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The trilemma among CO2 
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This paper examines the relationship among CO2 emissions, energy use, and GDP in Russia using 
annual data ranging from 1990 to 2020. We first conduct time-series analyses (stationarity, structural 
breaks, cointegration, and causality tests). Then, we performed some Machine Learning experiments 
as robustness checks. Both approaches underline a bidirectional causal flow between energy use and 
CO2 emissions; a unidirectional link running from CO2 emissions to real GDP; and the predominance 
of the “neutrality hypothesis” for energy use-GDP nexus. Therefore, energy conservation measures 
should not adversely affect the economic growth path of the country. In the current geopolitical 
scenario, relevant policy implications may be derived.

The increase in the production and consumption activities of societies, especially after the industrial revolu-
tion, is seen as the main reason for the rise in Greenhouse Gases (GHG) in the atmosphere (EPA1). The vast 
majority of GHG is released as carbon dioxide (CO2) emissions as a result of burning fossil fuels (Ardakani and 
Seyedaliakbar2). CO2 emissions account for approximately 80% of total GHG emissions (EPA3). According to 
the IPCC4, anthropogenic CO2 emissions resulting from the combustion of fossil fuels increase global warming 
and cause climatic deterioration (Alam et al.5).

Since CO2 emissions depend on the population and changing economic, technological, and social conditions, 
environmental pollution is considered a by-product of the growth-development process. (Kahouli6). Therefore, 
climate change has been the most challenging environmental problem of our time, and the determination of 
the environment-energy-economic growth link has attracted the attention of researchers (Acheampong et al.7).

It is possible to classify the studies in the existing environment-economics literature as (i) papers investigating 
the relationship between economic growth-energy consumption (Magazzino8,9; Balsalobre-Lorente and Álvarez-
Herranz10; Taghvaee et al.11; Brady and Magazzino12; Ibrahiem13; Balcilar et al.14; Acheampong et al.1,7; Xin-gang 
and Jin15); (ii) studies estimating the nexus between economic growth and environment (Alvarado and Telodo16; 
Nasrollahi et al.17; Wang and Lee18; Wang et al.19); and (iii) papers analyzing the correlation among economic 
growth-energy consumption-environment (Magazzino20; Balsalobre-Lorente et al.21; Benali and Feki22; Peng 
and Wu23; Hasan et al.24; Kongkuah et al.25). This study can be defined as complementary to the previous papers 
in the context of energy economics.

Moreover, the Russian-Ukrainian conflict is one of the factors that has inflamed the already “hot” prices of 
commodities: not only those used as energy sources (oil and gas) but also industrial metals and agricultural 
products (wheat and corn) that feed many countries of the world. Already before the conflict, commodity prices 
had risen sharply, driven by the economic recovery following the Corona Virus Disease 2019 (COVID-19) pan-
demic. The conflict has then complicated the scenario, even if an important aspect should be highlighted: since 
the financial markets thrive on expectations, the rising prices of commodities discount in advance future risks.

Thanks to the large dimension of their territory, Russia and Ukraine are major producers of agricultural raw 
materials. The two countries account for nearly a third of the world’s wheat exports and 15% of maize exports. 
Russia is also rich in natural resources. In addition to natural gas and oil, it boasts 25% of world palladium 
exports, 13% of nickel and platinum, and about 3% of aluminum and copper. Moreover, approximately 38% of 
the natural gas consumed annually in Europe comes from Russia (Magazzino and Mele26).

Also, Russia is one of the world’s leading countries in terms of energy infrastructure and economic per-
formance. It is known for its vast reserves of natural resources, including oil, natural gas, coal, and minerals. 
According to the IEA27 report, Russia maintained its position as the world’s leading exporter of natural gas in 
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2021, while ranking second in crude oil and condensate exports, just behind Saudi Arabia. It was also the third 
largest coal exporter, behind Indonesia and Australia. At the same time, Russia holds a significant position in the 
global energy landscape, playing a crucial role as one of the top three crude oil producers behind Saudi Arabia 
and the United States (US). These powerful fuel reserves are of great importance to the economy of the Russian 
Federation. For instance, in 2021 approximately 45% of Russia’s federal budget was supported by the revenues 
derived from oil and gas (IEA28).

Russia ranks as the fourth-largest emitter of GHG globally, right after China, the US, and India. Furthermore, 
it holds the distinction of being the third-highest historical carbon emitter worldwide, contributing approximately 
7% to the cumulative global CO2 emissions (Carbonbrief29). Despite maintaining its fossil fuel industries, the 
country is gradually increasing its investments in renewable energy and taking steps toward climate initiatives. 
In 2019, Russia became a signatory of the Paris Agreement which is an international treaty focused on addressing 
global warming. Hence, in 2020, the Russian government approved a national action plan to adapt to climate 
change (Statista30).

Considering Russia’s significant natural endowments including energy sources and its economic growth and 
contribution to the GHG, the scope of this study is to estimate the nexus among energy consumption, economic 
growth, and CO2 emissions in Russia for the years 1990–2020. In the analysis, a time-series analysis is performed, 
followed by Machine Learning (ML) tests on the causality flows and ML clustering analyses. Basically, the sample 
choice is related to the following motivations: (a) Russia has the largest proven natural gas reserves in the world 
(Statista31); (b) according to the EIA32 report, Russia was the world’s third-largest producer of petroleum and 
other liquids in 2020 after the USA and Saudi Arabia; (c) it is one of the countries with the highest per capita 
GHG emissions (C2ES33).

Furthermore, the current conflict between Russia and Ukraine raises some cautions. Russia is facing a deep 
financial and economic recession, which puts significant pressure on policymakers to focus on short-term eco-
nomic recovery measures rather than long-term environmental sustainability goals. The Russian government 
chose to prioritize economic growth, which has resulted in an increased focus on oil and gas production, a sig-
nificant contributor to environmental degradation. Additionally, the Russian government has historically been 
skeptical of environmental policies that could potentially harm the country’s economic interests. The government 
has favoured a centralized approach to environmental decision-making, which has resulted in a lack of public 
participation and transparency in environmental policy development. Moreover, the current political climate in 
Russia does not prioritize environmental policies, and the government’s response to environmental issues has 
been relatively weak compared to other countries. Moreover, the country has significant reserves of oil and gas, 
which are essential to its economy. Therefore, the government may not be willing to invest in alternative energy 
sources, which could potentially weaken its economic interests.

The main contributions of this paper to the literature are threefold. Firstly, the literature on the nexus among 
economic growth, CO2 emissions, and energy consumption for Russia is extremely limited. Moreover, only 
standard techniques have been performed. Secondly, to the best of our knowledge, no ML experiments have 
been conducted for the Russian case in the relevant literature. Moreover, we also applied to our dataset some 
recent time-series tests on stationarity, cointegration, and causality. In this way, two completely different empiri-
cal methodologies are shown, giving robust results. Finally, after the conflict between Russia and Ukraine, there 
was a surge in the prices of natural resources (especially gas and oil). Therefore, analyzing the Russian energy 
sector takes on even greater relevance today.

The outline of this article is as follows: in Sect. “Literature overview” the relevant literature is presented. The 
econometric methodology is given in Sect. “Methodology and data”. Section “Empirical findings” consists of the 
empirical results and their discussions. Finally, Sect. “Conclusions and policy implications” gives conclusions 
and policy implications.

Literature overview
Climate change and global warming are among the most important ongoing problems in the world, almost affect-
ing everything adversely from economies (industrial production, agriculture, tourism, service, and other sectors) 
to demography (urbanization and ruralization), and hence the quality of life in general. Thus, these phenomena 
should be monitored by the level of CO2 emissions. Therefore, investigating the sources and consequences of 
CO2 emissions might be considered one of the most important research topics in the literature.

In this section, the relevant literature is evaluated in three different groups. Since one of the most important 
factors causing global warming is CO2 emissions due to energy use, the first group consists of papers inves-
tigating the relationship between energy consumption and CO2 emissions. Many seminal types of research 
have analyzed the nexus between energy consumption and the environment (Soytas and Sari34; Magazzino35,36; 
Zoundi37; Bilgili et al.38).

According to Table 1, the related research can be classified into, based on their samples, (a) single-country 
studies (Soytas and Sari34; Lin and Moubarak39; Jaforullah and King40; Ben Jebli and Ben Youssef41; Beşer and 
Beşer42; Mirzaei and Bekri43; Bekhet and Othman44; Sinha and Shahbaz45; Waheed et al.46; Kuşkaya and Bilgili47; 
Kim et al.48; Kuşkaya49; Ozgur et al.50; Apergis et al.51; Kartal et al.52; Kuşkaya et al.53; Mukhtarov et al.54) or (b) 
multi-country studies (Apergis et al.55; Zoundi37; Belaïd and Zrelli56; Chontanawat57; Saidi and Omri58; Ade-
bayo et al.59). It is seen that auto-regressive distributed lags (ARDL), vector error correction model (VECM), 
and Granger causality (GC) analyses are conducted mostly in studies for a single country as seen in Table 1. 
In most of the papers in Table 1, there is a consensus that increasing the usage of renewable energy reduces 
CO2 emissions (Lin and Moubarak39; Jaforullah and King40; Ben Jebli and Ben Youssef41; Mirzaei and Bekri43; 
Bekhet and Othman44; Ozgur et al.50; Apergis et al.51; Kuşkaya et al.53; Mukhtarov et al.54). On the other hand, 
according to Beşer and Beşer42, total energy usage increased CO2 emissions for the Turkish economy from 1960 
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to 2015 period. Similarly, Boontome et al.60 claim that the use of non-renewable energy in Thailand during the 
1971–2013 period would have increased CO2 emissions. Danish et al.61 reached similar results for Pakistan with 
ARDL and VECM analyses.

The second group of researchers examined the relationship between energy use or consumption (EC) and 
economic growth (EG). The results were evaluated according to four different hypotheses: growth, conservation, 
feedback, and neutrality (see Table 2).

•	 Growth hypothesis (EC⟹EG): it states a unidirectional causality from energy use to economic growth 
(Narayan and Smyth62; Lee and Chang63; Apergis and Payne64,65; Bilgili and Ozturk66; Magazzino67; Ozturk 
and Bilgili68; Aslan69; Adams et al.70; Ntanos et al.71; Luqman et al.72; Shahbaz et al.73; Gyimah et al.74; Espoir 
et al.75; Mohammadi et al.76; Simionescu77). If the growth hypothesis is valid, policies to reduce energy use 
have negative effects on economic growth.

•	 Conservation hypothesis (EG⟹EC): it is valid if there is a unidirectional causality from economic growth 
to energy usage (Sadorsky78; Menyah and Wolde-Rufael79; Ocal and Aslan80). In this case, policies that change 
energy usage do not have a negative impact on economic growth.

•	 Feedback hypothesis (EC⟺EG): it is supported if there is a bidirectional causality between energy use and 
economic growth (Belloumi81; Pao and Fu82; Acheampong et al.7; Lawal83; Simionescu77).

•	 Neutrality hypothesis (EC⇎EG): it implies the absence of any causal relationship between energy use and 
economic growth (Lee and Chang63; Pao and Fu84). In this situation, policies changing energy use do not 
affect economic growth.

Table 1.   Summary of the selected papers on the energy consumption-CO2 emissions relationship. ⟹ (⇏) 
represent unidirectional (non-) causality. ⟺ (⇎) indicate bidirectional (non-) causality. ARDL auto-
regressive distributed lags, BEC biomass energy consumption, CO2 carbon dioxide emissions, DYNARDL 
dynamic auto-regressive distributed lags, DOLS dynamic ordinary least squares method, EC energy 
consumption, EG economic growth, FMOLS fully modified ordinary least squares, GMM generalized 
method of moments, GPM grey prediction model, GS2SLS generalized spatial two-stage least squares, 
HEC JC Johansen cointegration, LR long-run, NCEC nuclear energy consumption, NREC nonrenewable 
energy consumption, PMG pooled mean group, PVAR panel vector auto-regression, REC renewable energy 
consumption, SR short-run, TSEC total solar energy consumption, VECM vector error correction model, WEC 
waste energy consumption, WNEC wind energy consumption.

Author(s) Country Period Methodology Findings

Soytas and Sarı (2009) Turkey 1960–2000 VAR, GC EC⇑ CO2⇓

Apergis et al. (2010) 19 developed and developing economies 1984–2007 Panel model NCEC⇑ CO2⇓

Lin and Moubarak (2014) China 1977–2011 JC, ARDL REC⇎CO2

Jaforullah and King (2015) USA 1965–2012 JC, VECM, GC REC⇑ CO2⇓

Ben Jebli and Ben Youssef (2015) Tunisia 1980–2009 ARDL, VECM REC⇑ CO2⇓ NREC⇑ CO2⇑

Beşer and Beşer (2017) Turkey 1960–2015 ARDL EC⇑ CO2⇑

Boontome et al. (2017) Thailand 1971–2013 Cointegration, causality NREC⇑ CO2⇑

Mirzaei and Bekri (2017) Iran 2000–2025 Simulation EC⇑ CO2 ⇑

Zoundi (2017) 25 selected African countries 1980–2012 Panel model REC⇑ CO2⇓

Bekhet and Othman (2018) Malaysia 1971–2015 ARDL, VECM, GC REC⟺CO2

Sinha and Shahbaz (2018) India 1971–2015 ARDL REC⇑ CO2⇓

Waheed et al. (2018) Pakistan 1990–2014 ARDL EC⇑ CO2⇓

Belaïd and Zrelli (2019) 9 Mediterranean countries 1980–2014 PMG, ARDL REC⟺CO2

Danish et al. (2018) Pakistan 1990–2015 ARDL, VECM EC⇑ CO2 ⇑

Chontanawat (2020) ASEAN 1971–2015 Cointegration, causality EC⟺CO2

Kuşkaya and Bilgili (2020) USA 1989:1–2017:8 Wavelet analysis WNEC⇑ CO2⇓

Kim et al. (2020) USA 1973:1–2016:12 ARDL BEC⇑ CO2⇓

Saidi and Omri (2020) 15 major renewable energy-consuming 
countries 1990–2014 FMOLS, VECM REC⟺CO2

Kuşkaya (2022) USA 1989:1–2020:1 Wavelet analysis RSEC⇑ CO2⇓

Ozgur et al. (2022) India 1970–2016 Fourier ARDL NCEC⇑ CO2⇓

Adebayo et al. (2023) BRICS countries 1990:Q1:2019:Q4 Wavelet analysis NREC⇑ CO2⇑

Apergis et al. (2023) Uzbekistan 1985–2020 ARDL HEC⇑ CO2⇓ NREC⇑ 
CO2⇑

Kartal et al. (2023) France 1970–2021 DYNARDL NCEC⇑ CO2⇓

Kuşkaya et al. (2023) USA 1990:1–2022:6 Wavelet analysis TSEC⇑ CO2⇓

Mukhtarov et al. (2023) Azerbaijan 1993–2019 DOLS REC⇑ CO2⇓
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Energy is considered an engine for economic growth. However, energy has undesirable impacts on environ-
mental degradation as it leads to pollutant emissions (Nasir and Rehman85). Therefore, the third group of works 
consists of papers examining the relationship between economic growth and the environment (in particular, CO2 
emissions). This group presents studies investigating the validity of the Environmental Kuznets Curve (EKC). 
As shown in Table 3, the validity of the EKC hypothesis has been proven in most of the studies conducted in the 
environmental-economics literature (Dijkgraaf and Vollebergh86; Iwata et al.87; Nasir and Rehman85; Castiglione 
et al.88; Esteve and Tamarit89; Shahbaz et al.90; Baek and Kim91; Sulaiman et al.92; Heidari et al.93; Al-Mulali and 
Ozturk94; Bilgili et al.95; Dogan and Seker96; Ulucak and Bilgili97; Koçak and Şarkgüneşi98; Köksal et al.99; Jahanger 
et al.100; Ozturk et al.101; Pata et al.102). Contrary to these studies, Roca and Alcántara103, He and Richard104, Arouri 
et al.105, Ozturk and Al-Mulali106, Dogan and Turkekul107, Liu et al.108 and Pata and Tanriover109 do not reach 
results able to provide empirical support to the EKC hypothesis. Studies investigating the EKC hypothesis for 
time-series generally adopt ARDL and Johansen Cointegration (JC) methodologies.

After reviewing the relevant studies in the literature, one can state that Russia can be considered a reason-
able and valuable choice for an applied analysis as it is one of the countries with the highest per capita GHG 
emissions. Moreover, it is one of the three largest oil-producing countries in the world. On the other hand, this 
study aims to contribute to the literature in terms of the methodology adopted. In particular, the novelty of this 
paper is the combination of traditional time-series analyses together with the development of ML techniques.

Methodology and data
The empirical analysis starts with the inspection of the stationarity properties of the series. We performed sev-
eral recent unit root and stationarity tests. The Kapetanios and Shin110 test is more powerful than the linear unit 
root tests if there are significant asymmetries. This test is an extended version of the seminal unit root test of 
Kapetanios et al.111. Kapetanios et al.111 introduced a model for an Exponential Smooth Transition Autoregres-
sive (ESTAR) process, developing a nonlinear test to allow the structural change to be determined internally. 
In addition, the Leybourne112 Augmented Dickey-Fuller (ADF)-max unit-root test and the Elliott et al.113 are 
performed. Afterwards, the Lo114 modified rescaled range test for long-range dependence of a time-series is 
used, to better understand the features of our data. Then, in order to explore the (eventual) presence of a struc-
tural breaks in the dataset, we run the recent Ditzen et al.115 test, which implements multiple tests for structural 
breaks in time-series and panel data models. The number and period of occurrence of structural breaks can 
be known or unknown. Furthermore, to examine the long-run relationship among the variables, we apply the 
Bayer and Hanck116 combined cointegration approach. This test combines the results of previous cointegration 
approaches (Engle and Granger117; Johansen118; Boswijk119; Banerjee et al.120) and provides Fisher F statistics 

Table 2.   Summary of the selected papers on the economic growth-energy consumption relationship. DOLS 
dynamic ordinary least squares; GC granger causality; SSA Sub-Saharan Africa.

Author(s) Country Period Methodology Supported hypothesis

Lee and Chang (2008) 16 Asian countries 1971–2002 Panel model Neutrality, growth

Narayan and Smyth (2008) G7-countries 1972–2002 Panel model Growth

Belloumi (2009) Tunisia 1971–2004 VAR Feedback

Sadorsky (2009) 18 emerging countries 1994–2003 Panel cointegration, FMOLS Conservation

Menyah and Wolde-Rufael (2010) USA 1960–2007 VAR Conservation

Apergis and Payne (2010a) 20 OECD countries 1985–2005 FMOLS Growth

Apergis and Payne (2010b) 13 Eurasian countries 1992–2007 Panel model Growth

Ocal and Aslan (2013) Turkey 1990–2010 Toda-Yamamoto causality Conservation

Pao and Fu (2013) Brazil 1980–2010 Cointegration, ECM Feedback

Bilgili and Ozturk (2015) G7 countries 1980–2009 Panel model Growth

Magazzino (2015) Italy 1970–2009 VAR, VECM Growth

Ozturk and Bilgili (2015) 51 SSA countries 1980–2009 Panel model Growth

Pao and Fu (2015) Mexico 2980–2011 Lotka-Volterra model Neutrality

Aslan (2016) USA 1961–2011 ARDL Growth

Adams et al. (2018) 30 SSA countries 1980–2012 DOLS-FMOLS Growth

Ntanos et al. (2018) 25 European countries 2007–2016 Panel model Growth

Luqman et al. (2019) Pakistan 1990–2016 NARDL Growth

Shahbaz et al. (2020) 38 REC countries 1990–2018 DOLS, FMOLS Growth

Acheampong et al. (2021) 23 emerging economies 1970–2015 IV-GMM Feedback

Gyimah et al. (2022) Ghana 1990–2015 GC Growth

Espoir et al. (2023) African countries 1980–2018 Panel model Growth

Lawal (2023) Africa 1980–2019 Frequency domain analysis Feedback

Mohammadi et al. (2023) Selected developed and developing countries f 1993–2019 FMOLS Dumitrescu and Hurlin heterogeneous panel 
causality Growth

Simionescu (2023) 13 EU countries 2002–2021 Panel model Feedback, growth
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for more conclusive and reliable empirical findings. Finally, this study employs the Breitung and Candelon121 
Spectral Granger (BCSG) causality test. Such a test is superior to standard causality tests because it can predict 
the target variables at precise time frequencies. Hence, the technique enables us to identify the historical changes 
to implement the policy intervention. However, the methodology is limited to a finite time horizon and cannot 
predict infinite time models.

In recent years, there has been a great interest in causality discovery research and its relevant areas (Spirtes 
and Zhang122; Nogueira et al.123). Identifying the individual causal relationships between economic and financial 
time-series is necessary to characterize the structure of causality in an economic system. Understanding this 
element is essential in almost all cases involving studying complex economic systems (Zaremba and Aste124).

Various techniques have been proposed to investigate causal relationships in time-series. In this work, an 
approach to detect causality based on GC testing (Granger125) is adopted, together with a nonlinear GC test. Thus, 
it is essential to notice that we are explicitly dealing with time-series, which can show some linear relationships; if 
these are nonlinear, we must also consider a nonlinear version of the test. Following Granger125, Hmamouche126, 
and Gkillas et al.127, in order to perform a linear version of the GC test, we can write:

comparing this model with a second one containing the variable to be tested in the causal relationship (X).

where l is a parameter representing the lag considered. At the same time, [α0, …, αl] and [β0, …, βl] are the model’s 
parameters. Finally, the residual term Z, is a white noise process. The comparison is performed by considering 
the predictive power of the causal factor X against the information provided only by the lags of the Y.

The number of lags is chosen to cover the relevant, informative observations of the past, which may also be 
pertinent considering the degree of freedom. When the lags are added, the degree of freedom decreases directly 
with the addition of the lags. Thus, to assess the statistical significance, an F test is utilized to examine the validity 

(1)Yt = α0 +
∑l

i=1 αiYt−i + Zt ,

(2)Yt = α0 +

l
∑

i=1

αiYt−i +

l
∑

i=1

βiXt−i + Zt ,

Table 3.   Summary of the selected papers on the economic growth-CO2 emissions relationship. CUP-BC 
continuously updated-bias corrected, CUP-FM continuously updated-fully modified, DCCE dynamic common 
correlated effects, FADL fourier auto-regressive distributive lags, MMQR method of moment quantile 
regression. 

Author(s) Country(s) Period Methodology EKC hypothesis

Roca and Alcántara (2001) Spain 1972–1997 Decomposition method No

Dijkgraaf and Vollebergh (2005) 24 OECD countries 1960–1997 Panel model Yes

Iwata et al. (2010) France 1960–2003 ARDL Yes

He and Richard (2010) Canada 1948–2004 Cubic parametric models No

Nasir and Rehman (2011) Pakistan 1972–2008 JC Yes

Arouri et al. (2012) 12 MENA countries 1981–2005 Panel cointegration No

Castiglione et al. (2012) 28 countries 1996–2008 2SLS Yes

Esteve and Tamarit (2012) Spain 1857–2007 Threshold cointegration Yes

Shahbaz et al. (2013) Romania 1980–2010 ARDL Yes

Baek and Kim (2013) Korea 1971–2007 ARDL Yes

Sulaiman et al. (2013) Malaysia 1980–2009 ARDL Yes

Ozturk and Al-Mulali (2015) Cambodia 1996–2012 GMM,2SLS No

Al-Mulali and Ozturk (2016) 27 advanced economies 1990–2012 Panel models Yes

Dogan and Seker (2016) Top renewable energy countries 1985–2011 Heterogeneous panel with cross-section dependence, cointegration Yes

Dogan and Turkekul (2016) USA 1960–2010 ARDL, GC No

Heidari et al. (2015) ASEAN countries 1980–2008 Panel regression Yes

Ulucak and Bilgili (2018) High, middle, and low-income countries 1961–2013 CUP-FM, CUP-BC Yes

Bilgili et al. (2016) 17 OECD countries 1977–2010 FMOLS, DOLS Yes

Liu et al. (2017) Asian countries 1970–2013 FMOLS, DOLS, OLS No

Koçak and Şarkgüneşi (2018) Turkey 1974–2013 Cointegration with structural breaks Yes

Köksal et al. (2020) Turkey 1961–2014 JC Yes

Jahanger et al. (2023) Top ten manufacturing countries 1990–2020 MMQR Yes

Jahanger et al. (2023) Nuclear energy-generating nations 1990–2018 DCCE Yes

Ozturk et al. (2023) South Asia 1971–2018 FMOLS, DOLS, PMG Yes

Pata et al. (2023) Germany 1974–2018 FADL Yes

Pata and Tanriover (2023) Top ten tourism destinations 2004–2018 CUP-FM, CUP-BC, CS-ARDL No
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of the null hypothesis, which states that the series X does not Granger cause the series Y. The test can be repeated 
considering both the causality directions (Ye and Zhang128).

When the time-series does not change linearly over time, Neural Networks (NNs) are widely used in causality 
detection (Marcinkevičs and Vogt129). So, we considered a nonlinear Granger test based on a NN design. Given 
a multivariate time-series {Y1, …, Yp} considering both the target variable and also p predictors variables, the 
causality test results considering the Vector Auto-Regressive Neural Network (VARNN) of order p model can 
be interpreted similarly to the classical Granger linear causality test.

Therefore, the VARNN(p) model can be stated as a Multi-Layer Perceptron (MLP) NN model for predicting 
the behaviour of Y over time. According to this approach, in addition to the target variable and its lags, l lag 
values of the variable predictors are considered to make Y predictions.

Furthermore, an optimization algorithm based on the stochastic gradient descent algorithm is used, allowing 
the weights to be updated (Gkillas et al.127). The VARNN(p) model can be written in this way:

where φnn refers to the network function, and Zt is the residual (Hmamouche126). In our case, we have two dif-
ferent models to consider. Model 1 is the following:

while model 2 can be written as:

Here, the two network functions are represented as φ1nn and φ2nn using the VARNN(p) model. An F test is 
utilized in testing against the null hypothesis of no causality. Again, in this case, this hypothesis is that the eco-
nomic variable represented by the time-series X does not cause the time-series Y. If we refuse the null hypothesis, 
we find evidence of causality.

In order to confirm previous results, we apply an ML unsupervised approach to evaluate the time-series 
similarity structure. In this way, we adopt a method known as clustering or unsupervised learning to classify 
data with no prior knowledge of the classes to be categorized (Liao130; Aghabozorgi et al.131). Therefore, cluster-
ing time-series is an unsupervised learning approach that data analysts consider to get some insights into the 
patterns on a dataset (Ariff et al.132; Drago and Talamo133).

In general, time-series clustering may be very useful in many applications and scientific areas. In this respect, 
a growing interest in time-series clustering grows, particularly in the search and analysis for similarities across 
long-term time-series in fields such as economic or financial applications. For example, time-series clustering 
can be used for similar group data to be easily analyzed and then used for forecasting purposes (Corona et al.134; 
Franses and Wiemann135) or portfolio optimization (Guam and Jiang136; Tola et al.137).

Clustering can be defined as a technique for classifying objects related to unknown classes. In this respect, 
time-series can be classified into different groups with no previous information about their participation in a 
single group (Liao130; Wang et al.138). On a more technical level, clusters are constructed by grouping statisti-
cal observations within a cluster with the most significant similarity between the observations inside the same 
group and the lowest similarity to those outside the cluster (Fu139). However, a typical data clustering approach 
to time-series depends also on the data structure (homogeneous or not homogeneous time-series, for instance). 
A different approach to clustering time-series based on temporal representation was proposed by Drago and 
Scepi140 and Drago et al.141, which is very suitable for long time-series and high-frequency data.

In this work, we have considered the time-series classified on their structure to identify their similarities 
in response to shocks. This way, the clustering approach explores and evaluates the data structure to make the 
econometric analysis more robust. Moreover, the data exploration allows us to evaluate better and interpret the 
econometric models’ results.

It is possible, for that purpose, to consider an unsupervised ML approach to support the different results of 
the causality tests. In this respect, we can explore the patterns in the data, expecting that the time-series showing 
patterns of causality is also characterized by higher similarity. Identifying the level of similarity of the different 
time-series is possible to imply a measurement of the joint dynamics over time.

Various distances are proposed and used in time-series clustering (Liao130; Aghabozorgi et al.131; Montero 
and Vilar142; Mori et al.143). In order to evaluate the distance between the two-time-series XT and YT. We consider 
four relevant distances in time-series clustering (Leung and James144). These distances represent a way to assess 
the similarity between the different economic time-series considered in our work.

The first distance we use is the Euclidean, derived from the Minkowski distance (Montero and Vilar142):

The Euclidean distance is a classical distance used in time-series clustering (Aghabozorgi et al.131).
However, a different approach is considered using a second distance, the Frechet one (c and Mannila145). The 

advantage of using this distance is that we cluster the time-series considering the order of observations and the 
two sets of points in each row.

In this respect, start by considering:

(3)Yt = φnn
(

Yt−1, . . . ,Yt−l , . . . ,Yp(t−1), . . . ,Yp(t−l)

)

+ Zt ,

(4)Yt = φ1nn
(

Yt−1, . . . ,Yt−l

)

+ Zt ,

(5)Yt = φ2nn
(

Yt−1, . . . ,Yt−l ,Xt−1, . . . ,Xt−l

)

+ Zt ,

(6)dEuclidean(XT ,YT ) =

(

T
∑
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(Xt − Yt)
2

)1/2
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where ai, bj ∈ {1,…,T} and a1 = b1 = 1, am = bm = T, where at the same time: a1+1 = a1 or also a1+1 (and at the same 
time considering b with the same characteristics of a) for i ∈ {1,…,m-1}.

Following Montero and Vilar142, Eiter and Mannila145, and Driemel et al.146, the Frechet distance can be 
written as:

The outliers can affect the Frechet distance (Brankovic et al.147), so we consider a third approach: the dynamic 
time warping distance (Vintsyuk148; Hiroaki and Seibi149; Giorgino150). The dynamic time warping distance, a 
known approach in many different contexts, was recently considered relevant in economic applications to analyze 
the joint dynamics between the different time-series (Franses and Wiemann135).

Liao130 clarified that the advantage of using the Dynamic Time Warping (DTW) distance is that the algorithm 
can compare discrete sequences with sequences of continuous values where the two series are synchronized 
within DTW to align them as much as possible. So, the DTW algorithm is a generalization of traditional algo-
rithms used to compare discrete sequences with sequences of continuous values.

As the Frechet distance, we start by minimizing the distance between combinations of observations (Xai ,Ybi ).
Thus, we have:

Finally, as the last clustering approach, we consider the Correlation distance. We can follow Golay et al.151, 
Montero and Vilar142, Kim and Kim152, and Drago and Scozzari153. The Pearson’s correlation distance between 
two time-series can be written as:

where COR is the Pearson’s correlation between the two considered time-series XT and YT. The interpretation of 
the Correlation distance between time-series is essential: when there is a higher correlation between two time-
series, their distance becomes closer (Kim and Kim152). The Correlation distance is advantageous for capturing 
and describing a linear pattern between different series.

Nevertheless, it can be demonstrated that the Pearson’s correlation distance on clustering time-series is 
equivalent to the z-score normalized, squared Euclidean distance (Berthold and Höppner154). This point allows 
higher robustness for Pearson’s correlation distance.

This approach evaluates the similarity in the yearly series. The results of the approach can be interpreted as 
follows: a higher correlation between two time-series exists, and a lower dissimilarity between the two- time-
series can be identified simultaneously.

The different distance matrices allow assessing the similarity of each relationship (and also causal relationship) 
between the time-series, where we explicitly consider simulated time-series in order as a statistical benchmark. 
Causality relationships, both linear and nonlinear, tend to be characterized by a higher similarity in the time-
series dynamics. In economic terms, more substantial similarity is also relevant to identifying some relationships 
in the data that can be related by other variables acting as common determinants; yet, we expect than a higher 
similarity is increased by the causality.

As concerns our dataset, CO2 is CO2 emissions (in metric tons per capita), from the International Energy 
Agency (IEA) database (https://​www.​iea.​org/​data-​and-​stati​stics); PCGDP is per capita GDP (in 2000 US$), 
from the Federal Reserve Economic Data (FRED) database (https://​fred.​stlou​isfed.​org/); and PCEU is per capita 
energy use (in kg of oil equivalent), from World Bank (WB) database (https://​data.​world​bank.​org/). To ensure 
the asymptotic properties, we derived the logarithmic transformations of each variable. The scatterplot matrices 
of the variables are given in Fig. 1.

Empirical findings
The results of several unit root and stationarity tests provided in Table 4 show that the analyzed series are non-
stationary at levels, since – in general – we cannot reject the null hypothesis (H0) of non-stationarity, for each 
series.

To check the previous results, the Lo114 Modified Rescaled Range/Standard deviation (R/S) test and the 
Hurst-Mandelbrot Classical R/S test (Hurst155; Mandelbrot156) for long-range dependence are performed. The 
results are given in Table 5.

Applied to our sample, the two R/S tests fail to reject the null hypothesis of no long-range dependence at the 
95% significance level for carbon dioxide emissions, whilst the other two series (energy consumption and real 
GDP) reject the H0 hypothesis. Thus, there is no evidence that the emissions series is long-range dependent, 
while evidence of long-run dependence in the energy consumption and real GDP emerges.

To analyze the presence of structural breaks in the series the recent Ditzen et al.115 test is applied, which 
implements multiple tests for structural breaks in time-series.

Following Bai and Perron157, this test is able to detect multiple breaks at unknown break dates. The results 
in Table 6 show that, when we test the first hypothesis of no break against the alternative of s = 1 break, the 
null is rejected (at any level). The estimated break points correspond to 1996 (oil crisis) and 2008 (world 

(7)r =
((
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)

, . . . ,
(

Xam ,Ybm

))

,

(8)DFrechet(XT ,YT ) = min
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Figure 1.   Scatterplot matrices. Sources: authors’ elaborations in STATA.

Table 4.   Results for unit roots and stationarity tests. KSUR Kapetanios and Shin test; KSSUR: Kapetanios, 
Shin, and Snell test; ERS: Elliott, Rothenberg, and Stock test. Lag length is chosen through AIC. 5% Critical 
Values in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.

Variable KSUR KSSUR Leybourne ERS

A: intercept

 LCO2E  − 2.123 (− 2.859)  − 1.674 (− 3.055) 0.656 (− 2.140)  − 2.078 (− 2.608)

 LEU  − 1.881 (− 2.964)  − 1.771 (− 3.102) 0.959 (− 1.751)  − 2.655* (− 2.720)

 LRGDPPC  − 2.832** (− 2.768)  − 2.543 (− 2.986)  − 1.246 (− 2.329)  − 2.193* (− 2.352)

B: intercept and trend

 LCO2E  − 1.754 (− 3.558)  − 1.695 (− 3.512)  − 0.080 (− 2.969)  − 2.478 (− 3.737)

 LEU  − 1.802 (− 3.677)  − 1.774 (− 3.569)  − 0.537 (− 2.258)  − 2.132 (− 3.904)

 LRGDPPC  − 2.869 (− 3.446)  − 2.878 (− 3.408)  − 3.337** (− 3.133)  − 3.591* (− 3.619)

Table 5.   R/S test results. Andrews’s criterion applied. CVs: 90%: [0.861, 1.747]; 95%: [0.809, 1.862]; 99%: 
[0.721, 2.098].

Test statistic LCO2E LEU LRGDPPC

Lo modified R/S 1.82 0.704 3.49

Hurst-Mandelbrot classical R/S 1.64 1.96 2.52

Table 6.   Results for multiple breaks test. Bai and Perron (1998) 157 Critical values. ***p < 0.01, **p < 0.05, 
*p < 0.10. Trimming: 0.15. a Estimated break points: 1996, 2008, bevaluated at a level of 0.95. Estimated break 
point: 2009, cs = 1.

Test statistic 1% CV 5% CV 10% CV

supW(τ)a 8.65*** 6.08 4.88 4.32

UDmax(τ)b 13.84*** 7.71 5.85 5.08

F(s + 1|s)c 0.02 16.84 12.95 11.40



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10225  | https://doi.org/10.1038/s41598-023-37251-5

www.nature.com/scientificreports/

economic-financial crisis). With the second hypothesis, we test the absence of breaks against a lower and upper 
limit of breaks (in this case, 1 ≤ s ≤ 2); again, H0 is soundly rejected. Now, the estimated break point is 2009. 
Finally, the last hypothesis tests the null of s = 1 break against the alternative of one more break (s + 1 = 2); here, 
we cannot reject the null hypothesis. Thus, we can conclude that a single break appears in these data. To check 
the robustness of this result, following again the Ditzen et al.115 approach, a test for multiple breaks at known 
break dates has been performed. We get a W(τ) test statistic = 13.84 (with a P-Value = 0.00); thus, the previous 
finding of a break in 2009 is confirmed.

Since non-stationarity emerges for data at levels, we can test the (eventual) presence of a long-run relation-
ship, or a linear combination of the series which is stationary (having a lower order of integration) (Engle and 
Granger117). As the next step, we check for the (eventual) presence of a long-run relationship among the selected 
series, applying the Bayer and Hanck116 procedure (see Table 7). The first model, which in the deterministic 
specification does not allow either a constant or a trend, gives a test statistic = 20.0827 (with a 5% Critical 
value = 10.838 and a 10% Critical Value = 8.457), based on Engle and Granger117 and Johansen158 tests, and a test 
statistic = 22.5377 (with a 5% Critical value = 20.776 and a 10% Critical value = 16.171), based on Engle-Granger, 
Johansen, Boswijk, and Banerjee et al. tests. Looking at these findings, we can assume that a cointegrating rela-
tion exists. The second model includes an unrestricted constant, with a test statistic = 14.1139 (with a 5% Criti-
cal value = 10.895 and a 10% Critical value = 8.479), based on Engle and Granger and Johansen tests, and a test 
statistic = 15.9980 (with a 5% Critical value = 21.106 and a 10% Critical value = 16.444), based on all four tests. In 
this case, we find only a weak empirical sustain in favour of the presence of cointegration. Finally, the last model 
includes both for a linear and a quadratic trend, with a test statistic = 16.8009 (with a 5% Critical value = 10.858 
and a 10% Critical value = 8.451), based on Engle and Granger and Johansen tests, and a test statistic = 32.8171 
(with a 5% Critical value = 21.342 and a 10% Critical value = 16.507), based on all tests. Here, the evidence of a 
cointegrating relationship is very clear, and the null hypothesis can be rejected at any significance level.

In Fig. 2, the main results of the BCSG test are shown. The relationships among the variables are assessed 
over the time–frequency domain. Each figure displays the Wald statistics over all frequencies ω ∈ (0; π). The test 
statistics for the Granger non-causality from energy use to carbon emissions (Fig. 2a) are significant at the 10% 
level for all frequencies, while the null hypothesis of no GC is rejected at the 5% significance level for frequency in 
the range ω ∈ (0; 2.50). The causal flow in the reverse direction (from LCO2E to LEU) shows test statistics above 
the critical bounds on the whole frequency spectrum (0; 3.14), so that the H0 hypothesis can be easily rejected at 
any significance level (Fig. 2b). Thus, we can conclude that a bidirectional causal flow – with a feedback mecha-
nism – emerges as regards the energy use-CO2 emissions nexus. Real GDP is found to cause emissions at a 5% 
level in the range ω ∈ (0; 0.18) and (0.51; 0.61), and at a 1% level in (0.19; 0.50); while for frequency ≥ 0.62 the 
null is not rejected (Fig. 2c). On the other hand, CO2 emissions cause real GDP at least at a 5% significance level 
for frequencies ≤ 1.57; at a 10% level in the range ω ∈ (1.58; 1.96); then, for ω ≥ 1.97 the calculated test statistic 
is lower than the Critical Values (Fig. 2d). Thus, we found that the causality analyses are really sensitive to the 
selected frequency. Looking at the entire frequency spectrum, we can state that a unidirectional causal flow run-
ning from CO2 emissions to real GDP exists. For the last couple of variables, real GDP is found to significantly 
affect energy use for frequencies ≤ 0.65 at a 5% level in the range; for frequencies in the range ω ∈ (0.76; 0.73) at 
a 10% level in the range; while, for ω ≥ 0.74 the calculated test statistic is lower than the Critical Values (Fig. 2e). 
Instead, energy use Granger causes real GDP up to ω = 0.80 at least at a 5% significance level. Therefore, we can 
state that for low frequencies a bidirectional causal link is discovered; however, for medium and high frequencies, 
the empirical evidence is in favor of the neutrality hypothesis.

Table 7.   Results for Bayer-Hanck test for cointegration. Model 1: do not include a trend or a constant in 
the model; Model 2: include an unrestricted constant in the model; Model 3: include a linear trend in the 
cointegrating equations and a quadratic trend in the undifferenced data. ***p < 0.01, **p < 0.05, *p < 0.10.

Test Test statistic P-value

Model 1

 Engle-Granger  − 3.1375* 0.0726

 Johansen 29.5223*** 0.0006

 Banerjee-Dolado-Mestre 0.9454 0.9794

 Boswijk 6.1926 0.2992

Model 2

 Engle-Granger  − 1.0758 0.9571

 Johansen 32.5652*** 0.0009

 Banerjee-Dolado-Mestre  − 0.7985 0.9068

 Boswijk 7.0497 0.4299

Model 3

 Engle-Granger  − 3.7396 0.1183

 Johansen 34.4612*** 0.0019

 Banerjee-Dolado-Mestre  − 4.1411** 0.0275

 Boswijk 21.4575** 0.0121
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Figure 2.   Breitung-Candelon Spectral Granger causality test results. Confidence level on y-axis. Geweke-
type conditioning was used. The following relationships are empirically tested: LEU → LCO2E: innovation 
in energy use causes CO2 emissions. LCO2E → LEU: innovation in CO2 emissions causes energy use. 
LRGDPPC → LCO2E: innovation in real GDP causes CO2 emissions. LCO2E → LRGDPPC: innovation in CO2 
emissions causes real GDP. LRGDPPC → LEU: innovation in real GDP causes energy use. LEU → LRGDPPC: 
innovation in energy use causes real GDP. Sources: authors’ elaborations in STATA. 
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Finally, generally speaking, the test results according to Hosoya-type conditioning are qualitatively similar.
In addition, as robustness checks, we implemented unsupervised ML techniques on clusterization. The com-

putational approach has been developed in R programming language. First, the three variables are transformed, 
deriving their log transformations first differences. Then, we perform the linear GC test. Finally, a nonlinear 
causality test is conducted.

The results for the linear Granger tests are given in Table 8. It emerges a bidirectional causal flow (feedback 
mechanism) between energy use and CO2 emissions. Thus, energy use causes CO2 emission, implying that 
an increase in energy use could lead to an increase in CO2 emissions, and vice versa. These results imply that 
Russia was dependent on carbon energy use for its fast economic growth in the past, causing considerable CO2 
emissions. Furthermore, the “neutrality hypothesis” holds regarding the relationship between energy use and 
aggregate income, which states that there is no causality (in either direction) between the variables. Under the 
“neutrality hypothesis”, the energy conservation measures do not adversely affect the economic growth path. 
Therefore, being these two variables mutually independent, we can state that energy consumption is not related 
to GDP, so that neither conservative nor expansive energy policies may have an effect on economic growth. 
Finally, a weak causality running from carbon emissions to real GDP is found (which is significant at a 10% level).

Table 8 also reports the Granger Causality Index to quantitatively evaluate the causality nexus. Here, it is 
observed that the higher scores are reached for the direction of causality running from energy use to CO2 emis-
sions (0.75), from CO2 emissions to energy use (0.89), and from CO2 emissions to aggregate income (0.46).

In addition, the nonlinear GC tests are performed. The findings in Table 9 clearly clarify that none of the tested 
relations has a nonlinear feature. Indeed, we cannot reject the null hypothesis for each test.

The relationship between changes in CO2 emissions and changes in energy use are well-established in the 
literature internationally. We tested this causal relationship for Russia, finding that they are consistent with a 
lot of previous studies. The relationship among energy use, CO2 emissions, and real GDP has been empirically 
examined for a large variety of countries (Sohag et al.159; Li and Su160; He et al.161). This literature showed that CO2 
emissions increase when energy use increases, mainly from fossil fuels. In the same way, a decrease in energy use 
can lower CO2 emissions, positively affecting the environment. Energy production from fossil fuels is the primary 
source of CO2 emissions worldwide. Therefore, considering the role of the population and the role of urbanization 
as well, energy use and CO2 emissions are positively correlated (Shi162; Poumanyvong and Kaneko163). However, 
not all changes in energy use will have the same impact on CO2 emissions. For example, if there is a shift from 
using fossil fuels to renewable energy sources, this may cause a CO2 emissions reduction although in the pres-
ence of an energy use raise (Hickman et al.164). On the other hand, efforts to reduce energy consumption and 
transition to renewable energy sources can diminish CO2 emissions (Li and Su160; Salahuddin165). However, a 
variation in CO2 emissions due to energy consumption can lead to a fluctuation in energy use in the medium-
long term (Hwang and Yoo166). Similar considerations can be made considering the role of GDP. In fact, a CO2 
increase can follow the economic growth process (Zhang et al.167). On the other hand, shocks to CO2 series can 
determine the real GDP (Bozkurt and Akan168; Saidi and Hammami169).

Overall, the relevance of the results is twofold. Firstly, it is possible to observe an abundant literature on the 
bidirectional causal flow between the energy use and CO2 emissions. This is very important because investigat-
ing the causality of the relationship is more straightforward in determining policy implications and measures. 
Nevertheless, our causality analyses raised a relevant point: causality tests are sensitive to the frequency domain. 
At the same time, it is worth noting that we considered Russia as case study, which is more relevant than ever 
and can have critical international implications.

Table 8.   Linear Granger causality tests results. P-values in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10.

LEU → LCO2E LCO2E → LEU LCO2E → LRGDPPC LRGDPPC → LCO2E LEU → LRGDPPC LRGDPPC → LEU

Lag 
parameter 3 3 3 3 3 3

Granger 
causality 
index

0.7502 0.8881 0.4593 0.2716 0.2412 0.1721

F test 5.2142** 
(0.0126)

6.6762*** 
(0.0050) 2.7205* (0.0841) 1.4563 (0.2690) 1.2732 (0.3218) 0.8762 (0.4769)

5% CVs 3.411 3.411 3.411 3.411 3.411 3.411

Table 9.   Nonlinear Granger causality tests results. P-values in parentheses. ***p < 0.01, **p < 0.05, *p < 0.10. 

LEU → LCO2E LCO2E → LEU LCO2E → LRGDPPC LRGDPPC → LCO2E LEU → LRGDPPC LRGDPPC → LEU

Lag parameter 3 3 3 3 3 3

Granger causality 
index 0.0201 0.0776 0.1422 0.0748 0.1163 0.0915

F test 0.0135 (0.9999) 0.0538 (0.9984) 0.1019 (0.9916) 0.0518 (0.9986) 0.0822 (0.9951) 0.0638 (0.9975)

5% CVs 6.163 6.163 6.163 6.163 6.163 6.163
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As a final robustness check, let us consider four different clustering methodologies to evaluate the similarity 
of the time-series induced by the causality. First, it is possible to analyze if the time-series tend to be very similar 
and affected by common economic shocks. In the case of causality, we can explicitly identify a strong relationship 
between the different time-series involved. Thus, in this case, we expect to observe a more substantial similarity 
between the series (see Table 10).

We simulate an AR(1) process, using this statistical benchmark to evaluate the similarity between the real 
series and the simulated one. First, the simulated series is constructed considering the AR(1) parameter = 0.7 and 
subsequently transformed in the same way as the original series (taking the logarithms and the first difference). 
On the basis of causality findings, a more substantial similarity between energy use and carbon emissions and 
a weaker one between CO2 emissions and GDP is expected. At the same time, we do not expect any similarity 
between the simulated time-series and the others.

A more remarkable similarity between emissions and energy consumption emerges, with a lower similarity 
for emissions and GDP. Finally, we found only low similarity scores between the three original variables and the 
simulated series. Therefore, these results soundly confirm our previous findings.

Applying the Correlation distance to the data we observe the highest similarity between energy use and car-
bon emissions (a lower dissimilarity expressed by the distance). This result, again, confirms the previous ones. 
Therefore, it is possible to affirm that the same standard temporal shocks can simultaneously fuel highly similar 
short-run dynamics for these series.

We can postulate the existence of a cluster of time-series that is determined by a stronger relationship between 
energy use and emissions because of the stronger correlations. The lower dissimilarity is reasonable given that 
they are simultaneously causing each other, while a weaker relationship between emissions and GDP exists.

Because of the exploratory nature of the analysis, however, the method does not formally identify the cluster. 
In any case, the ML analysis confirms and robustifies the time-series findings.

Conclusions and policy implications
In 2017, the Paris Climate Agreement came into force. It is aimed at implementing the United Nations Framework 
Convention on Climate Change and at maintaining an average global temperature growth below 2 °C. Although 
the agreement does not contain specific obligations for countries on GHG since the beginning of its implemen-
tation, many studies have recorded the stabilization of global CO2 emissions deriving from the combustion of 
fossil fuels and industrial processes. The main practical conclusion of these studies is that stabilization and even 
the reduction of GHG emissions are possible without damaging economic growth. Therefore, in the current 
study we inspected the link among CO2 emissions, energy use, and economic growth in Russia. In particular, 
the novelty of this paper is the combination of traditional time-series analyses together with the development of 
a new ML model. It is an important experiment because, to the best of our knowledge, in the related literature 
no ML experiments have been conducted for the Russian case. The econometric model appears with a test that 
anticipates the ML model. There is a direct relationship among the selected variables. The primary variable, in 
this case, is economic growth, which leads to a substantial increase in energy consumption, hence an increase of 
CO2 emissions in the atmosphere. However, due to the hazardous impacts of CO2 emissions, the strict regulations 
which promote the use of clean energy as opposed to fossil fuel, economic growth, and energy consumption do 
not seem to have a direct impact on the amount of CO2 emissions levels. In this case, economic growth increases 
the consumption of energy, and therefore, the country should concentrate on producing and consuming green 
energy. The policy would make it easier to control carbon emissions, hence conserving the environment. In 
this paper, therefore, we have studied the relationship between carbon dioxide emissions, economic growth, 

Table 10.   Time-series clustering results.

LCO2E LRGDPPC LEU

Euclidean distance

 LRGDPPC 0.2345

 LEU 0.0717 0.2101

 STS 1.5102 1.5944 1.5164

Frechet distance

 LRGDPPC 0.0914

 LEU 0.0385 0.0787

 STS 1.0657 1.1064 1.0640

DWT distance

 LRGDPPC 0.8440

 LEU 0.4769 0.7465

 STS 4.5504 5.2890 4.5202

Correlation distance

 LRGDPPC 0.6183

 LEU 0.3159 0.5302

 STS 1.7857 1.8916 1.8354
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and energy use through two different approaches. In the qualitative one, there emerged the existence of a direct 
relationship with energy consumption policies and carbon dioxide emission policies that regulate gas consump-
tion and emissions. Besides, we have seen how economic growth and CO2 emissions are linked to the use of coal 
for energy. In fact, lower economic growth could encourage the use of easily accessible and low-cost resources.

On the contrary, continuous economic growth reduces the overall CO2 emissions in terms of quality. We 
obtained the same results through quantitative analysis. In particular, after conducting numerous stationary tests, 
we have analyzed in detail the decomposition of generalized variance, and we can see a long-term relationship 
between our checks. However, a shock to GDP per capita affects both CO2 emissions and energy use for some 
periods. This result confirms the qualitative analysis suggesting long-term structural investments capable of 
replacing conventional energy sources with alternative ones. In this way, CO2 emissions will be reduced even in 
the presence of hypothetical shocks.

The policy implications of our analysis can be derived by combining the empirical results obtained with the 
analysis of emission reduction policies already initiated in Russia and, finally, the current geopolitical context.

With regard to the empirical results, in a nutshell, the work revealed a bidirectional causal flow between 
energy consumption and CO2 emissions and the predominance of the “neutrality hypothesis” for the relationship 
between energy consumption and GDP. Strictly speaking, this means that in Russia the most exploited energy 
sources are fossil fuels: when energy consumption grows, supply meets this demand by increasing production 
from mainly fossil fuels; however, the relationship between energy consumption and GDP growth is not strictly 
relevant, so that GDP growth does not strictly depend on the increase in energy consumption.

From an environmental perspective, despite the dominance of fossil fuels in the Russian economy, since 2009 
there has been an interesting debate in the country on the regulation of greenhouse gas emissions. Indeed, in 2009 
the Climate Doctrine of the Russian Federation was adopted (Climate Doctrine of the Russian Federation170), 
then between 2008 and 2012 Russia complied with the first commitment of the Kyoto Protocol, which obliged it 
not to increase the volume of greenhouse gas emissions compared to the base year 1990 (Andonova171). Finally, 
in 2019, Russia joined the Paris Agreement and subsequently submitted its Nationally Determined Contribu-
tions (NDCs), which set a 2030 emissions target of 70% of 1990 emissions. This target is unambitious, in fact it 
technically implies an increase in emissions compared to current levels: in 1990–2018, Russian GHG emissions 
decreased by 30.4% (47.6% if emissions from land use, land use change and forestry are included), so if emissions 
from land use are excluded from the calculation, the 2030 target has already been reached; if they are included 
in 2030, emissions could increase by 27.3% compared to 2018 levels (Stepanov and Makarov172).

The final aspect to analyses is the geopolitical context. The Ukrainian-Russian conflict has created certain 
contextual conditions that make the future of decarbonization in Russia very complex. In particular, the restric-
tion of trade relations between the EU and Russia has, in our view, two important implications: (1) Europe has 
accelerated its decarbonization process with the main objective of freeing itself from its energy dependence on 
Russian fossil sources, which implies a lower availability of financial resources related to the decrease in gas 
exports and a greater availability of fossil sources to accompany domestic industrialization processes; (2) Rus-
sia now has very limited access to import advanced technologies in the field of renewables and clean energy, 
technologies that are indispensable to advance decarbonization processes.

Taken together, these considerations lead to the outline of a specific policy path for Russia, which could 
include a mix of infrastructure upgrades and energy efficiency policies. Moreover, the levelized cost of energy 
(LCOE) of solar and wind is higher than that of coal in Russia, effectively requiring large subsidies to promote 
these new sources. Only nuclear power has an LCOE in line with coal. It should also be noted that the non-
electrified areas of the country are the most remote. In these areas there is a widespread presence of traditional 
generators that require hydrocarbons, the transport costs of which are very high, and consequently the LCOE of 
these areas is very high (Dolgushin et al.173,174). It is precisely these areas that could be targeted by an intensive 
plan of electricity infrastructure development to reduce reliance on outdated and polluting technologies such 
as traditional generators, accompanied by a significant development of the electricity generation system based 
on nuclear and CCGT (Combined Cycle Gas Turbines), technologies that do not need to be imported. The 
combination of these policies could, according to our empirical analysis, lead to an increase in energy intensity 
with a corresponding increase in emissions. Therefore, in parallel with the empirically tested dominance of the 
“neutrality hypothesis” for the relationship between energy consumption and GDP, Russia should develop an 
energy efficiency policy involving the country’s main industrial centers, again with the dual aim of improving 
the environmental impact of energy end-uses and promoting a national industrial chain in this sector.

The challenge of decarbonizing Russia is complicated by two structural aspects of the country’s energy system: 
the lack of convenience in adopting RES (Renewable Energy Sources) technologies such as solar and wind power; 
and the lack of a national electricity grid (about two-thirds of the Russian Federation’s territory, with just over 
20 million inhabitants, is not electrified).

On the other hand, it should be noted that the country’s non-electrified areas are the most peripheral. In 
these areas, the presence of traditional generators that require hydrocarbons, whose transport costs are very 
high, is widespread.

Furthermore, the challenge for Russia in the coming years is to develop a new strategy for the development 
of its energy sector, which enters a zone of high turbulence – even in the absence of the influence of the climate 
change agenda – due to increasing global competition, growing technological isolation, and financial constraints 
(Mitrova and Melnikov174).

Finally, considering the current conflict between Russia and Ukraine, the rise in the price of natural resources 
has a potential domino effect on the world economy. The shortage of commodities, in fact, pushes up consumer 
prices, that is, inflation. To stem the increase in the cost of living, central banks are then forced to raise interest 
rates, thus reducing the amount of liquid money in circulation. Yet, the increase in interest rates usually also 
causes a slowdown in consumption expenditures, private investments, and the general economy, with negative 
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effects on employment, which is always closely linked to the dynamics of GDP. In addition, when central banks 
raise interest rates, there is also an appreciation of the national currency as international investors tend to buy 
financial assets in those countries that offer higher interest on their government debt. This measure implies two 
negative effects: the increase of the imports (which causes a deterioration of the balance of payment equilibrium), 
and tensions on national public accounts, which may provoke a financial insolvency.

Finally, the empirical results obtained were analyzed in the light of the decarbonization policy already initi-
ated by Russia and the current economic and political context. The resulting policy implications suggest that 
Russia’s decarbonization process could be continued through infrastructural investments in the transmission 
network to reduce the dependence of the country’s peripheral areas on the outdated and polluting generation 
technologies used today, with the associated expansion of nuclear and CCGT generation capacity. At the same 
time, emissions could be reduced through energy efficiency processes.

Data availability
Data are available upon reasonable request to the Corresponding Author. However, raw data are also attached 
as Supplementary Material.
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