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Fusion of visible and thermal 
images improves automated 
detection and classification 
of animals for drone surveys
B. Santhana Krishnan 1, Landon R. Jones 2, Jared A. Elmore 2,3, Sathishkumar Samiappan 1, 
Kristine O. Evans 2, Morgan B. Pfeiffer 4, Bradley F. Blackwell 4 & Raymond B. Iglay 2*

Visible and thermal images acquired from drones (unoccupied aircraft systems) have substantially 
improved animal monitoring. Combining complementary information from both image types 
provides a powerful approach for automating detection and classification of multiple animal species 
to augment drone surveys. We compared eight image fusion methods using thermal and visible 
drone images combined with two supervised deep learning models, to evaluate the detection and 
classification of white-tailed deer (Odocoileus virginianus), domestic cow (Bos taurus), and domestic 
horse (Equus caballus). We classified visible and thermal images separately and compared them 
with the results of image fusion. Fused images provided minimal improvement for cows and horses 
compared to visible images alone, likely because the size, shape, and color of these species made 
them conspicuous against the background. For white-tailed deer, which were typically cryptic against 
their backgrounds and often in shadows in visible images, the added information from thermal 
images improved detection and classification in fusion methods from 15 to 85%. Our results suggest 
that image fusion is ideal for surveying animals inconspicuous from their backgrounds, and our 
approach uses few image pairs to train compared to typical machine-learning methods. We discuss 
computational and field considerations to improve drone surveys using our fusion approach.

Drones (small unoccupied aircraft systems or UAS) are increasingly used for monitoring animals, offering 
multiple advantages, including time or cost savings, increased safety over occupied aircraft, and more accurate 
counts than traditional ground-based  methods1–4. Drones can also quickly collect large amounts of data at fine 
spatial, spectral, and temporal resolutions. Visible (e.g., red, 650 nm; green, 550 nm; blue, 450 nm) or thermal 
(7.5–14 µm) cameras, yield image or video data that can be used to detect and classify animals either manually 
or autonomously by  computers5–8. Human detection (i.e., finding an animal) or classification (i.e., identifying an 
animal) can be tedious, costly, and error-prone leading to lower detection rates and misclassification  errors5,9,10. 
Some biologists have used crowd sourcing or citizen science efforts to manually detect and classify animals in 
 images11,12, while others are turning to automated detection and classification through machine learning, specifi-
cally deep learning methods like convolutional neural networks (CNN) and computer  vision6,13–15.

Automated detection and classification have been found to be more accurate and time efficient than human 
detection and classification in aerial  images5,7,9, including citizen science  approaches10,14,16. Recent work has 
focused on deep learning methods such as CNN to detect and classify animals in  images13–16. However, detection 
and classification can often be difficult, not only because of the absence of prominent distinguishing  features13, 
but also uncontrollable factors such as obstruction from overhead vegetation or neighboring  animals6,17, confu-
sion between animals and associated ghost images created from the mosaicking  process14, or a lack of contrast 
between animals of interest and their background (e.g., cryptic in visible imagery or homogenous temperature 
in thermal imagery; reviewed  in6).

High success or accuracy of machine learning in computer vision stems from the availability of substantial 
of  labelledimages18. Image labelling or annotation is the process of marking areas in an image (usually with 
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a rectangular box, referred to as a ‘bounding box’) with class labels such as animal species. However, large, 
open access databases of annotated animal images from aerial perspectives are lacking to train computer vision 
algorithms to detect and classify animals in drone images. To our knowledge, primary available databases are 
those associated with single studies, which often limit the diversity of species, environments, animal poses, and 
background and color variability surrounding animals  captured14. In this low-sample learning scenario, typi-
cal image augmentation techniques (e.g., rotation, scaling, etc.) often do not account for texture variability in 
the object and  background19. Meanwhile, computer vision algorithms are tasked with evaluating entire drone 
images, not only the cropped regions, which only contain one animal each. Further, unlike camera trap  images20, 
the background is constantly changing among drone images, which makes learning the animal features among 
various backgrounds critical for efficient performance of animal detection and classification in drone images, 
whether manually or with computer vision.

Combining information from multiple sensors (e.g., visible and thermal images) offers another approach to 
improve the distinguishability of an animal from the  background21. Image fusion is the process of combining cor-
responding image information on the scale of each pixel or group or pixels from multiple image modalities (e.g., 
visible and thermal images) to generate a single image containing more information than either source image 
 alone22. Processing the ‘fused’ image instead of the individual visible or thermal images has shown improved per-
formance among multiple computer vision problems including automated detection and classification in terres-
trial  imagery21,23. Unlike deep learning engines, which use only visible imagery to achieve similar  results24, large 
quantities of correctly annotated data and ample training resources are often not required for fusion methods.

Fusion of thermal and visible images has been used for a variety of applications, including autonomous driv-
ing (especially in low light situations), surveillance, defect identification, electronic testing, medical imaging, 
and remote  sensing25. Fortuitously, many newer drone models and associated imaging sensors are equipped 
with dual thermal/visible cameras capable of collecting both image types simultaneously (e.g., DJI Zenmuse 
XT2). To date, however, image fusion has only been tested in four studies involving animals, including one study 
identifying animals posing hazards to autonomously driven  vehicles26, and another to identify livestock from 
unoccupied ground  vehicle27. Two additional studies pioneered fusion approaches to identify animal species 
from drone images based on combining visible and thermal data to detect captive white-tailed deer (Odocoileus 
virginianus17) and a few individuals of four species in zoo  enclosures28. However, large advances in both com-
mercially available drone sensors and computer vision approaches since these studies provide opportunities to 
improve on their methodology and results.

Fusion of visible and thermal information in drone imagery to automatically detect and classify animals is 
a promising yet relatively untested avenue for improving the efficiency of drone surveys, particularly when few 
images are available for training machine learning  algorithms6. We evaluated the performance of image fusion 
of thermal and visible information in drone imagery for three animal species: white-tailed deer, domestic cow 
(Bos taurus), and domestic horse (Equus caballus). We compared performance metrics of eight image fusion 
methods in two deep learning classification networks to automatic classification of test species using visible and 
thermal images alone. Finally, we discuss computational and field considerations in using our fusion approach 
to maximize the information gained from drone surveys that could be scaled up across a range of animal spe-
cies and conditions.

Methods
Study area. We collected study images among research facilities located at Mississippi State University, USA 
in 2021 and 2022 (Supplementary Fig. S1 online). We used deer enclosures on the Forest and Wildlife Research 
Center (33.439 N, −88.791 W) and paddocks on the H. H. Leveck Animal Research Center (33.436 N, −88.797 
W), which is part of the Mississippi Agricultural and Forestry Experiment Station.

Drone data collection. We captured images of white-tailed deer, domestic cattle, and domestic horse 
(hereafter deer, cow, and horse, respectively), during diurnal hours using a DJI Zenmuse XT2 (8-mm visible and 
25-mm thermal lenses) mounted on a DJI Matrice 200 V2 quadcopter (SZ DJI Technology Co., Ltd., Shenzen, 
China). Flights were conducted by a Part 107 certified remote pilot (FAA 2016) through the DJI Pilot app on a 
Samsung T500 tablet (Samsung Electronics America, Inc., Ridgefield Park, New Jersey, USA) with the sensor 
in nadir position (i.e., 90° or straight down). We used either autonomous flights with a lawnmower pattern 
with > 50% overlap, or conducted manual flights, at 30–121 m altitude above ground level (6.9–28.4 mm Ground 
Sampling Distance) to simultaneously collect visible and thermal images during missions associated with other 
UAS efforts. Collected images were stored in the open-source Aerial Wildlife Image Repository-AWIR (https:// 
proje ctpor tal. gri. mssta te. edu/ awir/). Methods were approved by NWRC IACUC Number QA-3267 and MSU 
IACUC (i.e., methods reviewed but no protocol necessary), and we followed all relevant guidelines and regula-
tions for data collection.

Image processing. Input data totaled 164 images, including 68 images with 265 cows, 53 images with 77 
deer, and 43 images with 136 horses (Table 1). From collected images, we first identified image pairs in which one 
or more animals were present. To maximize variation of animals in our dataset for training fusion methods, we 
omitted sequential images of the same animal without pose variation in the same series of images on the same 
day. Second, we annotated images by manually drawing bounding boxes around each animal object and label-
ling them to species. Finally, because thermal (640 × 512 pixels) and visible (4000 × 3000 pixels) images were of 
different sizes, we aligned the smaller thermal images by upscaling and translating them with the corresponding 
region of the larger visible image using image registration  procedures29–31 (see Supplementary Information Sect.  
1.1 online) to obtain a final pixel size of 1792 × 1434 pixels for all images.

https://projectportal.gri.msstate.edu/awir/
https://projectportal.gri.msstate.edu/awir/
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Image fusion. After respective pairs of visible and thermal images were acquired and registered, their infor-
mation was combined through fusion before splitting the dataset for training and classification (Fig. 1a, see Sup-
plementary Information Sect. 1.2 online). The image fusion portion of our process followed three general steps 
for visible and thermal images in each pair: (1) transform both images to a different feature space, (2) merge the 
information from both images to create the fused image in the transformed feature space, and (3) reconstruct the 
fused image by an inverse transform of merged information. For some fusion approaches (optimization-based), 
transforms during the first step were not applied and only the second step occurred.

To compare the performance of fusion methods to visible or thermal images to detect and classify animals, 
we tested eight different image fusion methods: four multi-resolution-based approaches, two optimization-
based approaches, and two hybrid approaches. We evaluated the following multi-resolution-based approaches: 
(1) guided filter, (2) Laplacian/Gaussian pyramid (LP), (3) singular-value decomposition (SVD), and (4) sparse 
representation (sparse; Fig. 2). Multi-resolution approaches transform the original image in multiple scales, 
where the amount (resolution or number of pixels) and type (approximation, detail) of information differs in 
each scale (Fig. 1b). Image fusion was then performed in each corresponding scale in the transform space. We 
also used two optimization-based fusion methods, Gradient and total variation distance (TVM). Optimization-
based approaches conduct fusion of visible and thermal images at the pixel level to optimize a chosen criterion 
without image transformation. Finally, we used two hybrid fusion methods, a wavelet (WL) plus TVM hybrid 
approach (WL + TVM) and a WL plus swarm hybrid approach (WL + Swarm). Hybrid approaches first transform 
the image to a multi-resolution representation and then fuse in the transform space based on an optimization 
criterion, combining some aspects of both multi-resolution and optimization-based approaches.

Object detection and classification. You Only Look Once (YOLO) is a popular deep learning-based 
object detection architecture. YOLO’s key idea is to frame object detection as a regression problem, thus pre-
dicting bounding boxes and confidence probabilities in a single pass of the image through the neural network. 
This one-shot algorithm excels both in accuracy and speed. By considering multiple scales and aspect ratios, 
YOLO can handle objects of various sizes and shapes efficiently. YOLO has undergone several iterations with 
latest being YOLOv8. The newer YOLOv7 also provides focal loss, ideal for identifying small objects but also 
computationally intense compared to YOLOv5. After image fusion, we used  YOLOv532,33 and  YOLOv734 to 
automatically detect and classify objects. Objects evaluated in this study were annotated areas in images. Objects 
included animals (i.e., animal objects) or non-animals such as annotations by us or incorrect annotations by 
YOLO architectures (i.e., false positives; see Evaluation criteria for more information). We annotated all animal 
objects in our image dataset with ground-truth bounding boxes.

We used an approximate 70–10–20% split of images for training–validating-testing classification architec-
tures among species. The same training–validating-testing data were used between classification networks to 
allow for cross-comparison with our annotated animal objects. However, in the testing procedure, we provided 
full images without annotations, which often contained multiple animal objects. The trained architectures then 
created bounding boxes around objects detected as animals and provided the classification of each object in the 
output. Both architectures were trained and tested on Google Colab Pro using GPU acceleration, using at least 
100 Intel Xeon CPUs with a frequency of 2.30 GHz, allocating an average 38 GB of GPU RAM. Because most 
drone images are larger (our final images were 1792 × 1434 pixels) to cover a large field of view for survey and 
other applications than typical segmented images processed by these architectures (256 × 256 pixels), our larger 
image sizes and different network architectures on the same computing resources permitted a maximum batch 
size of 12 for YOLOv7 and 16 for YOLOv5, using 135 and 100 epochs, respectively. Additional details are avail-
able in Supplementary Information Sect. 1.3 online.

Evaluation criteria. We evaluated the performance of fusion methods based on metrics of (1) animal object 
quality and (2) classification accuracy (additional details available in Supplementary Information Sect.   1.4 
online). We used our annotated animal objects in our test image dataset to evaluate animal object quality met-
rics of entropy, mutual information, and a gradient-based Petrovic metric. Entropy is the average number of bits 
per pixel needed to represent an image  region35, or the animal object within a bounding box for our purposes. 
A higher value of entropy implies a larger amount of information in the image region, which typically improves 
differentiation of animal objects from their respective backgrounds. Mutual information (bits per pixel) repre-

Table 1.  Numbers of images (Images) and individual animal objects (Objects) within images used for 
training, validation, and testing fusion methods for automated classification of domestic cattle (Bos taurus), 
white-tailed deer (Odocoileus virginianus), and domestic horses (Equus caballus) from images taken by a drone 
(unoccupied aircraft system or UAS).

Category Cow Deer Horse

Training images 51 38 28

Training objects 218 61 88

Validation images 4 5 5

Validation objects 16 5 18

Test images 13 10 10

Test objects 31 11 30
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sents the amount of information transferred from an individual image (visual or thermal) to the fused image. 
The two values of mutual information from the visual and thermal images were summed; higher values were 
preferred and indicated that a larger amount of useful information was transferred to the fused image compared 
to lower  values35. The gradient-based Petrovic metric is a unitless measure of edge preservation ranging from 
0 to  136,37. Values closer to 1 indicated higher preservation of edge information compared to values closer to 0 
because the visual perception of an object is first based on identifying its edges. Thus, details in the pixels at the 
edges of an object contain most of the information comprising its shape compared to middle  regions22, as is the 
case for animals in our drone images. To visualize patterns and compare the performance of fusion metrics, we 
created plots of all three metrics of image quality for each animal object (entropy) or object pair (mutual infor-

Figure 1.  Workflow for fusion of thermal and visible images for learning-based animal object detection and 
classification from drone (unoccupied aircraft system or UAS) imagery (a) and a depiction of the Lalacian 
fusion algorithm used showing the layer coefficients and block wise coefficients combining in the approximation 
layer as well as the reconstructed image (b).
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mation, Petrovic metric) in our dataset. Because these metrics are specific to their respective backgrounds within 
bounding boxes, we represented them as values for individual animal objects and did not average them across 
fusion methods for comparison.

Metrics of classification accuracy were computed based on comparing classification of animal objects in 
images without bounding boxes by architectures after training to original images containing bounding boxes that 
were manually drawn (ground truth) during image processing. We computed precision, recall, and mean average 
precision (mAP50; an additional measure of accuracy) as performance metrics of classification. Mean average 
precision (mAP) measured the correctness of animal detection (i.e., bounding box around animal object) and 
animal classification (i.e., species identification) for objects annotated by architectures in the test image dataset. 
Greater mAP values indicate greater model accuracy in animal detection and classification. For mAP50, a 50% 
threshold was considered for intersection over union (i.e., the overlap or intersection of predicted boundaries and 
actual animal boundaries; more information available in Supplementary Information Sect. 1.4). These metrics 
rely on three scenarios of correct or incorrect detection and classification to  define38. Correct detections (draws 
a bounding box around the animal object) and classifications of target species (deer, cow, horse) by respective 

Figure 2.  Comparison of aerial imagery captured by drone (unoccupied aircraft system or UAS) containing 
white-tailed deer (Odocoileus virginianus; series 1), cow (Bos taurus; series 2), and horse (Equus caballus; series 
3) among visible (a) and thermal (b) images and eight fusion methods: guided filter (c), Laplacian (d), SVD (e), 
sparse (f), gradient (g), TVM (h), WL + Swarm (i), and WL + TVM (j).
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models (combinations of fusion methods and classification architectures) are defined as true positives. False posi-
tives occur when the respective model correctly detects (draws a bounding box around an object) but incorrectly 
classifies that object in an image as the target species, such as a different species (Fig. 3a) or inanimate object 
(Fig. 3b). False negatives occur when the respective model does not detect an individual of the target species 
when it occurs in an image (Fig. 3b). Accordingly, precision measures the proportion of true compared to false 
positives that the model correctly predicted, calculated as:

Recall measures the proportion of true positives compared to false negatives that the model correctly pre-
dicted, calculated as:

Typically, overall accuracy considers false positives and negatives and is often defined as true positives divided 
by the sum of true positives, false positives, and false negatives (e.g.14). Similarly, we evaluated accuracy by com-
paring (1) human-drawn bounding boxes containing correctly classified animals (ground truth) to (2) objects 
in a bounding box automatically drawn and classified from respective model output (predicted). However, 
models did not necessarily draw the bounding box to entirely encompass the animal. Thus, models required a 
threshold of the number of overlapping pixels to evaluate if the bounding box adequately captured the animal 
object compared to the manually drawn, correct classifications (e.g., 60%, 80%, overlap with true positives; see 
Supplementary Information Sect. 1.4 online for additional information regarding intersection over union). 
Accordingly, we used mAP50 (mean average precision with a threshold overlap of 50%) as an alternative but 
accepted metric of accuracy, because it accounted for precision and recall while computing an average value for 
the overlap of predicted and ground truth bounding boxes for a range of  values38. To further evaluate fusion 
methods and compare them to visible and thermal results alone, we ranked results for each fusion method with 
visible and thermal results using mAP50 for each animal species and classification architecture. We then summed 
the rank scores (1–10) among species and architectures, using the lowest score to determine the best performing 
fusion methods in context of visible and thermal results.

Results
Between architectures, YOLOv5 (Table 2) outperformed YOLOv7 (Table 3) overall among metrics and animals 
in visible and thermal images, as well as among fusion methods. Although mAP50 for YOLOv7 was poor overall, 
we report results for both architectures to demonstrate that some fusion methods provided improvement for 
animal classification beyond visible and thermal results alone.

Object quality. Metrics of image quality for entropy indicated that Sparse and WL + TVM consistently pro-
vided more information than visual (Fig. 4a) and thermal (Fig. 4b) alone, indicating these fusion methods better 
characterized the animal object compared to the background than unfused images or other fusion methods. For 
cows and horses, Sparse had the highest entropy values in 54.5–75.0% of animal objects, respectively, compared 
to 18.8–22.7% of animal objects for WL + TVM. For deer, in contrast, WL + TVM had the highest entropy values 
(70.0% of deer objects) compared to Sparse (20.0%). Sparse, WL + TVM, and Guided filter had consistently high 
values for mutual information (Fig. 4c), indicating they transferred more information from visible and thermal 

(1)Precision =
true positives

true positives + false positives

(2)Recall =
true positives

true positives + false negatives

Figure 3.  Examples of false positives regarding misclassification (a,b), and false negatives as non-detection or 
target animal (b). Two of three white-tailed deer (Odocoileus virginianus) were misclassified as cows (Bos taurus, 
a), and two hay bales were classified as cows (b, red boxes). The false negative occurred when the target animal 
(white-tailed deer, yellow box) was not detected (b).
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images to fused images. Like entropy results, Sparse had the greatest values of mutual information for cows and 
horses (54.5–75.0% of animal objects, respectively) versus deer (20.0%) compared to WL + TVM (cows,18.8%; 
horses, 22.7%; deer, 80.0%). The Guided filter method performed best for mutual information in 6.8% of cow 
objects, 9.4% of horses, and no deer. Results for the Petrovic metric were approximately the same for all three 
animal species, and all but the SVD method performed similarly well (Fig. 4d), indicating consistent preserva-
tion of edge information of animal objects among fusion methods. The following four fusion methods had the 
greatest values for the Petrovic metric for all three animal species: TVM (34.4–40.0% of animal objects), Guided 
filter (25.0–27.3%), WL + TVM (15.0–15.9%) and Sparse (9.1–15.6%).

Object detection and classification. Classification accuracy (mAP50) of cows for YOLOv5 was 16% 
higher in visible compared to thermal images (Table 2). Only Sparse improved overall accuracy beyond the 
performance for visible images alone (Table 2). In contrast, for YOLOv7, classification was about 85% better in 
thermal compared to visible images (Table 3). Classification improved over thermal images with three fusion 
methods (WL + TVM, 25%; Sparse, 23%; Gradient, 15%), and minimally with Guided filter (2%, Table 3).

For deer, classification accuracy was similar for visible and thermal images with YOLOv5 (i.e., < 2% increase 
from visible to thermal; Table 2). Four fusion methods provided considerable improvement (TVM, 21%; Sparse, 
13%; WL + Swarm, 10%; Gradient, 9%), and one method (LP, 4%) provided minimal improvement compared to 
visible and thermal results (Table 2). For YOLOv7, visible was never accurate but increased fivefold for thermal 
(Table 3). Fusion improved classification of deer substantially over thermal results with the LP (67%) and Gradi-
ent (13%) methods (Table 3).

Classification accuracy of horses was near 100% for both visible and thermal images for YOLOv5 (Table 2). 
Among fusion methods, only Guided filter improved results beyond visible results (Table 2), although the gain 
was minimal (1% for visible, 3% for visible). For YOLOv7, visible improved accuracy 13% compared to thermal 
(Table 3). Among fusion methods, Sparse provided substantial gains in overall accuracy (21% improvement to 
visible), whereas Gradient and WL + TVM provided minimal (< 2%) gains compared to visible results (Table 3).

Table 2.  Classification accuracy metrics of domestic cattle (Bos taurus), white-tailed deer (Odocoileus 
virginianus), and domestic horses (Equus caballus) for visible, thermal, and eight fusion methods for YOLOv5 
learning module from images taken by a drone (unoccupied aircraft system or UAS). GF guided filter method, 
LP Laplacian method.

Class

Classification accuracy

Metric Visible Thermal GF LP SVD Sparse Gradient TVM WL + Swarm WL + TVM

Cow

Precision 0.88 0.73 0.79 0.85 0.58 0.87 0.77 0.81 0.84 0.72

Recall 0.75 0.75 0.75 0.80 0.14 0.80 0.66 0.85 0.84 0.65

mAP50 0.89 0.77 0.83 0.88 0.16 0.93 0.69 0.84 0.86 0.74

Deer

Precision 0.72 0.81 1.00 0.74 1.00 0.72 0.77 0.61 0.73 0.52

Recall 0.44 0.56 0.44 0.63 0.00 0.67 0.56 0.86 0.72 0.78

mAP50 0.63 0.64 0.56 0.66 0.01 0.72 0.69 0.77 0.70 0.62

Horse

Precision 0.95 0.93 0.89 0.93 0.67 1.00 0.92 0.87 0.90 0.93

Recall 0.93 0.92 1.00 0.93 0.87 0.93 0.77 0.87 0.87 0.88

mAP50 0.99 0.97 1.00 0.95 0.89 0.99 0.95 0.95 0.95 0.96

Table 3.  Classification accuracy metrics of domestic cattle (Bos taurus), white-tailed deer (Odocoileus 
virginianus), and domestic horses (Equus caballus) for visible, thermal, and eight fusion methods for YOLOv7 
learning module from images taken by a drone (unoccupied aircraft system or UAS). GF guided filter method, 
LP Laplacian method.

Class

Classification accuracy

Metric Visible Thermal GF LP SVD Sparse Gradient TVM WL + Swarm WL + TVM

Cow

Precision 0.26 0.35 0.53 0.38 0.16 0.54 0.41 0.00 0.32 0.37

Recall 0.45 0.65 0.62 0.45 0.25 0.75 0.70 0.00 0.54 0.80

mAP50 0.26 0.48 0.49 0.37 0.10 0.59 0.55 0.00 0.47 0.60

Deer

Precision 1.00 0.55 0.99 0.78 0.00 0.68 0.52 1.00 0.67 0.33

Recall 0.00 0.55 0.44 0.77 0.00 0.33 0.67 0.00 0.57 0.50

mAP50 0.00 0.51 0.50 0.85 0.00 0.37 0.62 0.00 0.44 0.46

Horse

Precision 0.26 1.00 0.46 0.50 0.00 0.41 0.54 0.80 1.00 0.70

Recall 0.87 0.27 0.47 0.40 0.67 0.80 0.47 0.53 0.27 0.47

mAP50 0.53 0.47 0.44 0.44 0.24 0.64 0.54 0.52 0.50 0.54
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Figure 4.  Plots of four metrics of image quality for 96 animal objects of domestic cattle (Bos taurus, cow), 
white-tailed deer (Odocoileus virginianus), and domestic horses (Equus caballus) in drone (unoccupied aircraft 
system or UAS) images automatically detected and classified using visible, thermal, and fused images produced 
by eight fusion methods. Animal objects on the x-axis do not correspond to the same individuals in each plot 
and are ordered in each plot to aid in interpreting the relative performance of fusion methods. Entropy values 
(bits/pixel), a measure of object information compared to the background, are ordered from descending to 
ascending values based on visible values (a) and thermal values (b). Values for mutual information (bits/pixel), 
a measure of the amount of information transferred from an individual image (visual or thermal) to the fused 
image (c), and the Petrovic metric (d), a measure of edge-preservation from 0 to 1 (unitless, shown on log scale), 
are ordered from descending to ascending values based on the values of a middle-ranked fusion method for this 
metric (Laplacian) and do not contain values for visible or thermal images.

Table 4.  Ranking of animal classification results based on overall accuracy (mAP50) for domestic cattle (Bos 
taurus, cow), white-tailed deer (Odocoileus virginianus, deer), and domestic horses (Equus caballus, horses) for 
visible, thermal, and eight fusion methods for YOLOv5 and YOLOv7 learning modules from images taken by 
a drone (unoccupied aircraft system or UAS). Numbers in parentheses indicate ties in rank for corresponding 
numbers and methods.

Rank

YOLOv5 YOLOv7

Cow Deer Horse Cow Deer Horse

1 Sparse TVM Guided filter WL + TVM Laplacian Sparse

2 Visible Sparse Visible (2) Sparse Gradient Gradient (2)

3 Laplacian WL + Swarm Sparse (2) Gradient Thermal WL + TVM (2)

4 WL + Swarm Gradient Thermal Guided filter Guided filter Visible

5 TVM Laplacian WL + TVM Thermal WL + TVM TVM

6 Guided filter Thermal Laplacian (5) WL + Swarm WL + Swarm WL + Swarm

7 Thermal Visible Gradient (5) Laplacian Sparse Thermal

8 WL + TVM WL + TVM TVM (5) Visible Visible (8) Guided filter (7)

9 Gradient Guided filter WL + Swarm (5) SVD SVD (8) Laplacian (7)

10 SVD SVD SVD TVM TVM (8) SVD
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Rankings based on overall accuracy (mAP50) for animal classification among animals and architectures 
for fusion methods indicated that Sparse was the highest-ranking fusion method (Table 4), with the lowest 
rank score (15), followed by Gradient (25). The LP and WL + TVM methods ranked equally (28), followed by 
WL + Swarm (29), just above the rank score for visible and thermal results (30). Guided filter (31) and TVM 
(33) ranked below visible and thermal results (Table 4). SVD (51) was consistently poor and typically ranked 
last in most tests (Table 4).

Discussion
Our results further promote fused thermal and visible imagery for improved detection and classification of ani-
mals in drone imagery as initially explored in two previous  studies17,28. Broadening past approaches, we found 
that some fusion methods increased both image quality and classification metrics consistently over thermal and 
sometimes visual results alone, but these results differed by animal species. For deer, the most accurate fusion 
methods substantially increased classification accuracy over visible and thermal images alone. However, the 
most accurate fusion methods provided little improvement over classification of cows and horses from visible 
images alone. These differences are likely explained by the contrasting search images of the animals we surveyed, 
suggested in two previous  studies17,28. Cows and horses were typically conspicuous in visible images compared 
to deer, which were more cryptic against their respective backgrounds and required additional thermal infor-
mation for classification. Our results suggest that for cryptic species such as deer, the fusion of information in 
thermal and visible images improves classification over either image type alone. Understanding the tradeoffs in 
using fusion compared to visible images alone for automated animal classification can improve the results and 
efficiency of drone surveys among animal species that differ across a gradient of conspicuous to cryptic against 
their respective backgrounds.

Intrinsic (e.g., animal size, color, and shape) and extrinsic (e.g., image background and shadows) factors can 
influence accurate automated classification of  animals7,8,17,28,39. If size, shape, color, or a combination of these 
or other features are distinctive, visible images often contain most of the identifying characteristics needed to 
accurately identify animal species, at least during diurnal periods with adequate  lighting8,17,28,39. Cows and horses 
in our study represented large-bodied mammals with distinctive body shapes and colors against open pastures 
or contrasting color backgrounds. Larger animals in images comprise more pixels than smaller animals at the 
same ground sampling distance (GSD), providing more information and often better classification performance 
for automated  approaches28,39. Similarly, distinct differences in body shape or appendages (e.g. beaks, hooves, 
antlers, etc.) can also provide information used to automatically classify animals to  species28,39. Color contrast 
with background environments, like our black and brown cows and horses against a green pasture has also been 
shown to improve automatic detection and classification of  animals7,8,17,28,39. A combination of the above factors 
likely explains our findings for cows and horses, where fusion methods provided minimal, if any, gains in clas-
sification performance compared to visible results alone.

In many natural situations encountered during surveys using visible imagery, animals have little to no contrast 
with surrounding environments , are partially obstructed, or occur in low light  conditions6,17,28. In such cases, 
thermal images provide critically important complementary information needed for detection or classification 
of species, such as animal heat signatures against typically cooler ambient  backgrounds6,7,17,28. None of the deer 
in our images were obstructed, but many (~ 60%) occupied shadowed areas. Thermal images alone provide little 
classification information for animals of similar sizes absent distinct shape features, such as large mammal species 
in our study. This lack of information is particularly evident in drone images recorded at higher flight altitudes 
because animals typically appear as indistinct color clusters against the ambient background and provide few 
distinguishing  features28. Hence, our observed poor classification results for thermal images alone compared 
to visible results alone or fused results. Similarly, automated detection and classification of 5 Gy wolves (Canis 
lupus) and 6 fallow deer (Dama dama) in zoo enclosures was more difficult, due to their cryptic pelage against 
respective backgrounds and similar sizes, compared to 4 American bison (Bison bison) and 3 elk (Cervus canaden-
sis), which were larger and more  conspicuous28. Meanwhile, fusion of the two image types helped to improve 
classification for cryptic or shadowed species over visible or thermal alone in our study, resulting in an increase 
in performance for fused images from15–85% for deer, far exceeding fusion results for self-driving cars during 
daytime (5% better than visible alone and 29% better than thermal  alone26).

Our study highlights some important methodological and computational constraints, strengths, and potential 
future improvements. Computing resources limited the maximum batch size for YOLOv7, which likely explained 
poorer results for this classification architecture compared to YOLOv5. Using larger batch sizes can increase 
performance for  YOLOv740 and is a likely next step for future research. Similarly, future studies could test fusion 
methods in other classification architectures such as  CNNs6,13–15 and deep residual  networks13.

Sparse and WL + TVM fusion methods performed consistently best for metrics of image quality, but these 
results translated to improved classification of animals only for Sparse, the top-ranking method by far. In con-
trast, WL + TVM ranked slightly better than either visible or thermal results for all three species. In our study, 
we trained our models to consider all three species simultaneously in non-annotated images to correctly detect 
target species, classify them, and exclude detecting or confusing them with other non-target objects. For studies 
of animals automatically classified from drone images, our fusion results represent an improvement compared 
to classifying a single  species6,7,14,15, or multiple species limited to annotated boxes where the animal is already 
detected but not  classified13. Our methodology and results also extend the utility of fusion approaches for drone 
imagery beyond detection of single  species17 and classification among species with a few individuals present in 
the  image28. Among fusion methods in our study, Sparse performed consistently well across two classification 
architectures, as well as three image quality and three classification metrics for three mammal species (one 
cryptic, two conspicuous). Future research could test Sparse performance with other image fusion  methods26.
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Our results demonstrate that image fusion is a viable option when images are limited (43–68 images of 77–265 
animal objects in our study) for automated and accurate animal classification taken from visible and thermal 
drone sensors. Studies for other computer vision methods of animal classification from drone images used much 
larger numbers of images including > 900 images for koalas (Phascolarctus cinereus)6, and > 2000 tiles from image 
mosaics for caribou (Rangifer tarandus)14. However, increasing the number of training and testing images could 
also improve fusion results compared to the relatively few images collected for our study, as increasing the num-
ber of pre-classified images available to train models typically leads to better  performance38. One solution is to 
use open-source repositories of pre-annotated objects, which provide large numbers of images and benchmark 
datasets for training and standardized comparisons across studies for other fields (e.g.  ImageNet18). Such open-
source, collaborative repositories for drone images of wild animals could advance automated classification for a 
variety of animal species; however, to our knowledge, only two such repositories are currently available  (OUR14, 
AWIR—this study), Benchmark datasets for animals in drone images would benefit from high variation in image 
backgrounds, animal positions, group sizes, species, color, and other features, each of which typically improves 
performance of classification models, as demonstrated for camera trap  studies41,42.

Our fusion results also are indicative of the benefits of employing drones capable of collecting visible and ther-
mal images simultaneously when conducting animal surveys. Classification with fusion methods will yield the 
best results when the survey maximizes information provided by both visible and thermal sensors. Accordingly, 
characteristics of target animal species, environment, and time of day are critical considerations. Surveys that 
target animals that are distinct in size, shape, color, and background contrast relative to each other, will provide 
the most information for accurate detection and classification in visible  images13,28,39. Endothermic compared 
to ectothermic animals will typically provide the most heat contrast of body compared to ambient temperatures 
in thermal images, unless ambient temperature is  high6,7,15,17.

For visible images, conducting surveys at midday can minimized potential effects of shadows, which can 
hide or confuse detection in these  images43,44. In contrast, in some instances shadows can enhance  detection10. 
However, activity for endothermic animals is often greater in crepuscular periods, which could improve detection, 
but might also cause errors in double-counting  animals14,45. For thermal surveys, early mornings provide the 
coolest temperatures compared to other times of day, even in warm environments where the image background 
approaches or exceeds the surface temperatures of endothermic  animals6,7,15,17. Thus, conducting surveys in the 
morning in warm environments will likely maximize the benefit of heat contrast with target endothermic animals 
for thermal images and detection of these animals in visible images. If shadows do not enhance  detection10, our 
results indicate that the fusion of both image types will offset potential drawbacks in decreased animal detec-
tion in shadows of visible images due to gains in information from fusing visible with thermal images leading 
to improved classification accuracy. Other image processing possibilities, particularly targeting ectotherms, 
include incorporation of algorithms utilizing color correlation measurements found in some camera trap sys-
tems (e.g.46). In other environments or seasons where the contrast between ambient temperatures and animal 
body temperatures are high, time of day may not be important for surveys or may be dictated by the constraints 
of animal behavior or other logistics. Additionally, using higher-resolution sensors or flying drones at lower 
altitudes can improve classification results or permit accurate classification of smaller  animals11,39. Our results 
indicate that fusion methods are promising to advance automated detection and classification of animals from 
drone surveys, particularly for cryptic animals.

Data availability
Imagery collected and analyzed are available as unprocessed image pairs (with EXIF) in the Aerial Wildlife Image 
Repository (https:// proje ctpor tal. gri. mssta te. edu/ awir/). Code developed to generate Fusion modules will be 
made available in Github. Classification architectures were cloned from https:// github. com/ ultra lytics/ yolov5/ 
relea ses/ tag/ v6.1 for YOLOv5 and https:// github. com/ WongK inYiu/ yolov7 for YOLOv7.
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