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Factors influencing oral 
microbiome analysis: 
from saliva sampling methods 
to next‑generation sequencing 
platforms
Eunsik Bang 1,6, Sujin Oh 2,6, Uijin Ju 1, Ho Eun Chang 3, Jin‑Sil Hong 4, Hyeong‑Jin Baek 4, 
Keun‑Suh Kim 4, Hyo‑Jung Lee 4* & Kyoung Un Park 2,5*

The exploration of oral microbiome has been increasing due to its relatedness with various systemic 
diseases, but standardization of saliva sampling for microbiome analysis has not been established, 
contributing to the lack of data comparability. Here, we evaluated the factors that influence the 
microbiome data. Saliva samples were collected by the two collection methods (passive drooling 
and mouthwash) using three saliva-preservation methods (OMNIgene, DNA/RNA shield, and simple 
collection). A total of 18 samples were sequenced by both Illumina short-read and Nanopore long-
read next-generation sequencing (NGS). The component of the oral microbiome in each sample 
was compared with alpha and beta diversity and the taxonomic abundances, to find out the 
effects of factors on oral microbiome data. The alpha diversity indices of the mouthwash sample 
were significantly higher than that of the drooling group with both short-read and long-read 
NGS, while no significant differences in microbial diversities were found between the three saliva-
preservation methods. Our study shows mouthwash and simple collection are not inferior to other 
sample collection and saliva-preservation methods, respectively. This result is promising since the 
convenience and cost-effectiveness of mouthwash and simple collection can simplify the saliva sample 
preparation, which would greatly help clinical operators and lab workers.

Microbiomes are collections of bacteria, viruses, and fungi that reside within the human body and on skin, 
and play major roles in normal human physiology and disease1. The gut microbiome was one of the first to be 
explored, and various researches have revealed the relationship between the gut microbiome and diseases. For 
example, changes in gut microbiotic function and composition play major roles in irritable bowel syndrome, 
colorectal cancer, and obesity2.

The oral microbiome biomass is second only to that of the gut3. As for the gut microbiome, changes in oral 
microbiome function or composition are associated with certain systemic diseases. Oral Porphyromonas gingivalis 
and Fusobacterium nucleatum modulate the chronic inflammation associated with, and cellular migration and 
invasion of, oral squamous cell carcinoma4. Oral microbiome richness and diversity were reduced in patients 
with Alzheimer’s disease5. Given the similarity between the oral and gut microbiota, and their relationships with 
systemic disease, it has been suggested that the oral microbiome could predict gastrointestinal cancer6.

Next-generation sequencing (NGS) has facilitated such microbiome explorations via the analysis of DNA 
in the microbiome group2. Despite the effectiveness of NGS on oral microbiome analysis, microbiome data are 
prone to spurious heterogeneity and unwanted variation7. Therefore, an important consideration is the factors 
that affect the variations in sample measurements, pre-analytical and analytical variability8. Especially, gathering 
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high-quality samples for accurate sequencing and analysis has become essential. Being consistent when handling 
samples is key to minimizing technical variations9.

Saliva has been widely used to assess oral microbiome status. Saliva sampling is highly convenient, repeat-
able, and non-invasive, but standardization of methods especially for microbiome analysis is lacking. There 
are variations in sampling methods (drooling vs. mouthwash), saliva-preservation methods, and sequencing 
platforms (long- vs. short-read), which make the standardization of saliva collection protocols difficult. Several 
studies sought to standardize saliva collection. Fan et al.10 compared the oral microbiomes of mouthwash and 
drooling group, and found no significant difference. Lim et al.11 found that different collecting, processing, and 
DNA preparation methods did not significantly affect the salivary microbiome profile, but the genomic DNA 
purity differed depending on the extraction kits used. Armstrong et al.3 reported that preservatives increased the 
consistency of oral microbiome data. However, no previous literature has evaluated the effects of the sequencing 
platforms as well as the saliva collection and preservation methods at the same time. Here, we used different 
sample collecting methods, saliva-preservation methods, and sequencing platforms to optimize oral sampling 
and analysis. All samples were subjected to 16s rRNA amplicon sequencing followed by bioinformatic analysis.

Results
Effects of collection methods on oral microbiome data.  Short‑read next‑generation sequencing 
(SR‑NGS) group.  We compared taxonomic composition between drooling and mouthwash samples. The mi-
crobial compositions (mean relative abundances at the phylum and genus levels) are shown in Fig. 1a, b. At the 
phylum level, Firmicutes and Proteobacteria were the first and second most abundant taxa in both groups. At the 
genus level, Streptococcus was the most abundant taxon in both groups (50% and 48% of all sequences, respec-
tively). Atopobium, Bulleidia, Peptostreptococcus, and Porphyromonas showed higher abundances in drooling, 
while Neisseria and Oribacterium did in mouthwash samples (Fig. 1a, b, and S1). 

In terms of alpha diversity, the number of observed amplicon sequence divergences (ASVs) and Shannon’s 
entropy were significantly higher in the mouthwash than drooling group (P < 0.05), but the community even-
ness was similar (Fig. 1c). We drew principal component analysis (PCoA) plots of the beta-diversity matrices to 
explore dissimilarities in the microbial communities between the two collecting methods. The PCoAs of both 
the Jaccard and Bray–Curtis distances clustered all samples into well-separated drooling and mouthwash groups 
(permutation multivariate analysis of variance [PERMANOVA]: R2 = 0.13, P = 0.001; and R2 = 0.17, P = 0.004, 
respectively) (Fig. 1d). Since the two groups exhibited clear dissimilarities of microbial composition, we identified 
taxa that showed a significant difference in abundance between drooling and mouthwash samples. Three phyla, 
including Proteobacteria, Cyanobacteria, and GN02 showed differential abundance between the two groups, 
whereas 19 genera did (adjusted P < 0.05) (Table 1).

Long‑read next‑generation sequencing (LR‑NGS) group.  Taxonomic barplots of the drooling and mouthwash 
groups are shown in Fig. 2a, b; these barplots illustrate the relative taxon abundances at the phylum and genus 
levels. In contrast to the data gathered by SR-NGS, Firmicutes and Bacteroidetes were the first and second most 
common taxa at the phylum level in both groups. At the genus level, Streptococcus was the most abundant taxon. 
Gemella, Porphyromonas, and Parvimonas showed higher abundances in the drooling group, and Prevotella, 
Veillonella, Haemophilus, Leptotrichia, and Atopobium did in the mouthwash group.

In terms of alpha diversity, the number of operational taxonomic units (OTUs) was significantly higher in the 
mouthwash than the drooling group (Wilcoxon rank sum test. P < 0.05), as was the Shannon’s entropy (P < 0.05). 
However, similar to the SR-NGS data, the Pielou’s evenness did not differ between the two collection methods 
(Fig. 2c). In contrast to the SR-NGS data, no significant difference was observed in beta diversity indices (Jaccard 
and Bray–Curtis distances) between the drooling and mouthwash groups (Fig. 2d).

Effects of saliva‑preservation methods on oral microbiome data.  SR‑NGS group.  To determine 
whether the type of salivary preservation method affected the taxonomic compositions, we estimated the relative 
taxon abundances at the phylum and genus levels. At the phylum level, Firmicutes and Proteobacteria were the 
first and second most abundant taxa in all three groups. At the genus level, Streptococcus was the most common 
taxon in all groups. Atopobium showed the highest abundance in the DNA/RNA shield group; Prevotella, Veil‑
lonella, Leptotrichia, and Porphyromonas were the most abundant in the OMNIgene group, while Gemella was in 
the simple collection group (Fig. 3a, b, and S3).

In terms of microbiome richness and evenness, no difference in the observed ASVs or Shannon’s entropy 
of any group was apparent. The group differences in Pielou’s evenness were also insignificant. However, the 
OMNIgene group showed more evenness than did DNA/RNA shield group (P = 0.037) (Fig. 3c). Beta diversity 
varied according to the Jaccard and Bray–Curtis distances. The Adonis test revealed no group difference in the 
Jaccard distances, while the OMNIgene group was well-differentiated from the other groups in the Bray–Curtis 
distances (P = 0.012) (Fig. 3d).

LR‑NGS group.  The relative taxon abundances of each saliva-preservation method are shown in Fig. 4a, b. At 
the phylum level, Firmicutes and Bacteroidetes were the first and second most abundant taxa in all three groups. 
At the genus level, Streptococcus was the most common taxon in all groups. Porphyromonas, Haemophilus, Por‑
phyromonas Gemella, Actinomyces, and Neisseria were lacking in samples aliquoted into the DNA/RNA shield; 
Prevotella and Rothia were least abundant in the simple collection group, while Atopobium was in the OMNIgene 
group.
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Figure 1.   Comparison of data from the drooling and mouthwash groups sequenced by short-read next-
generation sequencing (SR-NGS). (a, b) Taxonomic barplots showing the taxa and their relative abundances. 
(a) Phylum level, (b) Genus level. The five most abundant phylum and 20 most abundant genera were shown 
based on the mean relative abundance of the two groups. (c) Box-and-whisker plots of the alpha diversity 
indices (observed features, Pielou’s evenness, and Shannon’s entropy). ns not significant; **: 0.001 ≤ P < 0.01; 
***: P < 0.001 (d) Beta diversities (left: Jaccard distances, right: Bray–Curtis distances) as revealed by principal 
coordinate analysis (PCoA) plots.
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The alpha and beta diversity analyses revealed that the OMNIgene, DNA/RNA shield, and simple collec-
tion groups had similar species richness and evenness levels; the differences in taxonomic composition were 
insignificant (Fig. 4c, d).

Discussion
Data comparability is essential when evaluating different studies or the long-term results of single studies, since 
noncomparability leads to inconsistent findings and erroneous conclusions. Whereas standardization can be 
achieved by ensuring traceability to the International System of Units, harmonization is achieved by ensuring 
traceability to an agreed reference system with the verification of measurement comparability, which is depend-
ent on analytical techniques12. And this is the reason why methods measuring creatinine or thyroid function 
have been refined and standardized13,14.

However, achieving data comparability is very difficult when evaluating microbiomes. The sample collec-
tion method used, preservation and storage, DNA extraction and sequencing, and data analysis may create 
bias15. This is why apparently similar studies come to different conclusions, and the reason microbiome studies 
show high-level methodological bias. Fortunately, the need for comparability of microbiome (especially gut 
microbiome) data is being recognized. Several protocols aim to control for variations in animal gut microbiota 
and standardize the conduct of clinical trials of dietary interventions, cardiometabolic diseases, and the gut 
microbiota16,17. The attempts for achieving comparability of oral microbiome are also being made, as mentioned 
in Introduction section.

In this study, we evaluated parameters that might influence oral microbiome data and compared the data of 
oral microbiome gathered by SR-NGS and LR-NGS, which is original to the best of our knowledge. We first com-
pared drooling and mouthwash groups; in contrast to previous studies showing similar within-sample diversity 
between drooling and mouthwash samples, the alpha diversity indices (observed ASVs and Shannon’s entropy) 
were significantly higher in the latter group, regardless of the NGS method10,18,19. As the number of features 
reflects richness, and the Shannon’s entropy both richness and evenness, the richness of the mouthwash group 
was higher than that of the drooling group. The beta diversity results differed between the SR-NGS and LR-NGS 
groups; the compositions differed significantly when SR-NGS was used, whereas the compositions in the LR-
NGS group did not. The difference between microbial compositions of drooling and mouthwash samples in the 
SR-NGS group was explained by the relatively rare genera, including Actinobacillus, Bordetella, Corynebacterium, 
Cupriavidus, Lactobacillus, Methylobacterium, Olsenella, Pseudomonas, and Rothia (Table 1 and Fig. 1b). The 
abundant genera, such as Streptococcus, Prevotella, and Veillonella showed no difference between the two groups; 
this result was consistent with the previous study conducted by Fan et al.10.

Higher richness may not always be desirable; the mouthwash flora may contain non-specific normal flora. 
Nevertheless, higher mouthwash richness has the potential of clinical utility. Mouthwash has been avoided by 
some in the belief that it dilutes the microbiome. However, the higher richness of mouthwash taxa obviates this 

Table 1.   Differentially abundant taxa between the drooling and mouthwash samples confirmed by 
ANCOMBC analysis. Statistical significance was determined as an adjusted p value < 0.05. W generalized log-
scaled fold change, Adj p-value adjusted p value.

Level Taxon W p value Adj p value

Phylum Cyanobacteria 5.167 < 0.001 < 0.001

GN02 3.435 0.001 0.003

Proteobacteria 4.573 < 0.001 < 0.001

Genus Acetobacter 4.631 < 0.001 < 0.001

Acinetobacter 3.558 < 0.001 0.040

Actinobacillus 4.112 < 0.001 0.004

Bordetella 5.149 < 0.001 < 0.001

Caulobacter 19.667 < 0.001 < 0.001

Corynebacterium 5.114 < 0.001 < 0.001

Cupriavidus 13.701 < 0.001 < 0.001

Haemophilus 6.222 < 0.001  < 0.001

Lactobacillus 9.672 < 0.001 < 0.001

Listeria 3.668 < 0.001 0.027

Methylobacterium 4.799 < 0.001 < 0.001

Methylotenera 10.828 < 0.001 < 0.001

Microbacterium 3.805 < 0.001 0.016

Olsenella 4.471 < 0.001 0.001

Oribacterium 4.033 < 0.001 0.006

Pseudomonas 5.920 < 0.001 < 0.001

Rothia 3.567 < 0.001 0.039

Staphylococcus 4.915 < 0.001 < 0.001

Xanthomonas 4.251 < 0.001 0.002
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Figure 2.   Comparison of the drooling and mouthwash groups sequenced by long-read next-generation 
sequencing (LR-NGS). (a, b) Taxonomic barplots showing the taxa and their relative abundances. (a) Phylum 
level, (b) Genus level. The five most abundant phylum and 20 most abundant genera were shown based on the 
mean relative abundance of the two groups. (c) Box-and-whisker plots of the alpha diversity indices (observed 
features, Pielou’s evenness, and Shannon’s entropy). ns not significant; *: 0.01 ≤ P < 0.05 (d) Beta diversities (left: 
Jaccard distances, right: Bray–Curtis distances) as revealed by principal coordinate analysis (PCoA) plots.
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Figure 3.   Comparison of the simple collection, OMNIgene, and DNA/RNA shield groups sequenced by 
short-read next-generation sequencing (SR-NGS). (a, b) Taxonomic barplots showing the taxa and their 
relative abundances. (a) Phylum level, (b) Genus level. The five most abundant phylum and 20 most abundant 
genera were shown based on the mean relative abundance of the three groups. (c) Box-and-whisker plots of 
the alpha diversity indices (observed features, Pielou’s evenness, and Shannon’s entropy). ns not significant; *: 
0.01 ≤ P < 0.05 (d) Beta diversities (left: Jaccard distances, right: Bray–Curtis distances) as revealed by principal 
coordinate analysis (PCoA) plots.
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Figure 4.   Comparison of the simple collection, OMNIgene, and DNA/RNA shield groups sequenced by 
long-read next-generation sequencing (LR-NGS). (a, b) Taxonomic barplots showing the taxa and their relative 
abundances. (a) Phylum level, (b) Genus level. The five most abundant phylum and 20 most abundant genera 
were shown based on the mean relative abundance of the three groups. (c) Box-and-whisker plots of the alpha 
diversity indices (observed features, Pielou’s evenness, and Shannon’s entropy). ns not significant (d) Beta 
diversities (left: Jaccard distances, right: Bray–Curtis distances) as revealed by principal coordinate analysis 
(PCoA) plots.
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concern. The higher richness can be interpreted as the possibility that mouthwash may more accurately reflect the 
oral microbiome. Mouthwash covers more parts of the oral cavity, while saliva from the oral cavity floor is only 
gathered in drooling method. Another possible factor is the influence of the Benzonase digestion step, which is 
used for host DNA depletion in microbiome DNA extraction methods, but also removes cell-free microbial DNA 
and leaves only nucleic acids inside intact microbial membranes; Previous studies that did not include a host 
DNA depletion step during DNA extraction showed little difference between the two collection methods10, 18, 19. 
Mouthwash is very useful in patients who do not create drool easily, such as those with xerostomia, autoimmune 
diseases (e.g., Sjogren’s syndrome), and systemic diseases (e.g., Parkinsonism and stroke). Considering these per-
spectives, we suggest that mouthwash is not inferior to drooling, especially for patients with drooling difficulties.

The alpha and beta diversities provided by the three different saliva-preservation methods used in this study 
were very similar. This suggests that simple collection could be used as the saliva-preservation method, which 
could be a great help to clinical laboratories hesitating to use expensive preservative-containing kits20. Still, the 
value of OMNIgene and DNA/RNA shield kits should not be undermined, since they are efficient when the 
interval between extraction and sequencing is long.

Before comparing the SR-NGS and LR-NGS data, we must address their innate differences. In the SR-NGS 
group, the maximum sequence length of iSeq was 2 × 150 bp (paired ends), and the V4 hypervariability regions 
of 16S rRNA were amplified and sequenced. The ASV feature table was produced by denoising (removing erro-
neous sequences followed by counting the variant amplicon sequences). In the LR-NGS group, the entire 16S 
rRNA regions were amplified and sequenced. As the error rate of long-read sequencing is higher than that of 
short-read sequencing, QIIME2 was unable to create an ASV feature table, instead generating only a conven-
tional OTU table.

SR-NGS and LR-NGS revealed similar results when analyzing taxa. At the phylum level, Firmicutes, Pro-
teobacteria, Actinobacteria, and Bacteroidetes were dominant in two groups. However, the relative abundances 
differed; Proteobacteria and Bacteroidetes were the second most abundant taxa in the SR-NGS and LR-NGS 
groups, respectively. Similarities of taxon types and differences in relative abundances were also apparent at the 
genus level. In terms of diversity, the alpha diversity indices were higher in the mouthwash than drooling in both 
SR-NGS and LR-NGS groups. When the three different saliva-preservation methods were tested, both SR-NGS 
and LR-NGS did not exhibit any significant difference. However, both beta diversity indices were significantly 
higher in the mouthwash group sequenced by SR-NGS, while no difference was shown in LR-NGS group.

We suggest that the difference is attributable to the 16S rRNA regions sequenced, as the taxonomic outcomes 
can be differed by the region analyzed. Katiraei et al.21 reporting the differences in relative bacterial abundances, 
alpha, and beta diversity between 16s rRNA V4 region data and full-length data supports our results. Also, as 
the target sites of SR-NGS and LR-NGS differed, so too did the primers, which might influenced the sequencing 
outcomes by not covering V4 flanking region of all bacteria21. However, this seemed to be unimportant given 
that the taxa of both groups were similar21.

Some limitations of our study should be pointed out. The differences between the ASV and OTU feature 
tables might partly explain the diversity differences. ASV methods are more sensitive and specific than OTU 
methods, and are better able to reveal ecological patterns22. It is possible that the OTU table for the LR-NGS group 
contained erroneous sequences, thereby skewing the phylogenic construction and diversity analysis. Moreover, 
our study design lacks negative control. However, for NGS-based microbiome studies, it is impossible to differ-
entiate between actual contamination and index hopping, a phenomenon in that index sequences assigned to a 
specific sample are incorrectly assigned to the other samples in a multiplexed pool, which can make the controls 
potentially useless. This could be avoided by sequencing negative controls in separate runs, but it is unlikely to 
be feasible as it increases the sequencing cost to an unacceptable level. To achieve standardization of the method, 
further studies including larger sample sizes should be conducted, along with other conditions associated with 
saliva sampling, such as unstimulated versus stimulated saliva23.

In conclusion, we aimed to optimize salivary sampling prior to oral microbiome analyses. Mouthwash samples 
and a simple sample collection method were not inferior to drooling and the use of preservatives, respectively. 
The convenience and cost-effectiveness of mouthwash and simple collection would be helpful to clinical opera-
tors and lab workers. Results vary depending on the type of NGS, and the strengths and weaknesses of SR-NGS 
and LR-NGS require further analysis using more samples to find the optimal usage of each NGS techniques in 
microbiome analysis. Similarly, larger studies are required to confirm the non-inferiority of mouthwash and 
simple collection methods, along with the studies comparing the data of healthy one’s microbiome and the 
patient’s using mouthwash and simple collection.

Methods
Sample collection.  Drooling and mouthwash samples were collected from three healthy individuals who 
provided written informed consent. Drooling sample (10–15  mL) was collected by asking the volunteers to 
accumulate saliva on the floor of the mouth and then expectorate it24. One hour elapsed between drooling and 
mouthwash to allow the oral microbiome to be restored. 10 mL of mouthwash samples were collected by asking 
the volunteers to rinse the oral cavity with 0.9% normal saline for about 30 s, allowing them to swash, and expec-
torate it into a 10 mL conical tube. The samples were aliquoted to the three saliva-preservation methods right 
after the sample was collected: 1 mL into the OMNIgene tube (DNA Genotek Incorporation, Ontario, Canada), 
2 mL into the DNA/RNA shield tube (Zymo Research, California, USA), and 1 mL into the simple collection 
tube without preservatives. The former two tubes contain stabilization buffers allowing immediate ambient tem-
perature homogenization and stabilization. A total of 18 samples from the three individuals were collected by 
the two sample collection methods (drooling and mouthwash) using the three saliva-preservation methods. Two 
samples from a mock group (for which sequencing data were available) served as controls. A schematic of the 
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sample collection process is shown in Fig. 5. The study adhered to the guidelines of the Declaration of Helsinki 
and was reviewed by the Institutional Review Board (IRB) of Seoul National University Bundang Hospital (IRB 
no. B-2107-695-301).

DNA extraction and 16s rRNA gene sequencing.  SR‑NGS using an Illumina platform.  The samples 
were stored at − 80 °C until the DNA extraction. 1 mL of the thawed whole sample was subjected to DNA ex-
traction using QIAamp DNA microbiome kits (QIAGEN, Venlo, the Netherlands) following the manufacturer’s 
protocol. For amplicon PCR targeting the V4 hypervariable region of 16S rRNA genes, KAPA HiFi HotStart 
ReadyMix PCR kits (Roche, Basel, Switzerland) were used following the manufacturers’ instructions. Librar-
ies were constructed with NextEra XT DNA library preparation kits (Illumina Inc., San Diego, CA, USA) and 
pooled to final loading concentrations of 50 pM. Sequencing was performed on the Illumina iSeq 100 platform 
using 100 i1 REAGENT cartridges (2 × 150 bp paired-ends); the control library was that of the PhiX Control kit 
ver. 3 (Illumina).

LR‑NGS using the nanopore platform.  For amplicon PCR targeting the entire 16S rRNA coding regions, KAPA 
HiFi HotStart ReadyMix PCR kits were used. For DNA repair and end-preparation, NEBNext FFPE DNA Repair 
Mix (New England Biolabs, Ipswich, MA, USA) and the NEBNext Ultra II End Repair/dA-Tailing Module (New 
England Biolabs) were used. Barcodes and sequencing adapters were ligated using Native Barcoding Expan-
sion 1–12 kits (EXP-NBD104; Oxford Nanopore Technologies, Oxford, UK) and ligation sequencing kits (SQK-
LSK109; Oxford Nanopore Technologies) following the manufacturer’s protocols. Libraries were sequenced 
using the R9.4.1 flow cell (FLO-MIN106D), MinION software (Oxford Nanopore Technologies) and a flow cell 
priming kit (EXP-FLP002; Oxford Nanopore Technologies).

Bioinformatic and statistical analysis.  SR‑NGS.  FastQC software (Babraham Bioinformatics, Babra-
ham, UK) was used to assess the quality of demultiplexed fastq data. After adapters were trimmed, a Divisive 
Amplicon Denoising Algorithm (DADA) 2-based pipeline25 was applied using QIIME2 21.826. Feature ASV 
tables were produced by quality-based filtering and trimming, read dereplication and ASV inference, paired-end 
merging, and removal of chimeric ASVs. The ASV tables were normalized by rarefaction, to correct artifactual 
biases prior to downstream analyses. To estimate microbiome taxonomic compositions, the sequences were tax-
onomically classified against the Greengenes 13_8 99% list27 using scikit-learn (i.e., the pre-trained naive Bayes 
machine-learning classifier of the q2-feature-classifier plugin). The relative abundances of microbiome phyla, 
genera, and species were plotted using R software (ver. 4.1.2; R Development Core Team, Vienna, Austria); all 
data visualizations and statistical analyses were also done using R software.

Alpha diversity indices (observed features, Shannon’s entropy, Pielou’s evenness, and the Faith’s phylogenetic 
diversity) were calculated to evaluate microbiome richness and evenness among groups28. We used the Wilcoxon 
rank-sum test and Kruskal–Wallis H-test (with Benjamini–Hochberg FDR correction) to determine whether 
alpha diversity differed significantly among the groups. Beta diversity indices (the Jaccard and Bray–Curtis dis-
tances, and unweighted and weighted UniFrac distance matrices) were obtained and visualized using PCoA29. 
We performed permutation multivariate analysis of variance (PERMANOVA) using Adonis test to compare 
microbiome composition between groups30. Analysis of Composition of Microbiomes with Bias Correction 

Figure 5.   A simplified flow chart of the sample collection process. Three healthy individuals were enrolled; 
saliva was collected as drooling or mouthwash. The samples were divided into three groups depending on the 
type of saliva-preservation methods (OMNIgene, DNA/RNA shield, or simple collection). Twenty samples (18 
from healthy individuals and 2 mock samples) were collected and sequenced. NGS next-generation sequencing.
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(ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their dif-
ferences through a log-linear regression model was used for differential abundance analysis31. The correction 
for multiple testing was performed using the Holm-Bonferroni method and statistical significance was thus 
determined as an adjusted p value < 0.05.

LR‑NGS.  For base-calling and demultiplexing of long reads, Guppy Basecaller (ver. 4.2.2 (Oxford Nanopore 
Technologies) was used32. After data quality was evaluated using EPI2ME software, Trimmomatic ver. 0.40 was 
used to trim the adapters and truncate reads to 1400  bp33. During QIIME2-based analysis of full-length 16S 
rRNA sequences generated by LR-NGS, OTU clustering at 85% identity was performed, rather than ASV-based 
denoising, using the q2ONT pipeline (https://​github.​com/​DeniR​ibicic/​q2ONT). After dereplicating trimmed 
reads and filtering away chimeric sequences, open-reference clustering (85% identity) was conducted using the 
VSEARCH algorithms34. Downstream analyses (taxonomic classification, diversity, and differential abundance 
analyses) were performed as described above for the SR-NGS data.

Data availability
The sequencing data of this study can be accessed at the Sequence Read Archives (SRA) (Accession no. 
PRJNA889989). Additional data and materials are available upon reasonable request from the corresponding 
author.
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