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Strengths of social ties modulate 
brain computations for third‑party 
punishment
Zixuan Tang 1,2,3,4,7, Chen Qu 1,2,7*, Yang Hu 3,6, Julien Benistant 3, Frédéric Moisan 5, 
Edmund Derrington 3,4 & Jean‑Claude Dreher 3,4*

Costly punishment of social norm transgressors by third‑parties has been considered as a decisive 
stage in the evolution of human cooperation. An important facet of social relationship knowledge 
concerns the strength of the social ties between individuals, as measured by social distance. Yet, it 
is unclear how the enforcement of social norms is influenced by the social distance between a third‑
party and a norm violator at the behavioral and the brain system levels. Here, we investigated how 
social distance between punishers and norm‑violators influences third‑party punishment. Participants 
as third‑party punished norm violators more severely as social distance between them increased. 
Using model‑based fMRI, we disentangled key computations contributing to third‑party punishment: 
inequity aversion, social distance between participant and norm violator and integration of the cost 
to punish with these signals. Inequity aversion increased activity in the anterior cingulate cortex 
and bilateral insula, and processing social distance engaged a bilateral fronto‑parietal cortex brain 
network. These two brain signals and the cost to punish were integrated in a subjective value signal of 
sanctions that modulated activity in the ventromedial prefrontal cortex. Together, our results reveal 
the neurocomputational underpinnings of third‑party punishment and how social distance modulates 
enforcement of social norms in humans.

Cooperation among strangers is a major evolutionary  puzzle1,2. One key mechanism for maintaining coopera-
tion in large groups is that some individuals enforce social norms by applying punishment to  defectors3,4. In a 
modified Dictator Game, called the Third-Party Dictator Game (TP-DG)3,5, participants as observers may pay 
to punish greedy dictators that share money unfairly with recipients. Such third-party punishment (TPP) may 
be costly to the third-party who themselves receive no material  benefit3,6. Little is known about the brain repre-
sentations of TPP despite the crucial role it plays in norm enforcement. In contrast, “second-party” punishment 
(SPP), in which victims retaliate directly against their aggressors, and its underlying brain systems have been 
thoroughly  investigated5,7. TPP may be an evolutionary elaboration of this more ancient  mechanism8. A classical 
model of SPP defined “egocentric inequity” as the absolute payoff difference between self and  others5,9,10. This 
inequity aversion model has been extended to a third-party perspective deciding sanctions based on the inequity 
between the dictator and the recipient, as perceived by the third-party11. However, it is unclear how the strength 
of the social ties (social distance, SD) between the third-party and the dictator affects the sanctions to the dictator. 
As SD in a social network determines how much one collaborates with  others12 and decreases  generosity13,14, a 
third-party might be more likely to turn a blind eye when close others violate social norms.

Here we ask how does the strength of social ties alter our tolerance of norm violation? What are the neuro-
computational mechanisms engaged in making TPP decisions? To disentangle the role of fairness preferences and 
SD to the norm violator in punishment, we developed a new TPP computational model and a modified TPP task 
to investigate how SD affects TPP at both the behavioral and neural level. Participants, as third-party observers, 
were presented monetary splits advocated by a dictator to a recipient. Crucially, the SD between the third-party 
(participants) and the dictator varied systematically, but the recipient was always a stranger. Participants were 
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asked how much of their own money they would use to punish the unfair dictators, and the dictator’s payoff 
would be reduced by three-fold more.

We tested whether TPP increases with higher SD to the norm violator. At the brain level, we sought to identify 
the neurocomputational mechanisms underpinning the integration between fairness preferences and closeness 
of social ties with norm violators. A first question was to determine whether brain regions known to represent 
physical space and more abstract relationships also represent the SD to the norm  violator15. We hypothesized that 
a prefronto-parietal system, previously observed in encoding social ties in social networks, would also encode 
social ties in the context of  TPP16. Another question was to pinpoint the neurocomputational mechanisms under-
lying TPP. Indeed, the brain system (anterior cingulate, anterior insula) engaged in secondary-punishment may 
either reflect social norm concerns or retaliatory  motives3,6. In contrast, norm enforcement by unaffected third 
parties cannot be explained by retaliatory  motives17, therefore our approach has the potential to clearly explain 
the motives and neurocomputational mechanisms underlying TPP. Finally, a last question was to determine how 
the brain integrates the different signals of inequity aversion for an unaffected third-party as measured by the 
payoff difference between the dictator and the recipient), the strength of their social ties to the norm violator, 
measured by social distance, and the cost of punishing during TPP. Our hypothesis was that the ventromedial 
prefrontal cortex (vmPFC), which is engaged in evaluating norm  violations11,18, is performing this integration 
process when deciding between different levels of punishment.

Results
Behavioral results. Punishment level. The behavioral choices are shown in Fig. 1A. We studied how pay-
ment conditions (Costly/Control), social distances and inequity levels (90 vs. 10/85 vs. 15/80 vs. 20) affected the 
punishment amount. Participants punished the dictator more severely in the Control (non-costly) condition 
(8.32 ± 0.74 vs. 6.15 ± 0.72, F(1, 30) = 5.94, p = 0.021) than the Costly, and when the social distance between the 
third-party and the dictator was larger (F(1, 30) = 50.54, p < 0.001), as well as when the unfairness of allocations 
was greater (F(2, 46) = 9.42, p < 0.001). The interaction of the three factors was not significant (F(2, 64) = 0.95, 
p = 0.392), nor were the interactions between payment conditions and inequity levels (F(2, 164) = 0.32, p = 0.729), 
but the interaction between payment conditions and social distances was significant (F(1, 30) = 20.57, p < 0.001), 
as was the interaction between social distance and inequity level (F(2, 44) = 6.44, p = 0.004).

Reaction time. We then investigated how payment conditions (Costly/Control), social distances, and inequity 
levels affected the reaction time. Participants spent more time to make a decision when the social distance 
increased (F(1, 29) = 16.08, p < 0.001), but the difference in reaction time between costly and control conditions 
(F(1, 73) = 1.09, p = 0.300), and the different inequity levels (F(2, 42) = 1.88, p = 0.165) were not significant. There 
were no two-way or three-way interactions between the factors.

fMRI results. Brain systems modulated by social distances. In a first GLM, we investigated the brain regions 
engaged with higher inequity levels and with higher social distance during the decision phase (parametric mod-
ulators, GLM 1). For SD, both in the Costly and Control (non-costly) punishment conditions, a brain system 
composed of the bilateral dorsolateral prefrontal cortex (dlPFC), ACC, PCC, bilateral IPL and bilateral insula in-
creased activity with increasing social distance (see Supplemental Material Fig. S1). Since these activations were 
similar, as SD increased in both the Costly and Control condition, and since costly condition was more mean-
ingful in the context of TPP, we only focused on the effect of costly SD in the rest of this paper. A brain system 
including bilateral dlPFC, ACC, PCC, bilateral IPL, and bilateral insula, was positively correlated with increasing 
social distance (see Fig. 2A and Supplemental Material Table S1). To illustrate how the BOLD signal varied with 
social distance, we extracted the percent signal change from these regions (5 mm radius spheres with center at 
the reported peak coordinates), and found increased BOLD signal as social distance increased (Fig. 2B).

Brain system modulated by inequity levels. Next, we investigated the brain regions in which BOLD signal corre-
lated with inequity level. SPP studies have identified inequity aversion related brain regions in the anterior insula 
(AI) and rostral anterior cingulate cortex (rACC)9,19. We therefore hypothesized these brain regions would also 
reflect inequity aversion in TPP. As predicted, we found that when inequity levels were higher, the rostral ACC 
and bilateral insula were more engaged (Fig. 3A). This indicates that these regions are sensitive to unfair alloca-
tions in TPP. We also observed engagement of the rostral ACC/vmPFC with higher inequity level. Again, we 
extracted the percent signal change from the reported activations, and found increased activations at higher 
inequity levels (Fig. 3B).

Brain regions modulated by expected value of the chosen punishment option. Finally, we identified the brain 
regions encoding the expected value of the chosen punishment option. These regions integrate SD and inequity 
level to attribute a value that presides the punishment decision. To calculate the expected value of the chosen 
punishment option, we developed a computational model of the utility of the chosen punishment option (meas-
ured by U(x1, x2, x3, pSD) with Eq. (1) in combination with Eq. 2).

Using GLM2, we searched for brain regions engaged with the utility of the SD-dependent chosen punishment 
amount. We found that only activity in the vmPFC and middle temporal gyrus correlated with the utility of the 
chosen punishment (see Fig. 4, left panel, and Supplemental Material Table S1). To illustrate how the BOLD sig-
nal varied with subjective utility, we extracted the percent signal change from the vmPFC (5 mm radius spheres 
with center at the reported peak coordinates), and found decreased BOLD signal as subjective utility increased 
(Fig. 4, right panel).
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In addition, to visualize the extent of brain regions encoding the utility of the costly chosen punishment and 
inequity aversion levels, we overlapped these 2 regression analyses. The vmPFC, observed in the negative cor-
relation with costly utility, overlapped with the vmPFC that was also observed in the positive correlation with the 
costly inequity level (see Supplemental Material Fig. S2). This indicates that the vmPFC integrates both inequity 
aversion and social distance signals but was mainly sensitive to inequity aversion to make the final decision.

Discussion
One important feature of human social life is the prevalence of cooperative norms that guide social behavior and 
prescribe punishment for  noncompliance20. Here, we combined model-based fMRI with TPP. We studied the 
combined effect of two factors driving sanction levels for third-party norm enforcement: (i) the social distance 
(SD) between the unaffected third-party and the norm violator and (ii) the inequity level between the norm 
violator and the recipient. It has been proposed that altruistic punishment requires three core computations: 
cost–benefit calculation, inequity aversion and social reference  frame21–23. Our study provides a neurocomputa-
tional account of this proposition: the subjective value reflects a cost–benefit calculation integrating both inequity 
aversion and social distance, and determines the TPP decision. Our study identifies the neurocomputational 
mechanism underlying SD-related TPP by testing different models that compute a cost–benefit calculation that 
integrates the above two factors. We reveal that computation of inequity aversion and of SD between a third-party 
and norm violators are crucial brain mechanisms to determine a sanction during TPP.

Figure 1.  Behavioral results. (A) Punishment severity at different social distances. The punishment severity 
varied as a reversed hyperbolic function of payment condition on social distance (1, 2, 3, 5, 10, 20, 50, 100) for 
different inequity levels (90 vs. 10, 85 vs. 15, 80 vs. 20) and payment conditions (costly, control). The LOESS 
(locally weighted scatterplot smoothing) method was used to create smooth trendlines for visualization purpose. 
The error bars show SEM. (B) Variation of utility (measured by Eq. 1) with social distance. The color-coded 
heatmap shows utility for costly punishment against social distance at each inequity level (red indicates high and 
green indicates low utility values).
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Our behavioral findings showed that third-parties punish norm violations less when the norm violator was 
socially close to the participant. These findings mirror the role of SD on generosity in the vicarious reward 
 domain14. In these previous studies, participants were more generous to close others, an effect referred to as social 
discounting. Similarly, we found that when close others violated social norms (i.e., made unfair allocations), the 

Figure 2.  Social distance-related fMRI results. (A) Increasing social distance engaged a large bilateral 
dorsolateral prefrontal cortex-parietal network, including the anterior cingulate cortex (ACC, peak MNI 
coordinates 6, 30, 27; t(30) = 4.46, p(SVC–FWE) = 0.008), PCC (peak MNI coordinates − 3, − 33, 30; t(30) = 4.93, 
p(SVC–FWE) = 0.002), bilateral IPL (left IPL: peak MNI coordinates − 36, − 42, 39, t(30) = 5.69, p(SVC–
FWE) = 0.001; right IPL: peak MNI coordinates 33, − 48, 45, t(30) = 5.08, p(SVC–FWE) = 0.005), bilateral dlPFC 
(right dlPFC: peak MNI coordinates 42, 9, 24, t(30) = 6.58, p(FWE) = 0.05; left dlPFC: peak MNI coordinates 
− 36, 15, 24, t(30) = 6.37, p(FWE) = 0.008), and bilateral insula (left insula: peak MNI coordinates − 27, 21, 
− 6, t(30) = 5.16, p(SVC–FWE) = 0.001; right insula: peak MNI coordinates 30, 18, − 9, t(30) = 4.30, p(SVC–
FWE) = 0.007). (B) Percent signal changes with increasing social distance in costly third-party punishment. The 
error bars show SEM.
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third-party was more tolerant (less likely to punish them). Our study confirms previous results on TPP without 
social distance manipulation, in which the third-party dislikes distributional inequity between the dictator and 
the  recipient11. It has been proposed that the amount of punishment for crimes is driven by only two factors: 
the wrongdoer’s intention and the amount of harm caused to the  victim4. However, our study indicates the 
need to take the strength of social ties between the wrongdoer and the punisher into consideration, and to go 
beyond egocentric inequity  models10. The representation of the strength of social ties, as assessed by SD, is a key 
knowledge of interpersonal relationships in one’s social  network12. These representations can be used to form 
social inferences and impinge on subsequent behavior including TPP. For example, primates prevent outsiders 
from forming alliances with their close allies, especially when this might place them at a  disadvantage24. Our 
SD-dependent TPP model of inequity extends previous behavioral TPP studies that showed that outgroup 
perpetrators were punished more severely than ingroup  perpetrators25. Together, our new SD-dependent TPP 
model of inequity incorporates both SD and the third-party perspective in the inequity model.

The brain underpinnings of altruistic punishment have previously been proposed to be composed of different 
brain  networks8,18, engaged in detection and generation of an aversive experience for a social norm violation, 
integration of harm to the victim and intent, and inferring others’ intentions into blame. However, these processes 
were not captured by computational modeling. Here, we combined computational models and fMRI to address 
the neurocomputational mechanisms underlying norm-guided behavior.

First, our model-based fMRI findings revealed a clear overlap between the ACC and bilateral insula in ineq-
uity aversion for both SPP and TPP. A recent meta-analysis on social punishment revealed that both SPP and 
TPP engage the dlPFC and the bilateral anterior  insula26. A second meta-analysis study found social punishment 

Figure 3.  Inequity-related fMRI results (in GLM 1). (A) The inequity level was one of the parametric regressors 
in GLM 1. Rostral ACC (peak MNI coordinates 6, 45, 15; t(30) = 3.86, p(SVC–FWE) = 0.030), vmPFC (peak 
MNI coordinates 9, 57, − 6; t(30) = 4.43, p(SVC–FWE) = 0.005), and bilateral insula (left insula: peak MNI 
coordinates -24, 18, − 15, t(30) = 3.78, p(SVC-FWE) = 0.023; right insula: peak MNI coordinates 33, 24, − 15, 
t(30) = 4.43, p(SVC–FWE) = 0.005) were positively correlated with increasing inequity level. (B) Percent signal 
changes with increasing inequity level in costly third-party punishment. The error bars show SEM.
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related activations in the bilateral insula/claustrum, the (left) superior medial frontal gyrus and the (right) 
inferior frontal  gyrus27. The bilateral insula, as part of the salience network, may detect the presence or threat of 
norm violation and generates an aversive response, and provides an emotional measure of the severity of harm 
caused to the  victim8.This brain saliency network is known to process aversive stimuli, such as empathic pain 
and  inequity9,28 but also  rewards29,30. In our study, when dictators were at higher SD, subjects were more willing 
to punish, and punished more severely. This indicates that these regions exhibit the capacities necessary to detect 
norm violation in general, and not-only as a victim. Previous meta-analyses also revealed that SPP and TPP 
tasks trigger different responses in the mentalizing  system27, with TPP preferentially engaging social cognitive 
regions and SPP affective  regions26. Critically, our current findings reveal that responses in the bilateral AI and 
rACC reflect general notions of distributional norm violation computed from others’ perspectives. Our TPP 
study allows us to interpret this brain system as truly reflecting inequity aversion or social norm concerns, rather 
than retaliatory motives because unfair offers did not affect third-parties  directly3,6.

Second, our study determined the neurocomputational mechanisms underlying TPP when the strength of 
the social ties between the unaffected third-party and the wrongdoer varied. We observed a large brain network 
with increased activity when dictators were at greater social distances. There are different ways to define dis-
tance in social  networks31, but it generally refers to the smallest number of ties required to connect individuals. 
Assessment of social distance for direct and indirect ties (friend of a friend) are important to maintain one’s 
reputation in a social network and to favor trust of others who share mutual  friends32. A recent neuroimaging 
study characterized the network of students in an academic program, a subset of whom viewed videos of several 
 classmates33. When participants viewed each classmate, network position information, including social distance, 
was encoded in distributed brain responses. Social distance was encoded in the inferior parietal cortex and the 
superior temporal cortex, consistent with the proposal that physical space around oneself and spatial distances 
are encoded in a similar  fashion16. Other brain regions, including the mPFC and the hippocampus have also 
been proposed to encode both cognitive maps of spatial and non-spatial relational  structures34. Thus, when 
encountering others, people may retrieve those individuals’ proximity to themselves according to a mental map 
of their social network, which may allow successful navigation in the social world. However, because participants 
were performing passive viewing tasks of faces or were at rest in these previous studies, it was not possible to 
investigate the brain computations engaged in encoding social network positions for subsequent behavior such 
as TPP, as we have in this model-based fMRI study.

Third, we found that the vmPFC computation reflected the subjective utility of each punishment 
option, consistent with its role in both individual value-based decision  making35,36 and integration of social 
 information29,30,37,38. A previous TPP study manipulated the intentionality of the norm violator and reported 
that vmPFC encoded the subjective value of  sanctions11. Some studies also revealed vmPFC engagement for 
subjective utility of  punishments39,40. Similarly, for decisions involving both potential gains and losses and the 
integration of cost–benefit, the vmPFC has been observed to reflect both appetitive and aversive  values41,42. The 
vmPFC is associated with the computation of fairness by representing values of normatively valued  goods30,43 
and computes subjective value of indirect reciprocity, a type of cooperative behavior that reflects that one can 
transmit helping behavior to an uninvolved third  person44. Our results therefore support that computations 
involving distributional inequity and strength of social ties between third-parties and norm violators are inte-
grated to generate decisions to sanction in the vmPFC.

Figure 4.  Model-based fMRI results of the utility of the punishment chosen by the third-party. The 
ventromedial prefrontal cortex (peak MNI coordinates 9, 57, − 3; t(30) = 5.08, p(SVC–FWE) = 0.001) was 
negatively correlated with the utility of the chosen punishment ( U(x1, x2, x3, pSD) ) from the computational 
model. Percent signal changes from 3 levels of utility (Low: the lowest 1/3, Medium: the middle 1/3, High: the 
highest 1/3. Values from GLM2) in costly third-party punishment. The error bars show SEM.
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Cooperation between individuals seems to be at odds with evolutionary theories that individuals fight for 
survival and reproduction. Cooperation has clear evolutionary benefits because it favors survival of the popula-
tion as a whole. Various mechanisms may explain how natural selection promotes unselfish behavior, such as TPP 
and indirect  reciprocity45,46. Fundamental questions regarding the evolution of TPP remain. TPP may be crucial 
for punishments beyond those directly affected by norm  violation23. Consistent with this, the level of punishment 
by third parties is correlated with  cooperation47. In real life, people punish norm violators using confrontation, 
gossip, and social avoidance in different ways according to  context48. That is, direct punishment (confrontation) 
is more likely when punishers have more to gain, for example when they have been personally victimized by 
norm violations. In contrast, indirect punishment (gossip and social avoidance) is more likely when the costs of 
potential retaliation may be large—when violations are severe and when offenders possess more relative power. 
Recent findings also indicate that reversing ranks and reducing inequality is more likely to occur when other’s 
rank/power is perceived as illegitimate, such as when high social rank is acquired through coercion or spoliation, 
relative to when it is acquired through  merit49. Further studies are needed to better understand the neurocompu-
tations required to make decisions integrating these relationships between power, norm enforcement and social 
distance between group  members50. Social distance is in itself a simple measure of a highly complex construct that 
combines a multitude of factors including blood kinship, affection and professional relationships, to name but a 
few. These are very heterogeneously dispersed across different social distances and vary between different cultural 
 groups51,52. Hence, larger scale studies involving greater numbers of participants will be required to disentangle 
the contributions of these diverse contributary factors towards tolerance or punishment of anti-social behavior.

Materials and methods
Participants. Thirty-four Chinese undergraduates (mean age = 20.39, SD = 1.46; 19 men) were recruited via 
online fliers. All participants were right-handed and had no history of psychiatric or neurological disorders. 
They all gave informed consent and the procedure was approved by the ethics committee of the South China 
Normal University (NO. 049). All experimental protocols and procedures were conducted in compliance with 
the latest revision of the Declaration of Helsinki. One participant was excluded from our data analysis because 
of random choices, two participants were excluded due to excessive head movements during scanning (> 2 mm 
translation or > 2° rotation), and one session of the data had to be excluded for five participants due to head 
movements. Finally, 31 participants mean age = 20.42, SD = 1.48 including 16 men remained.

Procedure and tasks. Pre‑scanning phase: social distance manipulation. On arrival, participants received 
verbal and written instructions for the tasks. Following the procedure by  Strombach14, participants were first 
asked to rate their perceived closeness to specific persons in their social environment on a 100-point scale, 
i.e., mother, father, siblings, grandparents, kin, best friend, roommates, circle of friends, colleagues, neighbors, 
acquaintances, lover and strangers. They skipped the rating for relationships that did not exist in their social 
environment (e.g., lover). Before entering the scanner, participants were asked to write down one name that best 
corresponded to the person at the following SDs in their social entourage: 1, 2, 3, 5, 10 and 20. Notably, we also 
included SD levels of 50 and 100 in the fMRI experiment: 50 represented a person the participants had met but 
did not know well and 100 represented complete strangers. Therefore, participants were not required to indicate 
names for the persons at these two SDs. Furthermore, participants were explicitly asked to exclude individuals 
toward whom they had a negative attitude.

There were 2 practice sessions before scanning. These followed the same procedure as that during scanning, 
except with respect to the order of the trials. This was to familiarize participants with procedures before they 
entered the scanner. After completing the scanning session, participants received a 100 CYN participation 
payment.

Scanning‑phase: the modified TP‑DG task. We adopted a modified Third-Party Dictator Game (TP-DG)3,5, 
for the current fMRI study. Participants were instructed to consider a situation involving a dictator (labeled as 
player A) and a recipient (labeled as player S) (Fig. 5). The dictator was endowed with 100 CNY and could freely 
allocate the endowment between themself and the recipient. Decisions from the dictators could be seen by the 
participants inside the scanner. Participants, as third-party observers, could decide whether to use portions of 
their own endowment to punish unfair allocations. The key additional manipulation was for the participants 
to imagine that the dictators were specific members of their own social entourage that corresponded to the SD 
indicated between the dictator and the participant on each trial. This distinguishes the current design from a 
standard TP-DG in which the dictators are strangers.

The SD between the participant and the dictator was displayed iconographically on a scale consisting of 
101 icons (see Fig. 5). The white icon at the left end of the scale represented the participant and the blue icon 
indicated a specific person A from their social entourage at social distance SD. The number under the blue icon 
indicated the SD between the participants and A numerically. The gray icon at the right end of the scale repre-
sented the recipient S, always at SD 100. This design allowed us to investigate the behavioral and neural effects 
of SD manipulation between the unaffected third-party observer and the dictator while keeping constant the 
SD between participants and the recipient.

Scanning was comprised of 6 sessions, each containing 54 trials. Among them, there were 48 trials displaying 
unfair allocations equally distributed among 12 blocks (i.e., 4 in each block). In half of the blocks, participants 
could punish the dictator by reducing their payoff at the cost of their own endowment (i.e., Costly condition). 
In the other half, they could punish the dictator without any cost to their endowment (i.e., Free punishment 
condition, reflecting the control condition). The target trials covered all 24 combinations between SDs (i.e., 1, 2, 
3, 5, 10, 20, 50, 100) and unfair allocations (i.e., 90 vs. 10, 85 vs. 15, 80 vs. 20), with each combination appearing 
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once for each condition respectively, the order of the trials were pseudorandomized. Furthermore, we added 6 
filler trials displaying quasi-fair allocations (i.e., 65 vs. 35, 60 vs. 40, 55 vs. 45), randomly assigned to the 6 blocks. 
These quasi-fair trials were included because in a pilot study we found that when all the allocations were unfair 
participants accepted the unfair allocations as “normal behavior” and did not punish. We decided to include 
quasi-fair trials, as opposed to completely fair trials (50/50 split), both to reflect the difference in the power of 
dictators and the recipients but also so that these trials would not stand out so obviously from the unfair alloca-
tions in the other trials. All blocks and trials were presented pseudo-randomly.

Each block began with a 3000 ms notification of the punishment condition (see Fig. 5). In each trial, par-
ticipants were endowed with 50 CNY. The trial started with a cue to indicate the punishment type (i.e., Costly 
or Free), which lasted for a jittered interval (between 3000 and 8000 ms). Next, a 1500 ms screen with the SD 
information was displayed. This was followed by the decision screen on which participants saw the money 
allocation made by the dictator to the stranger, and were provided with options of different punishment levels 
(0, 5, 10, 15, 20, 25, 30 CNY). The dictators would be punished three times as much as the chosen punishment 
option. For example, the allocation of 90 vs 10 could result in a payoff of 90, 75, 60, 45, 30, 15, or 0 CNY for the 
dictator, depending on the degree of punishment chosen by the participant. Participants were required to select 
one option within 5000 ms, by pressing two buttons to move the cursor (with a random initial position), and 
confirmed the final choice by pressing another button with their right hand. Participants were required not to 
move the cursor until they determined the final option. Once they confirmed their choice, a red frame appeared 
on the chosen option for 500 ms. If the participants confirmed their decision within 5000 ms, the jittered cue of 
the next trial would show, and if they failed to respond within 5000 ms, a warning screen was shown for 1000 ms 
(see details in Fig. 5).

Behavioral data analysis. All behavioral analyses were conducted using R (http:// www.r- proje ct. org/) and rel-
evant packages. All the reported p values are two-tailed and p < 0.05 was considered to be statistically significant. 
Data visualization was performed via ‘ggplot2’ package (https:// ggplo t2. tidyv erse. org).

Regarding the punishment amount data, we performed a mixed-effect linear regression model on the punish-
ment amount using the lmer function in ‘lme4’ package (http:// cran.r- proje ct. org/ packa ge= lme4), with payment 
conditions (Costly/Control), social distances (as a continuous variable), inequity levels (90 vs. 10/85 vs. 15/80 
vs. 20), and both 2-way and 3-way interactions as the fixed-effect predictors. In addition, we included a random 
intercept and random by-subject slopes for the three factors and their interactions per participant. For the sta-
tistical inference on each predictor, we performed a Type III ANOVA with Satterthwaite’s method on the model 

Figure 5.  Experimental design. Participants in the scanner (represented by individual I in white on the central 
figure) were in the role of a third-party and could freely/costly punish norm violators (different people A in 
blue) while social distance between them increased. At the beginning of each block, there was an instruction 
screen showing the type of punishment (i.e., “free punishment” or “costly punishment”). Each trial started 
with a cue (a circle indicated costly punishment, a circle with a line inside indicated free punishment). Next 
the SD information for this trial was given on top of the screen (here only 31 icons are displayed to facilitate 
visualization, instead of the 101 icons shown during scanning). Then, participants were shown the unfair 
allocations between A and a stranger S (here 90 MU for the norm violator A and 10 for S). They were also 
presented with their own allocations (values in white) corresponding to each punishment options (in blue). 
Participants were required to choose one punishment level from 7 options, i.e., 0, 5, 10, 15, 20, 25, 30, within 
5000 ms. Then, the selected option was highlighted in red as feedback (500 ms). For example, here the third-
party punisher (participant) decides to use 10 MU to punish the norm violator by 30. If participants failed to 
make the decision in 5000 ms a warning screen (1000 ms) was shown.

http://www.r-project.org/
https://ggplot2.tidyverse.org
http://cran.r-project.org/package=lme4
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fits by using the anova function. Post-hoc multiple comparisons were conducted using the emmeans function 
in ‘emmeans’ package (http:// cran.r- proje ct. org/ packa ge= emmea ns).

For reaction time (RT), we also performed a mixed-effect linear regression model on RT by the lmer func-
tion, with payment conditions (costly/control), social distances (as a continuous variable), inequity levels (90 
vs. 10/85 vs. 15/80 vs. 20), and both 2-way and 3-way interactions as the fixed-effect predictors, random-effect 
factors were specified in the same way as above. The statistical inference on each predictor and the post-hoc 
multiple comparisons were conducted in the same way as above.

We also built computational models to further understand the decision making process. The model estima-
tion and comparison were performed using MATLAB (Mathworks Inc., Sherbom, MA). and the VBA  toolbox53.

Computational model of the effect of social distance on third‑party punishment and estimation procedures. To 
investigate the neurocomputational mechanisms underlying the effects of SD on TPP, we developed a new com-
putational model based on a study of TPP that shows that individuals assign values to all of the options, and then 
compare their computed values to select one of them. A classic inequity aversion model assumed that people 
felt inequity either when they were worse or better off than other players, and suffer more from inequity when 
they are in disadvantaged than when they are  advantaged10. However in TPP, participants are concerned by the 
inequity between the dictator and the recipient, for this reason a third-party inequality aversion model (called 
TPIA model; Eq. 1) was  developed11. This model estimates the subjective utility of the observer for a given level 
of punishment and a level of inequity between the dictator and the recipient. We assumed that the observer dis-
likes the distributional inequity between the dictator and the recipient. As punishment is costly, the observer is 
required to trade-off between their own payoff and the level of distributional inequity between the dictator and 
the recipient as follows:

Equation (1) shows the other-regarding third-party inequality aversion model. U  is the subjective utility of 
the observer (i.e., third-party decision maker) for a given amount of punishment p . x1, x2, x3 represent the initial 
material payoff of the dictator, the recipient, and the observer, respectively. With x3 being always equal to 50. 
x3 − p represents the earnings of the observer, given a certain level of punishment, and cannot be lower than 0, 
and abs

(

max(x1 − 3p, 0)− x2
)

 represents the difference in allocation between the dictator (in the current study 
we manipulated that it cannot be lower than 0) and the recipient after punishment. Finally, γ describes the degree 
of inequity aversion caused by the difference in allocations between the dictator and the recipient (0 ≤ γ  ≤ 1). 
Subjects would compute the overall utility for all the seven punishment options and choose the option with the 
highest utility.

Based on this initial TPIA model, we tested a number of functions (hyperbolic discounting and flexible 
power functions) to account for the relationship between SD and punishment behavior. We tested four potential 
candidates, the first and second were based on the hyperbolic discount  function13. We either applied this func-
tion on the level of punishment (Hyperbolic punishment model) or the degree of inequity aversion (Hyperbolic 
inequity model). In the case of punishment discounting, we considered that the observers would increase their 
level of punishment as the SD between them and the dictator increased. Formally, the chosen punishment level 
pSD is transformed into the subjective level of punishment p as follows:

With k being the discounting rate and SD the social distance. When considering the degree of inequity aver-
sion γ , the logic is reversed as the higher the SD, the lower discounting of inequity aversion should be. Accord-
ingly, we applied the hyperbolic discounting function directly on γ . Formally, the initial inequity aversion γSD is 
transformed into the discounting inequity aversion γ as follows:

As γ is constrained to be between 0 and 1, we applied a softmax function on the hyperbolic discounting 
function and let γSD takes any value.

For the last two candidates, instead of using the hyperbolic discounting function, we tested the flexible power 
 function54. In this function, punishment (inequity aversion) is inflated by an increasing amount as SD grows. 
Formally, for punishment the function is as follows (Power punishment model):

With k being the curvature of the power function, SD the social distance and W the power level. The equation 
for the inequity aversion parameter is (Power inequity model):

We estimated each of the four models using the VBA Toolbox in Matlab. A Bayesian Model Selection (BMS) 
was performed using the same toolbox in a random effect analysis relying on the free energy as the lower bound 
of model evidence. We used protected Exceedance Probability measurements (pEP) to select the model which 
was used most frequently in our  population55. Our results show that the Hyperbolic punishment model (Eq. 2), 

(1)U
(

x1, x2, x3, p
)

= max(x3 − p, 0)− γ × abs
(

max(x1 − 3p, 0)− x2
)

(2)p =

(

1+
1

k × SD

)

× pSD

(3)γ = Softmax

((

1+
1

k × SD

)

× γSD

)

(4)p = pSD + k × SDW

(5)γ = Softmax(γSD + k × SDW )

http://cran.r-project.org/package=emmeans
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achieving a pEP of 0.999, outperformed every other model. With this winning model, we combined it with the 
third-party inequality aversion model (TPIA model; Eq. 1), and then computed the utility of the chosen level 
of punishment for each decision by each participant and used this as the main parameter in the following fMRI 
analysis.

To better illustrate the relationships between the calculated utility from the winning model and our manipu-
lated variables, we plotted a color-coded heatmap of the utility as a function of the social distance and different 
inequity levels (see Fig. 1B). The observed pattern showed that increased social distance between the third-party 
and the dictator was associated with increased utility of the chosen punishment, but only when social distance 
remained below 50. This might be due to the fact that the third-party only had real relationships with dictators 
at social distances 1 to 20, while dictators at social distance 50 and 100 were unknown to the third-party. We 
also observed that utility decreases with higher inequity levels.

fMRI scanning parameters and data preprocessing. Scanning was performed on a 3-T Trio Scanner (Siemens). 
Functional data were acquired using echo-planar imaging sequences (repetition time = 2 s, echo time = 30 ms, 
flip angle = 90°, field of view = 224  mm, slice thickness = 3.5  mm). A total of 32 axial slices were acquired in 
interleaved order (in-plane resolution 3 × 3 mm). Anatomical images were T1-weighted (MDEFT, 1 × 1 × 1 mm 
resolution). The presentation of the task and recording of behavioral responses were performed using E-Prime 
2.0 software (https:// pstnet. com/ produ cts/e- prime/). Neural data of 34 participants were analyzed using SPM12 
(http:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/) implemented in MATLAB 7.8 (Mathworks Inc., Sherbom, 
MA). The results are visualized using Mango software (Lancaster, Martinez; http:// www. ric. uthsc sa. edu/ mango).

Functional images were realigned using a six-parameter rigid-body transformation. Each individual’s struc-
tural T1 image was co-registered to the average of the motion-corrected images using 12-parameter affine 
transformation. Individual T1 structural images were segmented into grey matter, white matter, and cerebro-
spinal fluid. Functional images were, in order, slice timing corrected, motion corrected, segmented using the 
T1-weighted image, normalized to MNI space, and smoothed with an 8 mm isotropic Gaussian kernel.

fMRI data analysis. We constructed two general linear models (GLM) to explore the decision process. In the 
first GLM (GLM 1), for each participant, a first-level intra-individual analysis was conducted with six regressors 
of interest per session: a regressor modeling the decision phase of control trials, with two parametric regressors 
modeling the social distance and inequity level on each trial, and the same regressors for costly trials. In GLM 
2, we constructed the fMRI design matrix with three regressors of interest per session: a regressor modeling the 
decision making onset of control trials, a regressor modeling the decision making onset of costly trials, with a 
parametric regressor modeling the trial-wise chosen utility on each trial. All the events were modeled as stick 
functions with duration zero.

We included six additional event regressors of no interest, describing the onsets of: (i) The verbal instruction 
at the beginning of each block; (ii) The SD information of each trial; (iii) The punishment options for filler tri-
als; (iv) The punishment options for no-response trials; (v) The feedback for responded trials; (vi) The feedback 
for no-response trials. These events were all modeled as stick functions with duration zero. Finally, six motion 
regressors obtained during realignment were included to control for motion of no interest.

We implemented standard general linear models (GLMs) for model-based univariate fMRI analysis. First-level 
analyses were conducted using fixed-effect models. Second-level analyses were conducted using random-effect 
models in SPM12. All images were high-pass filtered in the temporal domain (filter width 128 s). Autocorrelation 
of the hemodynamic responses were modeled as an AR(1) process.

For small-volume correction analysis, we used ACC, PCC, and IPL atlases from automated anatomical atlas 
(aal) template, and spheres of 12-mm centered on coordinates from previous meta-analyses. More specifically, 
we used coordinates of vmPFC (MNI coordinate, x = 0, y = 52, z = − 8) from a meta-analysis where activities in 
the region were correlated with subjective value for monetary  incentives56. We adopted coordinates of bilateral 
anterior insula (MNI coordinate, x = − 34, y = 18, z = − 12 and x = 34, y = 16, z = − 18) from a meta-analysis where 
activities in these regions were correlated with the Trust (TG) and the Ultimatum game (UG)18.

Data availability
All the raw data for the current study are available in an open data repository (https:// github. com/ zixta ng/ 
Social_ Punis hment_ fMRI, it is a private repository, and we will make it public upon acceptance of the paper).
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