehension of interpersonal synchrony. We discuss 
these insights in section "Discussion".

The implications of this novel approach extend beyond advancing our understanding of IS. It opens up new 
avenues for researching and understanding the nature of social interactions, the cues we subconsciously use and 
respond to, and how these dynamics may be harnessed for therapeutic and practical purposes.

The structure of this paper is organized as follows: Section "Related works" provides an overview of prior 
work in the field. Section "The leap motion controller" introduces the recording device used in the study. Section 
"Our mirror game experiment" outlines the experimental setup. Section "Machine learning utilization" details 
the ML algorithms and features employed. Sections "Results" and "Discussion" present the results and discus-
sion, respectively. Finally, Section "Conclusions and future work" concludes the paper with a summary of the 
key findings and suggestions for future research.

Related works
The mirror game. As mentioned above, the Mirror Game is a common mimicry exercise where players 
mimic each other’s full-body movements. It is often used In theater, dance, and movement  therapy10. It is one of 
the first game methodologies that was developed for research purposes in order to measure synchronization and 
states of togetherness. In the original mirror game, experimental  setting11,12 two players faced each other hold-
ing handles that can move along parallel tracks. The players were instructed to move together in a synchronized 
and interesting manner. According to each player’s velocity profile, the players’ synchronization was calculated 
according to the mean relative difference in velocity and the timing differences between zero-velocity events.

In the following years, many studies extended this paradigm and measured movement using different 
technologies.

One work, for example, extended the original mirror game methodology of one-dimensional movement 
of moving handles to 3D  movement12. Other recording technologies include video recordings, Kinect depth 
cameras, 3D cameras, and sensors as wrist work  accelerometers13–15.

Synchronization metrics. Is there an objective (mathematical) measure of synchronization? Since there 
are different interpretations of the term, several methods have been applied to evaluate a synchronization metric. 
The most common approach to evaluate synchronization is by assessing the correlation between two-time series 
measurements of a dyad members’ movements.

A time series can represent a series of sampling of different aspects of a movement. Some studies obtain a 
time series describing the velocity of each participant according to a sampling of a marker attached to the body 
or hands of  participants16, or to the movement of a  handle11. A time series that evaluates movement can also 
be obtained by an accelerometer attached to the body and or  head17,18, and sampling from the acceleration data 
of each participant. In tasks of tapping, two participants are instructed to tap in synchrony. A time series for 
each participant can be obtained by measurements of the interval between taps (Intertap- intervals)19. A recent 
study has recently proposed novel measure, known as dynamic pose similarity (DPS)2. This measure creates a 
time series for each participant that aggregates the position of fifteen joints with the directions of movement. 
When using methodologies of videotaping of participants, individual body movement is assessed by the frame-
difference method of motion energy analysis (MEA)20,21. For each consecutive pair of video frames, the algorithm 
counts the number of pixels in which the grey intensity changed between. This results in a time series of motion 
intensity values for each participant.

One prevalent time series analysis is the Rolling-Window-Time-Lagged-Cross-Correlation (RWTLCC)22. 
RWTLCC provides correlations between two data streams across different time lags. This method considers that 
the time series are not necessarily perfectly aligned in time. Therefore the RWTLCC calculates correlations for each 
of a range of possible lags. Other methods that have been suggested to evaluate the synchrony of time series include 
Pearson product-moment  correlations7, dynamic time  warping23, and phase  synchrony24. An examination of dif-
ferent methods of linear time series analysis, on time series extracted by Motion energy analysis of videotapes of 
moving dyads (25) concluded that each method measures different aspects of synchrony, such as the strength of syn-
chrony of the total interaction vs during synchronization intervals, and the strength vs the frequency of synchrony.

While the measures described above aim to quantify the level of synchronization, other approaches try to 
classify the state of synchrony. Identifying whether participants are synchronized can be valuable in real-life 
therapeutic settings. One work measured children’s social engagement in a group that included autistic children 
participating in a theatrical workshop by measuring interpersonal movement  synchrony18. They used wrist-worn 
accelerometers to measure non-verbal social coordination within the group. Synchronization was calculated 
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using a cross-wavelet similarity comparison between participants’ movement data. For tasks of classification, 
machine learning can offer valuable techniques and insights.

Machine learning for classification of synchronization. IS data is very rich and varied. Thus, it may 
be analyzed in terms of rhythm, in terms of location, form, etc. For such data, it is often useful to harness ML 
algorithms. These algorithms have become the most relevant methodology for classifying data without making 
assumptions about the nature of the data in a bottom-up data-driven  approach26. Motor behavior is a visible out-
put of complex internal intentions. In recent years, advances in deep learning techniques have enabled scientists 
to study patterns of motor behavior with high  accuracy27. Such techniques involve using ‘skeletonized’ data and 
3D shapes (how ‘skeletonized’ data and 3D shapes) evolve as a time series. These series can be interpreted as dif-
ferent poses in the process of pose estimation using deep learning  techniques28–31. The authors  of32 have used the 
Open Pose deep learning-based 2D pose estimator o quantify movement-music synchrony. Some studies have 
used machine learning methods to classify patterns of IS. A proof of concept study showed that interpersonal 
coordination movement patterns of TD vs ASD dyads can be classified using machine learning  methods33. Intra-
personal Synchrony between the head and upper body was quantified using Motion Energy Analysis, and the 
resulting time series were used as features for classification using a support vector machine with a linear kernel 
algorithm. In another work, measures of IS that were extracted from naturalistic video recordings were used to 
classify participants as belonging to ASD or control  groups34. A time series of facial expression features were 
extracted using the Openface algorithm (A python and Torch implementation of face recognition with deep 
neural  networks35), which extracts action units and three head pose parameters (pitch, yaw, roll). Head and body 
movement was assessed using a Motion Energy Algorithm (MEA)  algorithm20. To assess IS, cross-correlation 
measures were applied. Several summary scores (e.g., mean, median, etc.) were used as features for a Support 
Vector Machine (SVM) classifier to classify dyads belonging to a mixed (ASD-TD) or non-autistic control (TD-
TD) dyad. 36 proposed a data-driven approach to quantify vocal and linguistic synchrony. Vocal synchrony was 
assessed by extracting spectral features and measuring distances. Linguistic synchronization was assessed by 
measuring the lexical distance between sentences. These distances were used as features for classification using a 
linear and nonlinear SVM classifier and a linear regression model.

There are still only a few studies that harness Machine Learning to assess IS. To the best of our knowledge, 
there are no studies that use ML to classify between different types of synchronization, but rather all are used 
to classify between types of participants. Interestingly, while all approaches use different features, all features 
evaluate IS using a time series calculation of measures recorded from the two-time series of the dyad participants.

The leap motion controller
Hand gesture  recognition37 is attracting a growing interest due to its applications in many different fields, such 
as human-computer interaction, robotics, computer gaming, automatic sign-language interpretation, and more. 
The Leap Motion controller (LMC)38 device has opened new opportunities for gesture recognition. Differently 
from the Microsoft  Kinect39, the LMC is explicitly targeted to hand gesture recognition and directly computes the 
position of the fingertips and the hand orientation. Although the amount of information is limited compared to 
other depth cameras (e.g., Kinect), the extracted data is more accurate with sub-millimeter accuracy. In contrast 
to standard multi-touch solutions, this above-surface sensor is designed for use in realistic stereo 3D interaction 
 systems40. Figure 1 shows both the controller and a 3D output of two hands simultaneously.

The LMC is explicitly targeted to hand gesture recognition and directly computes the fingers’ position/veloc-
ity vectors.

Figure 1.  The leap motion controller (LMC) device.
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Our mirror game experiment
Twelve participants were recruited (ages 19-30). All participants were right-handed and were native speakers 
of Hebrew. The ethics committee of Ariel University approved the study protocol in accordance with the ethics 
approval guidelines of the University’s Ethics Committee. Informed consent was received from all participants. 
The data-set generated and analyzed during the current study is available in a public GitHub  repository41.

As explained in the introduction, we measure the interpersonal synchrony of two people by inspecting hand 
gestures and measuring their similarity. Hand gestures are ecological and can occur naturally in a synchroniza-
tion task.

The experiment was conducted as follows: two participants sat facing each other at two sides of a table. They 
were told to move in three different alignment states. These states are: 

1. an Alone mode.
2. a Spontaneous mode
3. an Intentional Synchronization mode.

In the first state, each participant, in their turn, was asked to move their hand freely over the LMC. We denote 
this as an ”Alone” mode. The second state is very similar to the first. The only difference is that the two partici-
pants can see each other’s movement during the experiment. We denote this as an ”Spontaneous” state since 
spontaneous synchrony may occur in such states(see section 1).

The last state is different. In the last state, two participants are asked to move in synchronization. They are 
invited to interpret ”synchronization” as they understand the term. We denote this state as ”synchronization” 
state. A picture from the experiment can be seen in Fig. 2.

The LMC reports the exact posture of each hand at ≈ 100Hz . The data can be extracted via the official SDK. 
A Python logger was implemented to save this data for further analysis.

The conducted experiment included the following three stages, in each of which a 75-second period was 
captured by the Leap Motion Controller at 120 FPS and exported into an Excel file containing all the captured 
information. The question we want to raise is twofold. First, given a single snap-shot of the mirror game, can 
one distinguish between ”alone”, ”spontaneous” and ”synchrony” modes? Second, based on the collected data of 
these three states, what observations can be made? We address both questions in the upcoming sections.

Machine learning utilization
ML techniques have shown great results in classification and/or prediction problems in numerous fields. In this 
section, we harness those tools in the field of IS. There is a famous quote by scholar Andrew Ng that any task 
a person can do (compute) in one second of thought, an AI system can also  achieve42. Empirical observation 
has taught us that while it is relatively an easy task to distinguish between ”Spontaneous” and ”Synchronized” 
behaviours, it is much more complex to distinguish between ”Spontaneous” and ”Alone” movements. This is 
mainly because a synchronized movement is, by definition, synchronized. If both hands tend to be in physical 
alignment, this implies a Synchronized” state. On the other hand, when people are instructed to move freely 
(autonomous behavior), their respective movements are not aligned in any sense. Nevertheless, since ”spontane-
ous synchronization” occasionally emerges, one can detect it using ML algorithms.

Model’s input. As explained above, one can easily detect different modes given enough observation time. 
However, the model’s input is a single snap-shot containing both hands position and velocity vectors. Another 
way to look at it is that we try to deduce the synchronization state based on a single picture of the hands (e.g., 
try to guess the synchronization state depicted in Fig. 2) plus meta-data containing their respective velocities in 
all axes.

Figure 2.  A picture from the experiment. Two persons sit facing each other and move their hands freely over 
the Leap Motion controller.
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As shown in Fig. 3, the X axis represents the participants’ horizontal position with respect to the controller. 
The Y axis indicates the participants’ vertical (height) distance from the LMC. These X-Y-Z distances are reported 
in absolute values (mm) from the LMC center to the hand (palm center).

The LMC device can both track and record the following data: 

1. 3D position vector of each hand (measured between the device’s center and the palm’s center).
2. 3D velocity vector of each hand (measured in mm

s ).
3. The orientation of each hand—yaw, pitch, and roll (demonstrated in Fig. 4).
4. 3D position vector of the elbow and the wrist of each hand.
5. a ’grab’ metric. The grab indicates how close a hand is to be a fist—any fingers that aren’t curled will reduce 

grab strength.

All the above features are summed to 13 figures for each hand—four 3d vectors (12) + a grab measure(1).
We are dealing with tabular data. Thus, one of the most efficient ML algorithms to apply is  XGBoost43.

Machine leaning algorithms. In the context of this study, the choice of a specific machine learning algo-
rithm is less important than its use as a tool to help test the main hypothesis—that different mental synchroniza-
tion can be distinguished. In other words, distinguishing between these states is relatively easy given sufficient 
data and time. However, if such classification is possible based on a single hands snapshot (and section "Model 
evaluation" shows it does), it raises the question: why? What does the algorithm ’see’ in a single snapshot that 
distinguishes one mental state from the other? We address this very question in section "Discussion".

The following classification algorithms were tested:

• Support Vector Machine (SVM)
• XGBoost
• Naive Bayes
• A 3-layer Dense Neural Network
• Random Forest

Out of all the algorithms the best results were achieved with XGBoost.

XGBoost. XGBoost—Extreme Gradient  Boosting44, is a scalable, distributed gradient-boosted decision tree 
machine learning library. It can be used for supervised learning classification tasks. Supervised learning algo-
rithms find patterns in a labeled data set according to a set of features in the data and accordingly can classify 
new data according to the same type of features. In a nutshell, decision trees create a model that predicts the 
label by evaluating a tree of questions regarding the features. Gradient Boosting Decision Trees (GBDT) create a 
model consisting of an ensemble of multiple decision trees. The algorithm iteratively trains multiple shallow deci-
sion trees, using the error of the previous iteration to fit the next iteration. Finally, a classification is done based 
on a weighted sum of all the shallow decision trees. As stated above, XGBoost is considered to be the prominent 
algorithm in tabular supervised  learning43. This scalable, distributed gradient-boosted decision tree machine 
learning library is utilized for its effectiveness in supervised learning classification tasks. The algorithm finds 
patterns in a labeled dataset based on features and can classify new data using the same feature set. At its core, 

Figure 3.  The leap motion controller X–Y–Z orientation.

Figure 4.  Hand’s different attitudes.
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decision trees create a model that predicts labels through a series of feature-based queries. Gradient Boosting 
Decision Trees (GBDT), and in our case XGBoost, extend this by constructing an ensemble of multiple decision 
trees. The algorithm iteratively trains numerous shallow decision trees, leveraging the error of the preceding 
iteration to inform the subsequent one. The final classification is determined based on a weighted sum of all 
the shallow decision trees. It’s worth noting that XGBoost has been recognized as a leading algorithm in tabular 
supervised  learning43.

Train‑test split. 12 different volunteers participated in the mirror game. Each person behaves differently 
and understands differently the ”Be synchronized” task. Since the classifier objective is not to study the syn-
chronization patterns of a specific person but to learn the underlying patterns common among all participants, 
a subject-independent classifier is mandatory. Thus, all algorithms were trained using 9 participants while tested 
with 3. In other words, the algorithms couldn’t learn their specific pattern and had to rely on the common pat-
tern found in the first 9 subjects in the training phase.

Results
In the next two sections, we address the two questions proposed in Section "Our mirror game experiment"—can 
one distinguish between the different states based on a single frame of the mirror game, and what insights emerge 
from the data itself? We start with the first question.

Model evaluation. As stated in Section "Machine leaning algorithms", several algorithms were tested. One 
can see their relative performances in Table 1.

We trained multiple XGBoost models with different hyper-parameter configurations on the data. Table 2 
presents these models and their respective hyper-parameters and performance metrics, including run-time, 
accuracy, precision, recall, and F1 score. For all models, the ”booster” hyper-parameter was set to ”gbtree” since 
other settings resulted in significantly lower performance (by approximately 10%).

We chose to use the first classifier because it offered the optimal balance between accuracy metrics and 
training time. The classifier’s accuracy, as shown in the table above, is 87.9% (precision—90% , recall—87% , F1 
score—87% ), meaning the classifier can distinguish (with high certainty) between the different states. One can 
see the ROC Curve in Fig. 5 and the full confusion matrix in Fig. 6.

What can be learned from the above matrix? First, the ‘Alone’ mode is much easier to distinguish from the 
other modes. Second, there is an inherent difference between spontaneous and intentional synchrony modes 
based on their type I/II errors. Given the real state is spontaneous movement (second row in Fig. 6), the algo-
rithm error rate is ≈ 7% . However, given the real state is intentional synchrony, the error rate is four times higher 

Table 1.  Comparison of different algorithms used in the study, sorted by F1-Score. The XGBoost algorithm 
achieved the highest score, both on accuracy and F1 score.

Algorithm Accuracy F1-Score Precision Recall

XGBoost 0.88 0.87 0.9 0.87

Random Forest (500 trees) 0.876 0.873 0.903 0.876

SVM 0.868 0.866 0.885 0.868

Neural Nets (3 layers) 0.865 0.863 0.883 0.865

Naive Bayes 0.842 0.842 0.844 0.843

Table 2.  Results of the trained model with different hyper-parameters.

Learning rate # Estimators Max depth
Min child 
weight Max delta step

Time taken 
(secs) Accuracy Avg. Precision Avg. Recall

Avg. F1 
Score

0.5 4000 6 1 0 30.37 0.8795 0.9 0.87 0.87

0.2 8000 6 1 0 66.65 0.88 0.9 0.87 0.87

0.5 4000 10 1 0 29.55 0.8712 0.88 0.87 0.86

0.7 2000 6 1 0 16.66 0.8751 0.89 0.87 0.87

0.9 2000 15 1 0 15.03 0.8722 0.89 0.87 0.87

0.5 4000 15 1 0 29.93 0.8679 0.88 0.86 0.86

0.5 4000 6 5 0 27.5 0.8799 0.87 0.87 0.87

0.5 4000 6 10 10 25.5 0.8814 0.89 0.88 0.87

0.5 4000 6 2 2 28.07 0.8756 0.89 0.87 0.87

0.5 8000 6 1 0 50.01 0.8792 0.89 0.87 0.87

0.5 100 6 1 0 3.04 0.8 0.79 0.82 0.8
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( ≈ 28% ). Why is it so? After inspecting the experiments and the data, the reason for this phenomenon is as fol-
lows: misclassifying a spontaneous state as a sync state can occasionally happen if both hands are accidentally 
aligned (remember that we only use a single snapshot). It can happen (since both hands move spontaneously) but 
is uncommon. However, when the subject is in an intentional synchrony state, to ‘sync’, one needs to compensate if 
the hands are not aligned. The positional compensation process, by its nature, causes changes in the velocity (one 
needs to change their hand’s velocity to maintain the same position), causing the system to ‘see’ these moments 
as spontaneous movements. Put simply, when people think of ”synchronization,” they usually focus on being in 
the same place rather than moving at the same speed. But can the results be expanded beyond a simple accuracy 
figure? What can be learned from all the gathered data? How do people perceive and understand the task: ”Be 
synchronized” and what are the behavioral manifestations of this understanding?

But can the results be expanded beyond a simple accuracy figure? What can be learned from all the gathered 
data? How do people perceive and understand the task: ”Be synchronized” and what are the behavioral mani-
festations of this understanding?

Discussion
In the following section, we present the behavioral manifestations of the different synchronization modes. Let 
us start with the velocity.

Velocity. As can be clearly seen from the data, people tend to move at different velocities in different sce-
narios. Apparently, this could be seen as a trivial observation. Still, the data shows consistent behavior across all 
subjects—the highest velocity is reached in ‘Alone’ mode, a medium velocity is reached in ‘Spontaneous’ mode, 
and the lowest velocity was recorded for all subjects in ’ Synchronization’ mode. The data can be depicted in 
Fig. 7. These findings are consistent with the work of Noy et al.45, which used a whole-body mirror game task and 
showed that slower movements lead to higher synchrony. However, our findings contradict an earlier study by 
Noy et  el11. In that earlier study, the researchers used one-dimensional mirror game tasks and found that faster 
movements are associated with a higher level of synchrony. The discrepancy between these findings may stem 
from the level of cognitive load that an individual experiences. More specifically, creating synchronized motion 
together by moving handles in the one-dimensional mirror game may be less consuming and require lower 
cognitive load than synchronizing with the whole body or parts of it (as in the current study). We, therefore, 
conclude that our findings support the idea that the relationship between velocity and synchrony depends on the 
level of cognitive load that is required of the task, with faster movements leading to higher synchrony in a task 

Figure 5.  Roc curve.

Figure 6.  Model accuracy confusion matrix.
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that requires a lower cognitive load, but slower movements leading to higher synchrony in a task that requires 
high cognitive  load45.

Position. What can we say regarding the hands’ distance over time? Almost overall, the distance between 
participants (as measured in mm between the two hands) is greater in spontaneous mode than in IS mode. The 
results are depicted in Fig. 9.

Among all participants ( x − axis ) one can see that the average distance in IS mode is smaller than the Sponta-
neous mode. For some (e.g., ID 1,9) the gap is significant while for others (e.g., ID 4,11) the gap is relatively small. 
However, being closer in IS mode is a common train across all participants. One can see that synchronization is 
also interpreted as ”being closer to one another”.

Figure 7.  The average velocity difference of each subject in each of the 3 tests. The difference can be clearly seen 
for each of them. Blue: Alone; Orange: Spontaneous; Green: synchronized.

Figure 8.  The difference in velocities between the two subjects as time passes for a single subject pair (which is 
symbolic of the whole group).
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This, in addition to the subject’s average movement speed being much greater (Fig. 8)—again, most likely due 
to not having to coordinate movements with another person (consciously or subconsciously). Another important 
conclusion one can draw from the data is that a subject’s view in synchronization is dependent to a very high 
extent on the height (the y − axis ) of the hands. Thus, people in an intentional synchrony state, tend to correlate 
their respective y position values (vertical) more than the other axes.

Sine wave behaviour. Figure 9 encapsulates an entire 70 sec session to a singular point—average. Figure 10 
depicts the entire session. In the figure, one can see the position difference (same as the y − axis in Fig. 9) over 
the span of the entire session - 70 sec. The figure shows the data of one subject but the pattern shown was com-
mon among all participants.

Interestingly, one can notice a slight sine amplitude tendency in all positional differences of the Synchronized 
and Spontaneous states which could indicate that a subject, every time after furthering from the other subject, 

Figure 9.  The average hands’ distance in Spontaneous and IS modes. One can see that people tend to be closer 
in synchronization mode.

Figure 10.  Position differences over time between two subjects as time passes for a single subject pair (which is 
symbolic of the whole group).
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feels obligated in some way to come closer to it again after a period of time. This pattern is in line with previ-
ous findings that showed that during the mirror game, participants showed a pattern of getting in and out of 
 synchronization46–48. It has been suggested this pattern of falling out of synchronization allows participants to 
increase the complexity and novelty of the interaction. Within mutual adaptation between participants, when 
they feel confident, they are willing to temporarily reduce synchronization to make the interaction more inter-
esting and meaningful by increasing its complexity, and following this change, they again manage to restore the 
synchronization. This occurs spontaneously and repeatedly along the  interaction48.

IS is linked to prosocial  behaviours5,49 and reduced IS was found to be associated with deficits in social 
cognition, e.g., in  schizophrenia50–53, in  ASD54,55 and in  ADHD56. Classifying patterns of IS during real-life 
interaction may pave the way for future studies to develop interventions for disorders such as ASD. By precisely 
recognizing patterns of interpersonal synchrony during actual interactions, we can use the algorithm to provide 
real-time feedback for successful IS. Several existing Interventions for ASD aim at improving interpersonal 
synchronization. Such interventions include Music Therapy which includes rhythmic synchronization activities, 
such as playing musical instruments or engaging in group singing. Dance/Movement Therapy. Joint Attention 
Intervention that contains activities that encourage eye contact, turn-taking, and shared focus on objects or 
 events57–59. Algorithms for assessing interpersonal synchrony can play a valuable role in interventions aimed at 
improving interpersonal synchronization. Real-time feedback is essential for individuals with ASD to understand 
and adjust their behavior during social interactions. Algorithms can be integrated into interactive systems or 
wearable devices to provide immediate feedback on synchrony levels. This feedback can guide individuals to 
synchronize their movements, gestures, or vocalizations with their interaction partners, facilitating real-time 
adjustments and promoting improved synchrony. Moreover, by analyzing the collected data, therapists can gain 
insights into the specific areas of synchrony that individuals with ASD struggle with. This information may help 
in developing personalized intervention plans that target the specific areas needing improvement paving the way 
for individualized Intervention planning. Using real-time classification algorithms may allow the development 
of adaptive interventions. Such interventions may adjust in real time based on the individual’s progress and 
needs. By continuously monitoring interpersonal synchrony, algorithms can provide immediate feedback and 
dynamically modify the intervention activities to optimize learning and engagement. This adaptability ensures 
that interventions remain tailored and responsive to the individual’s unique requirements.

Conclusions and future work
This work offered a data-driven method for understanding different synchronization states. Unlike previous 
methods that measure IS as a time series, we only inspect a single snapshot and deduce from it the corresponding 
state (Spontaneous or IS modes). An XGBoost ML model reached almost 90% accuracy between Spontaneous 
and IS modes. In addition, real experiments conducted with a dozen participants confirm the validity of these 
findings. Up till now, the literature on IS has mainly focused on developing measurements for  IS11,60 as well as 
tasks that measure spontaneous synchrony or intentional  synchrony55,56. There has been little study focused on 
the idea of constructing an algorithm that can identify interpersonal synchrony. Such an algorithm may have 
important implications for the development of new metrics for assessing different types of synchrony protocols 
of real-time human social interactions. Importantly assessing IS in real-time can pave the way for developing 
adaptive treatment interventions with real-time feedback. Hence, developing an algorithm that classifies patterns 
of IS during real-life interaction may have implications for understanding social interaction and diagnosing and 
developing treatment strategies for social deficits associated with conditions such as ASD.

The focus of the current work is hand postures using the in-depth camera, It will be interesting to see whether 
the patterns of velocity and interpersonal space also take place for the whole body movement. Whole-body syn-
chrony refers to movements that are often subtle and require the coordination of multiple body parts to achieve 
synchronization. During our everyday social interaction, we tend to coordinate not only our hand movements 
with those of others but also our head movements as well as other parts of the body. Hence, measuring whole-
body synchrony provides a more accurate and comprehensive understanding of the coordination that occurs 
between individuals during social interactions. Indeed, whole-body synchrony was significantly related to the 
therapeutic alliance between the therapist and patient, demonstrating the importance of measuring whole-body 
synchrony in clinical  contexts61. Finally, it has been suggested that there may be different head- versus body syn-
chrony effects. More specifically, synchronized head movement was found to be associated particularly with the 
macro-outcome of psychotherapies (global therapy success), whereas synchronized body movement predicted 
short-term micro-outcome at the session  level62.

Future work. One limitation of the current study is that it did not examine the influence of nationality, 
culture, gender, and age. Previous studies have consistently shown that individuals synchronize more with in-
group members who share characteristics like nationality and gender while demonstrating less synchronization 
with out-group  members63. Recent research has revealed differences in the degree of synchronization between 
in-group dyads (consisting of persons from the same nationality group) and inter-group dyads (consisting of 
individuals from other nationality groups)55,56,64. These findings highlight people’s natural tendency to associate 
themselves with individuals who are similar to them, resulting in increased  synchrony65.

We call for future studies to examine the impact of these parameters examine the impact of these factors.
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