
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10420  | https://doi.org/10.1038/s41598-023-37306-7

www.nature.com/scientificreports

Rock fragmentation indexes 
reflecting rock mass quality based 
on real‑time data of TBM tunnelling
Xu Li 1, Lei‑jie Wu 1, Yu‑jie Wang 1,2* & Jin‑hui Li 3

Perception of rock condition (RC) is a challenge in tunnel boring machine (TBM) construction due to 
lack of space and time to observe and detect RC. To overcome this problem, this study aims to extract 
a new rock fragmentation index (RFI) that can reflect RC from real‑time rock fragmentation data of the 
TBM. First, a comprehensive review of existing rock fragmentation models is conducted, which leads 
to some candidate RFIs that can reflect RC. Next, these candidate RFIs are investigated using data 
from 12,237 samples from a well‑monitored tunnel boring process of the TBM in a 20,198 m tunnel. 
Further, a new RFI system is recommended as the parameter involving the optimal models. Finally, 
a preliminary study of the relationship between these RFIs and RC is carried out, and it is shown that 
these RFIs can reflect RC to a large extent. In the TBM boring process, these RFIs can be extracted 
from real‑time TBM fragmentation data and used to predict the RC in the field. Therefore, the 
challenge of RC perception is solved with this new RFI system. The new RFI system offers significant 
potential for the real‑time rock classification, prediction of the surrounding rock collapse potential, 
and selection of control parameters or support measures during TBM construction. This will be the key 
to improving TBM construction performance.

Abbreviation of rock mechanics parameters
ξ  Coefficient of rock friction
σt  Brazilian indirect tensile strength of rock, in MPa
UCS  Uniaxial compressive strength of the rock mass, in MPa
E  Energy required for rock fragmentation per unit volume, in kJ
Jc  Joint condition rating in Rock Mass Rating (RMR) classification system
τ  Unconfined shear strength, in MPa
Ic  Rock cohesion index, in kJꞏm2

If   Rock friction index, in m
RC  Rock condition

Abbreviation of geometric parameters of tunnel boring machine
A  Area of the tunnel face, in  m2

D  Diameter of cutter, in m
β  Contact angle between the rock and cutter, in °
S  Spacing between adjacent cutters, in m
rk  Radial distance between center of kth disc cutter and center of cutter head, in m
r  Radius of cutter head, in m
θ  Cutter edge angle, in °
N  Total number of disc cutter
δ  Cutter tip width, in m
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Abbreviation of mechanical parameters of tunnel boring machine
fr  Rolling force acting on the disc-cutter, in kN
fn  Normal force acting on the disc-cutter, in kN
fn  Average cutter thrust, in kN
f1  Critical thrust to achieve a penetration of 1.0 mm/rev, in kN
η  Energy transfer ratio of TBM
TPI  Torque penetration index, in kNꞏm/(mm/r)
AF  Thrust to accelerate rock fragmentation, in kN/(mm/r)
BF  Critical thrust for rock fragmentation, in kN
kc  Ratio between the drag force and the thrust force on the cutter
p  Penetration, in mm/r
F  Total thrust, in kN
v  Penetration rate, in mm/min
T  Cutterhead torque, in kNꞏm
n  Cutter head rotation speed, in r/min
FPI  Thrust penetration index, in kN/(mm/r)
WR  Work ratio
ξ  Coefficient of rock friction

With the rapid development of water conservation, highway, and railway infrastructure in China, the number 
of long tunnels under construction is  increasing1. More than 200 long water diversion or transport tunnels will 
be constructed in China over the next decade. For example, the Kangding–Linzhi section of the Sichuan-Tibet 
railway, which is currently under construction, includes six long tunnels with lengths over 30 km in length. 
Developing an efficient and safe construction method for long tunnels is important for the smooth and rapid 
completion of these projects.

If the surrounding rock conditions (RC) of the tunnel are good, the maximum monthly advance of full-face 
rock tunnel boring machine (TBM) construction can exceed 1800 m, which is more than five times the monthly 
advance of the traditional drilling and blasting methods. Because of this advantage, TBM is considered the 
preferred construction method for long tunnels in rock  strata2,3.

However, the construction efficiency and safety of TBMs are very sensitive to changes in the surrounding RC 
in the field. When adverse geological  conditions4–6 are encountered, serious safety accidents such as machine 
 jamming7,8 or rock  bursts9–11 may frequently occur. If hard rock is encountered or the construction control 
parameters are not adjusted in time according to the RC, a massive disc cutter  consumption12,13 will occur. 
Therefore, the perception of the RC is key to improving the construction efficiency and safety of TBMs.

At present, the perception of RC remains a challenge in TBM construction. As shown in Fig. 1, TBM construc-
tion is carried out rapidly in a closed and confined space. There is lack of space and time to observe and detect 
RC. Traditional RC perception methods, such as rock surface observation, field testing, and advanced geological 
prediction technology are not applicable to TBM construction.

To overcome this challenge, a potential perception method for RC is to judge RC in real time based on the 
rock fragmentation data of the TBM construction. When the relationship between rock fragmentation data and 

Figure 1.  Perception of rock conditions is a challenge in TBM construction.
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RC, i.e., the TBM rock fragmentation model, is established. RC perception based on rock fragmentation data 
can be realised, which can be used to guide TBM construction, improve construction efficiency, take necessary 
engineering measures in time, and avoid accidents such as machine jamming.

Many efforts have been made to study the relationship between RC and rock fragmentation data or to establish 
a TBM rock fragmentation model, including numerical  simulations14, theoretical  studies15,16, and laboratory and 
field  tests17–19. Several rock fragmentation models (including the CSM and NTNU models) focus more on the 
predicting of penetration rate (PR)20 and cutter  life21,22 than on the prediction of torque and thrust. In this study, 
only the predicting of torque (or thrust) prediction is considered, and PR prediction is not discussed.

Rock fragmentation models that address torque (or thrust) can be divided into the following categories.
Individual cutter models. The most used mechanical models are the individual cutter models. Such models 

are proposed based on the mechanical analysis of the rock fragmentation process on a complete rock. Rock 
fragmentation varies depending on penetration p , which is defined as the cut depth for each revolution of the 
cutterhead. Hence, many individual cutter models propose formulas to characterize the relationship between 
forces and penetration, as shown in Appendix 1. In these models, fr , fn , and fs are the rolling force, normal force, 
and side force acting on the disc cutter, respectively (Fig. 2). In these formulas, the parameters depend on the 
rock  properties16,23,24 and other factors.

Empirical holistic models. In addition to the individual cutter model, some empirical holistic models have 
addressed the relationship between the forces applied on the cutterhead and penetration. Such empirical models 
consider the entire TBM cutterhead as an integrated system. The representative empirical models for the cut-
terhead are listed in Appendix 2. Such models use regression to establish the relationship between total forces 
and penetration. In such models, the parameters depend on the rock  properties25–29 and some other factors.

These models significantly improve our understanding of rock fragmentation  mechanisms30. These studies 
have demonstrated that the TBM can be regarded as a large torsional shear testing machine for rock and rock 
fragmentation data dependent on RC. However, the relationship between RC and rock fragmentation data is 
complex and includes factors, such as the influence of construction control parameters, disc cutter shape, and 
disc cutter arrangement,in addition, the requirement of rock properties increases the difficulty in information 
gathering and limits the model’s application. Although the current research results and formulas have partially 
solved this problem and are applicable under some special conditions, a widely applicable rock fragmentation 
model has not been found.

Due to the complex nature of rock fragmentation, over 10 different models have been proposed to address 
this problem. These models vary in detail and may even contain contradictory or conflicting information. Even 
for experts in the field, it is still unclear which model is the most superior and universal. Thus, the development 
of a universal rock fragmentation model remains a challenging task in TBM construction.

In our opinion, there is another way to properly use these models, that is the model parameters can be 
regarded as rock fragmentation indexes (RFIs) and determined by model fitting using real-time TBM fragmen-
tation data. In addition, RFIs can be used to reflect the RC.

Studies on RFIs have been well summarised and discussed by Hassanpour et al.31, Hamidi et al.32, and Farrokh 
et al.33. Among these RFIs, the field penetration index (FPI) has been well  discussed33. Hamilton and  Dollinger34 
first introduced the FPI and defined it as the total thrust over the penetration. Later, several relationships between 
the RC (such as the volumetric joint count and rock mass rating value) and FPI were obtained by  regression31,35,36. 
Later, Delisioetal.37 adopted FPI to examine the surrounding RC and TBM penetration behaviour.

In short, we believe that extracting RFIs from real-time TBM fragmentation data and using them to predict 
RC is the key to improving TBM construction performance. A single index of FPI cannot fully represent the 
complex RC. All parameters involved in the rock fragmentation models are potential RFIs that can reflect RC. 
Thus, a full comparison and verification of real-time TBM fragmentation data is required.

Figure 2.  Forces at work on disc cutter.
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To propose a widely applicable rock fragmentation model, this study aims to extract TBM RFIs that can 
reflect RC from real-time rock fragmentation data and verify the universality of the proposed RFI through big 
data of TBM construction. The “Rock fragmentation data” is a collective term for the relevant sensor parameters 
collected by the TBM when breaking rock masses.

The remainder of this study is structured as follows. (1) In “TBM construction data in YinSong diversion pro-
ject (YSP)” section , big data of TBM construction is introduced; (2) in “Rock fragmentation model from a macro 
energy consumption perspective” section , new energy consumption relations for the rock fragmentation process 
of TBM are deduced from a macro perspective; (3) in “Model adaptation test based on TBM construction data 
in YSP” section , the big data of TBM construction is used to verify the universality of these rock fragmentation 
models and lead to a new RFI system; (4) finally, in “Benefits of the newly proposed TBM rock fragmentation 
index system” section , the benefits of the new RFI system are discussed.

TBM construction data in YinSong diversion project (YSP)
With the rapid advancement of the TBM sensor  technology38, data on the TBM boring process can be collected. 
With the support of China’s National Basic Research Program (973 Program), the TBM boring process was well 
monitored. The high-quality data obtained in the YSP opens a data-driven possibility for establishing relation-
ships between the TBM rock fragmentation data and RC. This section introduces the rock fragmentation data 
of the YSP,subsequently, these data were used to evaluate the rock fragmentation models.

Geological conditions and TBM used in YSP. Engineering survey of the TBM3 LOT in YSP. YSP is 
located the Jilin Province, China. It is a water diversion project from the Fengman Reservoir to the centre of 
Jilin Province. The main channel of this project is 263.45 km. The maximum tunnel diameter is 7.9 m, and the 
tunnel bottom slope is approximately 1/4300. The average overburden depth of the tunnel is between 50 and 
100 m, with a maximum overburden depth of 260 m. From the Fengman reservoir to the Yinma River, three 
river valleys divide the 72.1 km line into three mountain sections of nearly equal length. Each mountain section 
was excavated by a separating  TBM39,40.

In this study, the data of TBM3 LOT is used. In the excavation of TBM3 LOT, four primary rock categories 
(Table 1) are revealed: granite (8766 m), limestone (4781 m), tuff sandstone (3448 m), and diorite (2096 m). 
According to the Chinese rock classification system (The National Standards Compilation Group of People’s 
Republic of China, 2014), the rocks of the TBM3 LOT are mainly categorised into classes II, III, IV, and V. The 
distributions of rock classes and their proportions are shown in Fig. 3. The field-measured physical and mechani-
cal indexes of the rock are listed and explained in Appendix 3.

Like the RMR  system41, the Chinese rock classification system classifies rocks according to their strength, 
joints, water conditions, and field stress conditions. In the Chinese rock classification system, a high rock class 

Table 1.  Type of surrounding rock along the TBM3 LOT in YSP.

Chainage No. (m) Length (m) Type of surrounding rock

50,180–58,946 8766 Granite

58,946–62,394 3448 Tuff sandstone

48,900–50,180, 62,394–63,210 2096 Diorite

66,350–71,131 4781 Limestone, mudstone, sandstone, etc

Figure 3.  Geological stratigraphic profile along the TBM3 LOT.
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value indicates poor rock quality. For example, rock class I refers to a rock mass with an RMR value of 100–80 
and denotes a complete and fresh rock,rock class V refers to a rock mass with an RMR value in the range of 
20–0 and denotes completely decomposed  rock41. Liu et al.1 discussed the differences between different rock 
classification systems.

The RCs of the YSP are plotted in Fig. 3 and the physical and mechanical properties of various rock classes 
in the YSP are listed in Table 2. Because of the many surrounding rocks along the tunnel belonging to class IV 
or class V rock masses, 18 collapse zones occurred during the TBM boring process.

Equipment used in TBM3 LOT. The TBM3 LOT was equipped with an open TBM manufactured by the China 
Railway Engineering Equipment Group Co., Ltd. (CREG). Figure 4 depicts a 3-dimensional schematic diagram 
of the equipment. Five subsystems comprised the machine: cutterhead, cutterhead driving system, thrust system, 
support system, and slagging system (which is used to transport the rock pieces in front of the cutterhead out of 
the tunnel through a belt conveyor and is not shown in Fig. 4). The main specification of the TBM used in YSP 
are listed in Table 3.

Table 2.  Physical and mechanical properties of different rock classes in YSP. k0 , f  , UCS , σt , f
′ , c′ , E50 , µ , and 

VP denote the coefficients of the rock resistance, firmness coefficient, uniaxial compressive strength, tensile 
strength, friction coefficient, cohesion, deformation modulus, Poisson’s ratio, and P-wave velocity of the rock 
mass, respectively. *1 class  IIa includes granite and diorite; *2 class  IIb includes limestone; *3 class  IIIa includes 
granite, diorite, and albite porphyry; *4 class  IIIb includes limestone, tuff, glutenite, and tuffaceous sandstone; 
*5 class IV includes limestone and tuff; *6 class V includes tuff and sandstone.

Rock class

k0 f UCS σt f
′

c
′

E50 µ VP

MPa/cm – MPa MPa – MPa GPa – 103 m/s
*1IIa [50, 80] [7, 8] [80, 130] [5, 8] [1.3, 1.4] [1.8, 2.0] [15, 20] [0.22, 0.25] > 4.5
*2IIb [40, 50] [6, 7] [60, 80] [4, 6] [1.2, 1.3] [1.7, 1.8] [10, 15] [0.20, 0.25] [4, 4.5]
*3IIIa [30, 50] [4, 7] [60, 80] [4, 5] [1.1, 1.2] [1.3, 1.5] [8, 10] [0.26, 0.28] [3, 4.5]
*4IIIb [20, 30] [3, 5] [40, 60] [2, 4] [0.8, 1.0] [0.7, 1.0] [5, 8] [0.26, 0.30] [3, 4]
*5IV [5, 10] [2, 3] [10, 30] [0.5, 1] [0.6, 0.7] [0.3, 0.5] [2, 4] 0.3 [1, 2.5]
*6V < 5 [0.5, 1] < 5 < 0.3 [0.3, 0.4] [0.05, 0.1] [0.2, 2] 0.35 < 1

Figure 4.  TBM equipment used in the TBM3 LOT.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10420  | https://doi.org/10.1038/s41598-023-37306-7

www.nature.com/scientificreports/

Rock fragmentation data in a tunnelling cycle. In the YSP, the boring process of the TBM was well 
monitored. In this study, only the monitored rock fragmentation data were used to establish the RFIs that reflect 
the RC. Let us first examine the key rock fragmentation data of the TBM.

Definition of a tunnelling cycle. Tunnelling cycle is defined as the standard step in the TBM boring process. The 
actual TBM boring process is performed step-by-step because of the limited stroke of the TBM thrust cylinder 
and the requirement for timely surrounding rock support.

The boring distance, that is, the TBM advance, may vary with the RC at each step (tunnelling cycle). If the 
rock is strong and the boring process is smooth, the advance can use the maximum stroke of the thrust cylinder, 
which is 1.8 m (Table 3). If the rock is weak and broken, it must be supported in time to prevent the surround-
ing rock from collapsing. In this case, the boring distance in a tunnelling cycle is suitably reduced. For example, 
in class V rock, the advance in one step is frequently reduced to around 0.5 m. Additionally, if an emergency 
occurs during the boring process, such as mechanical failure, the TBM operators will immediately stop the bor-
ing process, thereby resulting in a tunnelling cycle advance of less than 1.8 m.

An interval (up to 1 h) was set between a few continuous tunnelling cycles. During pause, the equipment steps 
back a short distance to allow the engineer to perform internal equipment checks. Moreover, if the condition of 
the rock is poor, a rock support system is used.

In most cases, the RC remains unchanged within a tunnelling cycle. Hence, the data from a tunnelling cycle 
can be analysed.

Key data in the TBM tunnelling process. Thrust and torque, provided by the thrust and cutterhead systems, 
respectively, are the major initiatives to penetrate and break the rock mass during the rock fragmentation pro-
cess. TBM rock fragmentation can be divided into two stages: first, the disc cutters penetrate the rock, which 
results in interior cracks in the rock mass and broken fragments at the tunnel face; second, the cracks between 
adjacent cutters extend and join each other, and finally, large chips are formed between the two  cutters21.

In the rock fragmentation mechanism, four independent variables are closely related to the TBM boring 
process (Table 4): (1) F, the total thrust; (2) T, cutterhead torque; (3) n, TBM cutterhead rotation speed; and (4) 
v, TBM penetration rate.

Typical data in a tunnelling cycle. Figure 5 illustrates the key data recorded by the TBM during a tunnelling 
cycle. For a tunnelling cycle, the rock fragmentation data could be divided into the following four  phases43,44.

Table 3.  Main specification of equipment in TBM3 LOT. a In a tunnelling cycle, the advance of the TBM 
cannot exceed the length of the thrust cylinder stroke, that is, 1800 mm. b In the normal boring process, the 
TBM cannot exceed the maximum thrust of the cutterhead, normal torque of the cutterhead, maximum 
cutterhead rotation speed, and maximum mucking capacity of the belt conveyor.

Parameters Value

Shield type Open type

Cutterhead diameters ɸ7930 mm

Number of cutters 8 pieces of 17 in., 48 pieces of 19 in

Nominal disc cutter spacing 89 mm

Thrust cylinder  strokea 1800 mm

Maximum thrust of  cutterheadb 23,260 kN

Normal torque of cutterhead 8410 kN m

Instantaneous torque of cutterhead 12,615 kN m

Maximum cutterhead rotation speed 7.6 (r/min)

Maximum mucking capacity of belt conveyor 755  m3/h

Table 4.  Four essential data in rock fragmentation of TBM. The rock fragmentation process of the TBM 
cutterhead can be adopted either by the penetration control mode or force control  mode42. The TBM employed 
in TBM3 LOT adopted the penetration control mode, wherein the rotation speed and penetration rate were 
adjusted in real time or set by the TBM operator. The torque and thrust were monitored in real time.

Name Symbol Unit Type Remarks

Cutterhead rotation speed (RPM) n r/min
Operating parameters

It is set by the TBM operator and will not change significantly during the boring process

Penetration rate (PR) v mm/min It is set by the TBM operator and fluctuates around the set value due to the vibration of the 
cutterhead

Cutterhead torque T kN m
Response parameters

It is calculated using the cutterhead system’s real-time motor power and RPM

Total thrust F kN It is calculated using the pressure and area of the thrust system’s pushing cylinder



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10420  | https://doi.org/10.1038/s41598-023-37306-7

www.nature.com/scientificreports/

 i. Free-running phase. Herein, the TBM cutterhead was not in contact with the tunnelling face; therefore, 
the T and F values were low.

 ii. Loading phase. Herein, the TBM cutterhead advanced and gradually contact the tunnelling face. The pen-
etration rate v was higher before contact, dropped to a lower value after contact, and gradually increased 
to the operator’s intended value. Simultaneously, the cutterhead torque and total thrust increased progres-
sively.

 iii. Stable boring phase. Herein, the penetration process was expected to be stabilised, and the fluctuations 
of v , T , F were expected to be small.

 iv. End the boring phase. At the end of the penetration process, all parameter values decreased and plateaued 
at low values.

Importance of the loading phase. According to earlier research, v is not the best parameter for rock fragmen-
tation. Penetration has been widely used by  researchers23,25,34,26 to characterise rock fragmentation behaviour. 
Penetration is the cutting depth of the disc cutters for each turn of the cutterhead and is defined as

As shown in Fig. 5, in the loading phase, n is constant and only v changes, p gradually increased, and the 
TBM rock breaking data has a relatively wide range of values. Therefore, the loading phase can be regarded as a 
continuous torsional shear test of TBM equipment under different penetration  values10.

For the same penetration p , the harder or more complete the rock, the greater the torque and thrust required 
in the rock fragmentation process. Consequently, the data of the loading phase depends on both p and RC. 
Essentially, the data of the loading phase contain knowledge of the RC. Therefore, the data of the loading phase 
are the most important and valuable for TBM penetration. It is feasible to extract the knowledge of RC through 
the data of the loading phase, and this method can overcome the significant challenge of no space and time to 
observe and detect RC in the rapid TBM boring process.

Rock fragmentation data of TBM3 LOT. Statistical analysis of tunnelling cycle characteristics. The bor-
ing process in the TBM3 LOT was well monitored. In the TBM3 LOT, the total length of the TBM construction 
section was 20,198 m, and the construction period was approximately 3.5 years. Li et al.45 and Jingetal.30,22 pro-
vided thorough descriptions of the data.

In this study, all the boring data from the 20,198 m tunnel excavated by TBM were recorded and analysed. 
First, 12,237 tunnelling cycles were discovered, and the advance and boring durations were calculated, as shown 
in Fig. 6.

The mean value of the advance, duration in a tunnelling cycle, and duration at the loading phase were 1.2 m, 
1390 s, and 150 s, respectively. With the difference in the TBM operators’ habits and surrounding RCs, the dura-
tion of the loading phase was approximately 1–5 min.

The penetrating advance with lower values was concentrated primarily in areas with poor surrounding rocks 
(rock class IV or class V). In such a case, the surrounding rock should be supported in time and the TBM advance 
is relatively limited.

Examples of tunnelling data. The boring process is smooth (or normal) in most tunnelling  cycles46, with dis-
tinct free running, loading, stable boring, and ending of boring phases. Records of numerous smooth boring 
processes, for example, are presented in Fig. 7a–d. Referring to Fig. 7, the data for various rock types and classes 
reflect the same characteristics as those in Fig. 5.

(1)p = v/n.

Figure 5.  Rock fragmentation data in a tunnelling cycle.
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Rock fragmentation model from a macro energy consumption perspective
Existing rock fragmentation models are based on mechanical analyses or empirical regression. In this section, 
the rock fragmentation relationship was analysed from the third perspective, that of macro energy consumption.

Overview. According to Appendix 1, if the rock properties are given, a general form for the forces acting on 
a single disc cutter can be written as

where c1 and c2 are two constants that depend on the rock properties and disc cutter characteristics in a single 
penetrating advance; and m1 and m2 are two parameters that depend on the rock-fragmentation process.

Rostami14 provided approximate connections between the cutterhead torque and cutting forces acting on the 
disc cutters as well as the total thrust, as:

where k is the serial number of disc cutters; N is the total number of disc cutters; f kn  and f kr  are the normal and 
cutting forces acting on the kth disc cutter, respectively; fn and fr  are the average normal and rolling forces 
acting on cutters, respectively; rk is the distance between the centre of the kth disc cutter and the centre of the 
cutterhead (Fig. 4); and c3 is a constant that varies depending on the arrangement of disc cutters and approxi-
mately equals 0.3 D.

(2.1)fr = c1p
m1 ,

(2.2)fn = c2p
m2 ,

(3.1)T ≈

∑N

k=1
rkf

k
r ≈ c3Nfr ,

(3.2)F =

∑N

k=1
f kn ≈ Nfn,

Figure 6.  Statistical results of advance and duration in 12,237 tunnelling cycles. (a) advance, (b) duration of 
tunnelling cycle, and (c) duration of loading phase.
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A formula for the cutterhead torque and total thrust can be found in Appendix 2 by combining Eqs. 2.1–3.2.

where a and b are constants that depend on the rock properties in one penetrating advance and the disc cutter 
characteristics, respectively. There are several interpretations of the m1 value in Eq. 4.1, including 1.5 in Fukui-
and  Okubo47, 2 in Roxborough and  Phillips23, roughly 2 in the CSM  model25, and 1 in  Sanio24. Similarly, the m2 
value in Eq. 4.2 varies depending on the model, for example, 1 in Fukuiand  Okubo47, 0.5 in  Sanio24, and 0.5–1.5 
in the CSM  model25.

Energy consumption relations. Total energy consumption relationship. The energy consumption of a 
cutterhead system during rock fragmentation is divided into two parts: the energy cost of rock fragmentation 
and the heat dissipation of friction. Because the friction torque caused by the friction between the shield and 
rock surface is small compared to the total torque in the rock fragmentation process, the friction heat generation 
between the shield and rock surface can be ignored. Therefore, the following relationship is valid.

where WT , Wbreakage , Wfriction represent the work done in 1 s by cutterhead torque, rock fragmentation, and fric-
tion heat generation, respectively; ω is the radian of the rotation for the cutterhead in 1 min; A is the area of the 

(4.1)T = apm1 ,

(4.2)F = bpm2 ,

(5.1)WT = Wbreakage +Wfriction,

(5.2)WT = T × ω = 2π ∗ T ∗ n/60

(5.3)Wbreakage = EvA/60,

(5.4)Wfriction =

∑N

k=1
dkω × ξ f kn = 2π/60nξ

∑N

k=1
dkf

k
n ≈ 2π/60nξc

3
Nfn = 2π/60nξc3F,

Figure 7.  Rock fragmentation data of normal tunnelling cycles in various rock. (a) chainage No. 71046 (rock 
class III, limestone), (b) chainage No. 62649 (rock class II, diorite), (c) chainage No. 50760 (rock class III, 
granite) and (d) chainage No. 60512 (rock class IV, tuff sandstone).
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tunnel face; E is the energy required for rock fragmentation per unit volume; ξ is the coefficient of rock friction; 
c3 is a constant that depends on the arrangement of disc cutters, as reported in Eq. 3.1; and fn is the average 
normal force, as shown in Eq. 3.2.

Rearranging Eqs. 5.1–5.4, the following relation can be obtained

where p is the penetration, that is, the forward distance of the cutterhead for each rotation, and equals v/n ; 
Ic equals EA/2π ; and If  equals ξc3 . If the rock properties and penetrating conditions in a tunnelling cycle are 
assumed to be similar, E and ξ are constants. For the same TBM, A, and c3 are costants. Hence, Ic and If  are 
constants within the same tunnelling cycle. Moreover, Ic is expected to depend on rock cohesion and can be 
referred to as the rock cohesion index, whereas If  is expected to be dependent on the coefficient of rock friction 
ξ and can be referred to as the rock friction index.

Using Eq. 6, one proposition of the energy-consumption relationship can be concluded as follows:
Proposition 1 (energy relationship): Cutterhead torque has a bilinear relationship with total thrust and 

penetration.

Torque penetration relation. Proposition 1 is flawed in that Ic and If  are negatively correlated. Such a negative 
correlation will cause Ic and If  to lose uniqueness, and in some cases, result in illogical values (e.g., negative val-
ues). A single-parameter relationship is more appealing for avoiding this drawback.

To accomplish this purpose, this study proposed the application of torque to rock fragmentation and friction 
heat generation. The relationships can be obtained as:

Equation 7.2 may be rewritten as:

A torque penetration index (TPI) can be established using Eq. 7.3 is as:

Another proposition of energy consumption relation may be concluded using Eq. 7.4, as follows.
Proposition 2 (TPI relationship): Cutterhead torque penetration index is a constant.
Throughout Eq. 7.4, two strong assumptions were made: (1) � is a constant in the TBM penetration process, 

and (2) E is a constant in a tunnelling cycle. These two assumptions are likely to be violated if the rock properties 
or boring conditions vary throughout a tunnelling cycle. When Eq. 7.4 is applied to the TBM construction data, 
the single unknown parameter, that is, TPI can be directly calculated using the known T and p. Consequently, 
only one unknown parameter relationship exists.

Referring to Eq. 3.1, T is linear to the average normal and cutting forces acting on the cutter fr  . Thus, another 
physical meaning of Eq. 7.4 that fr  is linear to the penetration p.

Energy consumption ratio. Torque and thrust energy are consumed during the penetration process. A new 
assumption may be introduced: the ratio of torque work to thrust work is a constant related to RC. This assump-
tion can be expressed as:

where WF is the work done by thrust and may be represented as,

Equations 8.2 and 7.2, can be substituted into Eq. 8.1 to produce the following relationship.

The proposition can be defined using Eq. 8.3 is as follows.
Proposition 3 (Work ratio relationship): The ratio of work done by cutterhead torque to the work done by 

total thrust is constant. According to Eq. 8.3, this is equivalent to the ratio of T to (F*p) is constant. Additionally, 
this proposition describes the relationship between cutterhead torque, total thrust, and penetration. Herein, 
supposing that Eq. 8.3 is adapted to the TBM construction data, WR is the only unknown parameter that can be 
calculated directly from the known data, including T, F, n, and v. Like proposition 2, Proposition 3 is a single-
unknown parameter relationship.

Preliminary verification of three proposed propositions. Verification by the data in YSP. The three 
propositions in “Overview” section  are examined using the data of a tunnelling cycle with Chainage No. 66912. 
The physical and mechanical indexes of the rock mass during this cycle are presented in Table 5. The rock was 

(6)T = Icp+ If F,

(7.1)Wfriction = �Wbreakage,

(7.2)WT = T × ω = T × n× 2π/60 = (1+ �)Wbreakage = (1+ �)EvA/60,

(7.3)T/p = (1+ �) ∗ EA/2π ,

(7.4)TPI = T/p = (1+ �) ∗
EA

2π
= const.

(8.1)WR = WT/WF = const,

(8.2)WF = (F ∗ v)/
(

6× 104
)

,

(8.3)WR = WT/WF = 2π × 103(T ∗ n)/(F ∗ v) = const.
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granite, and the surrounding rock class was III. Figure 8a–d show the performance of the three propositions. 
The results are as follows.

1. Fig. 8a shows the fitting effect of (T-b*F) and p in this tunnelling cycle. The goodness of fit (R2) was 0.93. 
The Pearson correlation coefficient (r) was 0.97. The root mean square error (RMSE) was 182.32, which is 
small compared with the Y values of the data points, and the 95% confidence ellipse of the fitting line covers 
most of the measured data points. These results suggest that the fitting line can well reflect the relationship 
between (T-b*F) and p, with an intercept of − 46.3, and the standard error was 38.02, that is, the intercept 
was in the range (− 84.3, 8.26), which is slightly negligible compared to the Y values. Figure 8b shows the 3D 
relationship between T, p, and F. Thus, Fig. 8a,b prove that Proposition 1 is true for Chainage No. 66912.

2. As shown in Fig. 8c, T was positively correlated with p. The fitting results of T and p show that the r was 0.97, 
which implies that T is strongly correlated with p. The R2 was 0.93, and the mean absolute percentage error 
(MAPE) was 8.1%, which implies that the current linear fit formula was reasonable. Moreover, the intercept 
was in the range (− 76.84, 0.72), which is negligible compared to the Y value. Therefore, within the current 
tunnelling cycle the relationship between T and p conforms to the description of Proposition 2.

3. As shown in Fig. 8d, the work done by torque (WT) and the work done by torque (WF) obey a linear relation-
ship relatively well. Furthermore, according to the fitting results, the intercept takes a range of (52.98, 87.64), 
which is negligible relative to the Y value. Therefore, we can prove that in this tunnelling cycle, WT and WF 
conform to a linear relationship and pass through the origin.

Table 5.  Physical and mechanical properties of rock masses at Chainage No. 66912.

Natural density Elastic modulus Poisson’s ratio
Compressive 
strength Tensile strength

Shear strength

Quartz 
contentCohesion

Inter nal friction 
angle

2.75 g/cm3 50.8 GPa 0.24 125.75 MPa 5.29 MPa 4.69 MPa 55.48 15.0%

Figure 8.  Performance of the three propositions. (a) bilinear relation between T and (F, p), (b) T, F, p relation 
in 3D space, (c) Linear relation between T and p, and (d) Linear relation between WT and WF.
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It must be acknowledged that validating a single tunnelling cycle makes little sense. Only relationships devel-
oped in most tunnelling cycles have meaning and are valuable. If one relationship holds in most tunnelling cycles, 
it can be regarded as universal and may be an objective law.

Verification by the data reported in Gong et al.48. Although the proposed models performed well in the TBM3 
LOT of the YSP, they should be investigated in other projects. The rock in the YSP is mostly in classes II to IV, 
and the tunnel overburden is primarily in 50–100 m and no more than 260 m. The performance of these models 
may be altered if RCs vary in other projects.

Gong et al.48 reported detailed boring data of a TBM used in a deep tunnel sewerage system (DTSS) project 
in Singapore. Unfortunately, only data from one tunnelling cycle was available in this study. The data were used 
to verify the proposed model.

The total number of disc cutters in DTSS was 33. The average torque and thrust of the disc cutter, that is, 
the values of T/N and F/N , were recorded in detail. These data were used to verify the performance of the two 
propositions, and the results are shown in Fig. 9. The results demonstrate the following.

 i. As shown in Fig. 9a, the bilinear relationship between T, F, and p has a goodness of fit of 0.94. The 3D 
effect is shown in Fig. 9b. They verified that Proposition 1 is applicable.

 ii. As shown in Fig. 9c, a good linear correlation between the torque per cutter and penetration was found, 
which verifies that Proposition 2 (the TPI concept) is applicable.

 iii. As shown in Fig. 9d, the torque per cutter has a good linear relationship with the product of the thrust 
per cutter and penetration. This relationship is equivalent to the expression in Proposition 3.

Model adaptation test based on TBM construction data in YSP
Data from 12,237 tunnelling cycles in the YSP were used to assess the applicability (or validity) of existing models 
and the three newly proposed energy consumption relations. Furthermore, better models will be developed and 
used to establish a TBM RFI system via a performance comparison.

Figure 9.  Performance of the proposed model in DTSS project reported by Gong et al.48. (a) bilinear regression 
results (Proposition 1), (b) T-F-p relation in 3D space, (c) T-p relation (Proposition 2), and (d) T-F*p relation 
(Proposition 3).
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Metrics of model performance. To compare the performances of the various models, first, model per-
formance metrics were established. The following two variables were used to assess the model’s performance in 
this study.

 i. Goodness of fit, R2. A model is preferable if it has a higher R2 value when fitting data. In this study, the 
data for 12,237 tunnelling cycles were fitted by the candidate models, and 12,237 R2 values were statisti-
cally analysed. P1, the proportion of fitting goodness R2 > 0.6, was used to compare the performance of 
the various models.

 ii. Physical meaning of fitting parameters. Typically, the fitting parameters for a rock fragmentation model 
are expected to have distinct physical meaning and reflect the rock state. Thus, the fitting parameter on a 
physical basis should be positive. From this point, P2 , the positive rate, indicates rationality. Two metrics 
were utilised to evaluate a model’s performance with the above consideration, as listed in Table 6.

Model adaptation test results. Relation between cutterhead torque and penetration. First, the relation-
ship between cutterhead torque and penetration was investigated. Equation 4.1 fits all the data from 12,237 tun-
nelling cycles. For each tunnelling cycle, the m1 value could be obtained by regression. Subsequently, m1 values 
from 12,237 cycles were statistically analysed, and the results are shown in Fig. 10a. It can be observed that m1 

Table 6.  Indicators used to evaluate the performance of a model. NS represents the total number of samples 
(12,237 in this study), “Count (if true)” is the counting function, x is the fitting parameter, i is the number of 
samples, xi is the x value for the i sample.

Symbol Definition Formula

P1 Percentage of R2 > 0.6 P1 = Count (R2 > 0.6)/NS①

P2 Positive rate P2 = Count ( xi > 0)/NS①

Figure 10.  Performance of torque-penetration relation (Eq. 4.1) in TBM3 LOT. (a) count of fitting parameter, 
m1, and (b) count of fitting parameter,  R2.
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has a mean of 0.98 and standard deviation of 0.47. As shown in Fig. 10b, the goodness of fit data for these 12,237 
tunnelling cycles was also statistically assessed. Fitting goodness R2 values greater than 0.6 are found in 74.1% of 
tunnelling cycles. That is, this formula is correct for the majority tunnelling cycles in the TBM3 LOT.

Several possible reasons can contribute to an R2 value below 0.6 in a tunnelling cycle, including the data 
dispersion caused by changing rock properties in the same penetrating advance (interlayers, faults, water, and 
other factors). As the disc cutter intrudes into the rock, the torque progressively increases with the increase in 
penetration. In some tunnelling cycles the m1 values are smaller than 0, this goes against the rock fragmentation 
mechanism. These data were considered abnormal and should be eliminated. After removing these data, the 
mean m1 was 1.01, standard deviation was 0.41, and m1 values followed a normal distribution. This mean value 
of m1 is very close to 1, which is substantially less than 1.5 recommended  by47 (Appendix 2).

Relation between total thrust and penetration. Equation 4.2 is used to evaluate the relationship between the 
total thrust and penetration, as in the case of the torque. The results are shown in Fig. 11. R2 values greater than 
0.6 are seen in approximately 64.6% of the tunnelling cycles. Essentially, the regularity of the F-p relationship in 
this project is weaker than that of the T-p relationship. After removing the abnormal data (m2 values less than 0), 
the mean m2 was 0.26, standard deviation was 0.12, and m2 values followed a normal distribution. The empirical 
value of m2 in the NTNU model (Fig. 3.2  of27 varied with RC and was (1/1.13, 1/6.26). These values were consist-
ent with the data shown in Fig. 11a.

The mean value of m2 obtained in this study seems to be smaller than that obtained in previous models of 
F-p relation, such as 1 in Fukui and  Okubo47, 0.5 in  Sanio24, and approximately 0.5–1.5 in the CSM  model25. One 
possible reason is that the required total thrust for critical penetration is  different49,50,51. The critical penetration 
is defined as the rock mass would not break unless the loading was greater than this value and related to the 
ultimate strength of the rock mass.

The power relation between F and p adapted to 64.6% of tunnelling cycles. Essentially, this relationship can 
be utilised as a useful reference for the TBM boring process. However, it lacks a physical basis and power var-
ies among the tunnelling cycles. Further studies should be conducted to identify the physical meaning of the 
parameters involved in this relationship.

Based on the results in Fig. 11, the traditional definition of FPI, which denotes the ratio of the total thrust to 
penetration, is not constant during a tunnelling cycle. Because the power relationship is valid in this study, we 
recommend adopting a new definition of FPI:

Figure 11.  Performance of thrust-penetration relation (Eq. 4.2) in TBM3 LOT. (a) count of fitting parameter, 
m2, and (b) count of fitting parameter,  R2.
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where the statistical characteristics of m2 vary with the selected tunnelling cycles. Using the goodness of fit (R2) 
as a selection criterion, the statistical characteristics of m2 were resolved and are listed in Table 7. Based on the 
results in Table 7 and a theoretical m2 value of 0.5 in  Sanio24, the m2 value is recommended as 0.3.

Model adaptation test results of existing models. The average tunnelling boring cycle progress in TBM3 LOT 
is 1.1 m. Assuming the rock mass properties do not vary much, the model formulas in Appendixs 1 and 2 may 
be simplified to the form in Table 8, and the data from 12,237 tunnelling boring cycles are utilized to fit these 
models. Table 8 lists the statistical results of R2 for these models.

Referring to Table 8, the following two models perform well in terms of the relationship between cutterhead 
torque and penetration.

 i. Theoretical torque-penetration relation of Ozdemir’s  model25. This formula employs two fitting parameters 
that are thought to be related to the RC. Although the model is built on a V-type cutter disc, it performs 
well in the TBM3 LOT with constant-cross-section disc cutters. In all tunnelling cycles, the fraction of 
R2 > 0.6 is 81.9%.

 ii. theoretical torque-penetration power relation of Fukui and Okubo  model47. It involves only one fitting 
parameter, and its proportion of R2 > 0.6 is 66.0%.

(9)FPI =
F

pm2
,

Table 7.  Statistical characteristics of  m2 in F-p relation. a R2 is the goodness-of-fit of Eq. 4.2.

Selecting  criteriona Count of tunnelling cycles

Statistical 
characteristics 
of m2

Mean value SD

R2 > 0.8 3334 0.32 0.09

R2 > 0.6 7875 0.30 0.10

All 12,181 0.26 0.12

Table 8.  Model universality test of existing models. a R2 is the goodness of fit for a model in a tunnelling 
cycle; the percentage of R2 in an interval is the ratio of the number of tunnelling cycles with R2 satisfying the 
condition to the total number of tunnelling cycles (12,237 in TBM3 LOT). b The references include Hassanpour 
et al.31,36, Hamidi et al.32, and Farrokh et al.33.

Model Percentage for R2 (%)a

Ref* Formula [1.0, 0.9) [0.9, 0.8) [0.8, 0.7) [0.7, 0.6)  ≤ 0.6

Roxborough et al.23

F = a
√

(

bp3 − p4
) 0 0.1 0.3 0.7 98.9

T = ap2 8.4 21.3 15.9 10.0 44.4

T/F = a
√

(

p/
(

D − p
)) 2.3 17.0 18.2 12.6 49.9

Ozdemir et al.25
F = ap1.5 + bp0.5 11.8 21.8 17.3 12.8 36.3

T = ap2 − bp3 36.2 24.0 13.5 8.2 18.1

Sanio et al.24
F = ap0.5 3.1 4.7 9.5 10 72.7

T/F = ap0.5 2.0 16.5 18.5 12.7 50.3

Rostami et al.52
F = a

√

((

D − p
)

/D
) 0 0 0 0 100

T = a
√

(

p/D
) 1.4 16.5 24.3 19.0 38.8

NTNU27
F = apm2 11.8 23.1 16.9 11.6 36.6

T/F = ap0.5 2.0 16.5 18.5 12.7 50.3

Fukui et al.47

F = ap 0.1 1.0 2.6 4.4 91.9

T = ap1.5 23.7 22.7 12.2 7.4 34.0

T/F = ap0.5 2.0 16.5 18.5 12.7 50.3

Gong et al.21 F = ap0.25 1.7 16.0 19.7 16.3 46.3

Othersb F = ap 0.1 1.0 2.6 4.4 91.6

Farrokh et al.33 F = alnp 0.9 4.1 6.1 7.2 81.7

Jing et al.30 F = ap+ b 5.7 22.1 18.6 12.9 40.7

Goodarzi et al.53 F = alnp+ b 10.3 22.7 17.6 12.5 36.9
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The following four models perform well in the thrust-penetration relationship.

 (i) Again, Ozdemir’s25 theoretical thrust-penetration relation shows good performance, with a proportion 
of R2 > 0.6 of over 63.0%. It contains two parameters for the fitting.

 (ii) The NTNU model’s empirical thrust-penetration power relationship (2000). It features two fitting param-
eters, with an R2 > 0.6 proportion of more than 63.0%.

 (iii) Logarithmic linear thrust-penetration relation of Goodarzi et al.53. The proportion of R2 > 0.6 is greater 
than 63.0%.

 (iv) The linear thrust-penetration relation in Jing et al. (2009). The proportion of R2 > 0.6 is also close to 
60.0%.

It should be noted that the above test does not consider the application ranges of the various models.  Rostami52 
compared the classical CSM model (an individual cutter model proposed  by25 and the NTNU model (an integral 
representative model) and applied them to three tunnel projects. Their results show that coordinated efforts are 
required when these models are applied to various types of rocks and TBM. Such coordinated efforts were dif-
ficult and were not included in this study. Hence, whether the above conclusions are effective in other projects 
remains to be studied.

Model adaptation test results of three newly proposed energy consumption relations. The data of TBM3 LOT were 
utilised to test the universality of the three newly proposed propositions. Table 9 lists the results of the statisti-
cal analysis. The results in Table 9 show that the three newly proposed propositions all have R2 > 0.6 over 70.0%. 
Particularly in Proposition 1, the proportion of R2 > 0.6 is close to 90.0% in all tunnelling cycles.

Three models describe the relationships between the torque, thrust, and penetration, which are proposed in 
Proposition 1 (Eq. 6) (a bilinear relation between torque, thrust, and penetration), the formula  from47 (listed 
in Appendix 2, as the ratio of torque to thrust is proportional to the square root of penetration), and the newly 
proposed Proposition 3 (Eq. 8.3), respectively. In this section, the three models are verified using data from 
12,237 tunnelling cycles.

The results are shown in Fig. 12. For Proposition 1 (Eq. 6) and Proposition 3 (Eq. 8.3), the percentage of 
advances with R2 values larger than 0.6 is all over 80%, which is significantly higher than the formula’s 49.7%47. 
This demonstrates that Proposition 1 (Eq. 6) and Proposition 3 (Eq. 8.3) perform well, and the empirical model 
proposed by Fukui and  Okubo47 has a relatively weak application in this project.

Comparison of the performance of various models. The metrics used to evaluate the performance of 
the various models, namely P1 and P2 are listed in Table 6. Table 10 lists the results for the models with higher 
R2 values (Tables 8 and 9) and compares them in Fig. 13. The findings revealed the following.

 (i) Four candidate models are used to characterise the torque-penetration relationship, including Proposi-
tion 2 (Eq. 7.4),  Fukui47–T,  Ozdemir25–T, and Proposition 1 (Eq. 6). Proposition 2, and  Fukui47–T are 
two single-parameter models with higher P2 values. The double-parameter models,  Ozdemir25–T and 
Proposition 1 had higher P1 values. Because more parameters are employed, the two double-parameter 
models fit better and have a higher P1 value. However, their fitting stability was worse than those of the 
two single-parameter models. Consequently, considering stability, fitting performance, and simplicity, 
the torque-penetration relationship is advocated in Proposition 2.

 (ii) Five candidate models were used to characterise the thrust-penetration relation. The best single-param-
eter model of the thrust-penetration relation among them still does not have a higher value of P1 . 
Essentially, to describe the thrust–penetration relationship, a double-parameter model should be utilised. 
However, the performances of the four double-parameter models were quite similar. The  Jing30–F rela-
tion is recommended to characterise the thrust-penetration relation by comparing the fitting stability 
and simplicity.

 (iii) Two candidate models were considered to describe the torque-thrust-penetration relationship. One 
example is Proposition 3 (Eq. 8.3), with large P1 and P2 values. Proposition 1 (Eq. 6) is the other and 
has a lower P2 value. Consequently, Proposition 3 (Eq. 8.3) is recommended to characterise the torque-
thrust-penetration relationship.

Table 9.  Model Universality Test of three newly proposed Energy consumption relations. a The definition and 
calculation method are the same as those used in Table 7. b c0 = 6283 (as shown in Eq. 8.3).

Proposition Percentage for R2 (%)a

No Formula [1.0, 0.9) [0.9, 0.8) [0.8, 0.7) [0.7, 0.6)  ≤ 0.6

1 T = Icp+ If F 22.2 36.1 19.1 10.3 12.3

2 TPI = T/p = const 21.6 32.7 16.5 9 20.2

3b WR = c0Tn/Fv = const 27.4 33.3 13 6.8 19.8
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It should be noted that the comparison in Table 10 shared the same limitation in “Model adaptation test results 
of existing models” section: no coordinated efforts to various types of rocks and TBM are performed for existing 
models, and the findings valid in this project are still to be verified in other projects.

A new TBM rock fragmentation index system. Based on the above results, three models are recom-
mended for characterising the torque-penetration, thrust-penetration, and torque-thrust-penetration relation-
ships. The parameters involved in these three models can be regarded as the RFIs. These parameters are sum-
marised in Table 11, assigned a name, and their physical meaning is described.

Figure 12.  Performance of torque-thrust-penetration relation in TBM3 LOT. (a) Proposition 1 (Eq. 6), (b) 
Proposition 3 (Eq. 8.3), and (c) Fukui and Okubo’s formula.

Table 10.  Evaluation indexes of different models. Some models have two relationships, one for torque and 
the other for thrust. Hence, “–T” denotes the torque relationship in this table, while “–F” denotes the thrust 
relationship. For example,  Fukui47–T refers to the torque relationship in  Fukui47 model (see Table 7), whereas 
 Ozdemir25–F refers to the thrust relationship.

Ref Formula

Percentage of  R2 > 0.6 Fitting parameter a Fitting parameter b

P1(%) P2(%) P2(%)

Torque-penetration model

Equation 7.4 T = ap 72.4 100 –

Fukui47–T T = ap1.5 65.9 100 –

Ozdemir25–T T = ap2 − bp3 81.9 99.9 1.1

Thrust-penetration model

Equation 9 F = ap0.3 51.4 100

Ozdemir25–F F = ap1.5 + bp0.5 63.6 10.4 100

NTNU27–F F = apb 64.6 100 98.2

Goodarzi53–F F = alnp+ b 63.0 96.2 95.9

Jing30–F F = ap+ b 59.4 94.1 99.8

Torque-Thrust-penetration model
Equation 6 T = ap+ bF 87.7 96.4 74.1

Equation 8.3 Tn = aFv 80.4 100 –
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Benefits of the newly proposed TBM rock fragmentation index system
In “Benefits of the newly proposed TBM rock fragmentation index system” section, a new TBM RFI system 
is presented. This can be calculated easily using real-time TBM construction data. There is a link between the 
TBM construction data and RCs. Such a TBM RFI system can be used to overcome the challenge of real-time 
surrounding rock perception in the narrow-closed workspace of TBM.

This section presents a preliminary study of the relationship between TBM RFIs and rock properties. Owing 
to the limited space, these preliminary studies did not provide a careful explanation and rigorous demonstration 
process; instead, they were only used to demonstrate that these indexes can reflect RC to a great extent.

Relation between TBM rock fragmentation indexes and rock properties. Relation between TBM 
rock fragmentation indexes and collapse probability. Some collapsed zones were recorded in TBM3 LOT. The 
rocks in these zones are fractured and unstable. Chen et al.54 provided a comprehensive introduction to the col-
lapse zone of YSP. The TBM RFI was statistically analysed both within and outside of these collapse zones, and 
the results are presented in Fig. 14. TPI, WR, and AF exhibited distinct characteristics within and outside the 
collapse zones.

Relation between TBM rock fragmentation indexes and rock class. The rock class was roughly identified along 
the entire line of the TBM3 LOT. The TBM RFIs for different rock classes were investigated. A TBM RFI is better 
if its statistical characteristics vary among rock classes. The TBM RFI is superior if it has a lower coefficient of 
variation within the same rock class.

Consider TPI to demonstrate the method of assessing the link between a fitting parameter and the rock class. 
Figure 15 shows the relationship between TPI and rock class as an example. The least-squares method, as shown 
in Fig. 15a, can be used to generate a best-fit curve for the relationship between torque T and penetration p for 

Figure 13.  Comparison of statistical results of the various model. (a) Single parameter model, and (b) double 
parameter model.

Table 11.  A new TBM rock fragmentation index system. a c0 equals to 6283 (as shown in Eq. 8.3).

Name Formula Ref Description

TPI TPI = T/p Proposition 2 (Eq. 7.4) Torque penetration index

WR WR = c0Tn/Fv
a Proposition 3 (Eq. 8.3) Work ratio

AF
F = AF ∗ p+ BF Jing et al.30 (Appendix 2)

Thrust to accelerate rock fragmentation

BF Critical thrust for rock fragmentation
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each tunnelling cycle. The T-p best-fitted curves of various tunnelling cycles composed of rock classes II, III, and 
IV are presented in Fig. 15b–d, where each line represents a best-fitted T-p relation for a tunnelling cycle. In a 
tunnelling cycle with a higher rock class, TPI or the slope of the T-p relationship is shown to be lower.

However, the TPI values overlap regions for the adjacent rock classes. There are two possible explanations: 
(i) the rock classification is just crude human judgment, and (ii) TPI has a different physical meaning than the 
rock class. For example, the uniaxial compressive strength of the adjacent rock classes has overlapping values. 
TPI was the same as the uniaxial compressive strength of the rock. Although it is not the only influencing factor, 
it represents the quality of the rock. More studies are necessary when the new index system is applied to rock 
categorisation.

By combining all the data of (rock class, TPI), as shown in Fig. 16a, a best-fit curve for their relationship and 
95.0% confidence ranges can be obtained. As shown in Fig. 16a, the TPI values decreased with an increase in rock 
class. Essentially, the rock is more easily fractured (it has a higher rock class) and its TPI values are low. TPI can 
reflect the rock fracture condition to a certain extent. The results (Fig. 16b–c) for WR and AF decreased as the 
rock class increased. Essentially, higher-quality rock masses had higher TPI, WR, and AF values. The relationship 
between BF and rock classes was not obvious (Fig. 16d).

A summary of TBM rock fragmentation indexes. Based on the results of this study, a new TBM RFI 
system can be proposed as follows

The entire TBM RFI system can reflect the RCs. Each index can be used as an observation angle for RCs. If 
these indexes vary, then the RCs are considered to change.

TPI and WR are two indexes that come from a single-parameter model and have a very low fitting error. 
Therefore, these indexes are more stable and applicable.

AF and BF originate from the double-parameter model. Their values have certain negative correlations, which 
weaken the numerical stability of the fitting procedure. If their values are negative, extremely low, or high, these 
indexes will lose their physical meaning and will be unable to reflect the condition of the rock. Throughout the 
fitting process, caution should be taken to prevent negative, extremely low, or excessively high values.

TPI ,WR,AF,BF.

Figure 14.  Statistical results of TBM rock fragmentation indexes within and outside collapse zone. (a) TPI, (b) 
WR, (c) AF, and (d) BF.
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TPI, WR, AF, and BF show obvious variations under different RCs (including different rock classes, within 
or outside the collapse zone, and rock with various shear strengths). These four indexes represent the three rela-
tionships between T-p, F-p, and T-F-p. However, there are some differences between them and the properties 
of the surrounding rock. WR had the highest association, followed by TPI and AF, whereas BF had the weakest 
association. The index system is composed of four components, and their combination may better reflect the 
surrounding rock qualities than their usage alone.

Benefit of the new TBM rock fragmentation indexes. These indexes can be determined immediately 
during the TBM construction process, without the requirement for additional field or laboratory tests. Thus, the 
TBM can automatically generate such indexes. These indexes can reflect RCs. Thus, such real-time TBM RFIs 
can perceive the surrounding rock mass and assist in overcoming the challenge of surrounding rock perception.

RCs can be judged in real time using these TBM RFIs. Furthermore, the control parameter, surrounding 
rock support measures, and advanced geological detection means can be selected with a solid base. Such TBM 
RFIs can help boost TBM construction from an empirical and vague stage to a more precise and scientific stage.

It is well known that feature engineering is significantly important for machine learning (or deep learning). 
We believe that these indexes are suitable candidates for the input parameters in machine learning of TBM  data55, 
the prediction of penetration  rate56, or rock  classification32,31,37.

Conclusions
To overcome the challenge that the perception of RCs in TBM lacks time, space, and methodology, an RFI system 
was proposed that can be extracted from the real-time monitored rock fragmentation data of the TBM and reflect 
the RC at the tunnelling face. The major findings of this study are as follows.

This study reviewed existing rock fragmentation models comprehensively and proposed three new rock 
fragmentation models. Furthermore, the TBM boring data recorded in the YSP were used to assess these models 
properly. These theoretical and data analyses led to the following conclusions.

(1) A comprehensive review and data validation of the relationship between rock fragmentation forces and 
penetration were conducted in this study. The results demonstrate that, (i) the optimal T-p model is TPI, 
which is the ratio of torque to penetration, and is a constant in a tunnelling cycle. This relationship is valid 
for 72.4% of the tunnelling cycles in the YSP. (ii) The optimal F-p model is one in which thrust is linear to 
penetration and has a large intercept. BF denotes the intercept and AF is the slope. This relation is valid for 
59.4% of the tunnelling cycles in the YSP. (iii) The optimal T-F-p model is WR, which is the ratio between 

Figure 15.  Best-fitted T-p relation in various tunnelling cycles. (a) Three representative tunnelling cycles, (b) 
Cycles with class II rocks, (c) Cycles with rock class III, and (d) Cycles with rock class IV.
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the work done by the torque and the work done by the thrust, and is a constant in a tunnelling cycle. This 
relation is valid for 80.4% of the tunnelling cycles in the YSP.

(2) The parameters involved in these force-penetration relations can reflect the field RCs and can be used as 
TBM RFIs. A recommended TBM RFI system is proposed, including TPI, AF, BF, and WR. Higher TPI, 
AF, and WR values imply superior rock quality and lower risk of collapse.

With the newly proposed RFI system, the challenge of perception RCs in real time during TBM construction 
can be significantly alleviated. This system has great potential for categorising rock classes, estimating the risk 
of surrounding rock collapse, and selecting control parameters or support measures during TBM construction.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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