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Neural complexity 
through a nonextensive 
statistical–mechanical approach 
of human electroencephalograms
Dimitri Marques Abramov 1*, Constantino Tsallis 2,3,4 & Henrique Santos Lima 2

The brain is a complex system whose understanding enables potentially deeper approaches to mental 
phenomena. Dynamics of wide classes of complex systems have been satisfactorily described within 
q-statistics, a current generalization of Boltzmann-Gibbs (BG) statistics. Here, we study human 
electroencephalograms of typical human adults (EEG), very specifically their inter-occurrence times 
across an arbitrarily chosen threshold of the signal (observed, for instance, at the midparietal location 
in scalp). The distributions of these inter-occurrence times differ from those usually emerging within 
BG statistical mechanics. They are instead well approached within the q-statistical theory, based on 
non-additive entropies characterized by the index q. The present method points towards a suitable 
tool for quantitatively accessing brain complexity, thus potentially opening useful studies of the 
properties of both typical and altered brain physiology.

The brain is widely recognized as a complex system since it is composed by billions of cells (neurons) which 
express individual behaviors and, at same time, they build a fully interconnected network with emergent, 
self-organized collective  behaviors1. Thus, traditional reductionist scientific methodology from mechanistic 
rationality appears to fail for deeply understanding the brain and its associated mind inside a multidimensional 
 environment2. On one hand, a humanity’s great unresolved problem is to establish a suitable mental medicine, 
from  epistemology3 to the biomedical perspective. The problem begins in differentiating normality from typi-
cality, illness from neurodiversity. And, upon this basis, to establish a taxonomy about mental typology for a 
more realistic nosography. On the other hand, several studies have explored brain complexity through entropic 
measures within the electroencephalogram (EEG), and found relationships between brain complexity and dif-
ferent mind  conditions4. However, this issue yet is incipient. One way of accessing brain complexity is through 
the electroencephalogram (EEG)  signal5, which is the electrical result of millions of neurons under each of the 
leads (electrodes) over time. The EEG is the simplest, least invasive and universally used form of functional 
recording of the human brain dynamics.

The pioneering works of  Boltzmann6 and  Gibbs7 (BG) established a magnificent theory which is structurally 
associated with the BG entropic functional

and consistent expressions for continuous or quantum variables; k is a conventional positive constant (in phys-
ics, k is chosen to be the Boltzmann constant kB ; in information theory and computational sciences, k = 1 is 
frequently adopted).

In the simple case of equal probabilities, this functional becomes SBG = k lnW  . Equation (1) is generi-
cally additive8. Indeed, if A and B are two probabilistically independent systems (i.e., pA+B

ij = pAi p
B
j  ), we 

straightforwardly verify that SBG(A+ B) = SBG(A)+ SBG(B) . The celebrated entropic functional (1) is 

(1)SBG = −k

W
∑

i=1

pi ln pi (

W
∑

i=1

pi = 1),
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consistent with thermodynamics for all systems whose N elements are either independent or weakly inter-
acting in the sense that only basically local (in space/time) correlations are involved. For example, if we have 
equal probabilities and the system is such that the number of accessible microscopic configurations is given 
by W(N) ∝ µN (µ > 1; N → ∞) , then SBG(N) is extensive (i.e., proportional to the number of elements) as 
required by thermodynamics. Indeed SBG(N) = k lnW(N) ∼ k(lnµ)N.

However, complex systems are typically composed of many elements which essentially are non-locally corre-
lated, building an intricate network of interdependencies from where collective states can  emerge9. BG statistical 
mechanics appears to be generically inadequate for such systems because this theory assumes (quasi) independent 
components with short-range (stochastic or deterministic) interactions.

Indeed, if the correlations are nonlocal in space/time, SBG may become thermodynamically inadmissible. Such 
is the case of equal probabilities with say W(N) ∝ Nν (ν > 0; N → ∞) : it immediately follows SBG(N) ∝ lnN , 
which violates thermodynamical  extensivity9. To satisfactorily approach cases such as this one, it was proposed 
in  198810 to build a more general statistical mechanics based on the nonadditive entropic functional

with the q-logarithmic function lnq z ≡ z1−q−1
1−q (ln1 z = ln z) , its inverse being the q-exponential 

ezq ≡ [1+ (1− q)z]
1/(1−q)
+  ; (ez1 = ez ; [z]+ = z if z > 0 and vanishes otherwise); for q < 0 , it is necessary to 

exclude from the sum the terms with vanishing pi . We easily verify that equal probabilities yield Sq = k lnq W . 
Also, we generically have the following functional nonadditivity

Consequently, in the (1− q)/k → 0 limit, we recover the SBG additivity. For the anomalous class of systems 
mentioned above, namely if W(N) ∝ Nν , we obtain, ∀ν , the extensive entropy S1−1/ν(N) = k ln1−1/ν W(N) ∝ N , 
as required by the Legendre structure of  thermodynamics11,12. Finally, the optimization of Sq under simple con-
straints yields q-exponential distributions for the (quasi)stationary states, instead of the usual BG exponentials.

Since EEG is a massive electrical phenomenon, its amplitude is correlated with the cell synchronization. The 
regularity of time intervals between amplitude peaks that overcomes a typical threshold (in this case, one standard 
deviation), would reflect the system’s complexity. If synchronization would be a stochastic and uncorrelated phe-
nomenon, the distribution of inter-peak distances could possibly be estimated within the BG frame. But EEG is 
a highly non-equilibrium phenomenon, and it requires more general approaches. Independently of the nature of 
regularities, this phenomenon exhibits the complex nature of the system. It cannot be excluded that, in the realm 
of q-statistics where q is a scalar measure of complexity, a possibly satisfactory description could be attained.

Motivation, methodology and results
The above nonadditive entropies, as well as the nonextensive statistical mechanics grounded on them, have been 
already used to characterize various aspects of complexity. Various data obtained from EEG, magnetoencepha-
lograms (MEG), electrocardiograms (ECG), and others, have been analyzed in connection to q-statistics13–16. 
However, the discussion frequently focuses on qualitative ingredients. Our aim here is to demonstrate that 
nonextensive statistical mechanics is applicable to the brain as a complex system, thus providing specific values 
for the relevant parameters. Thus, we are analyzing human EEG’s in a specific manner herein described which 
eventually provides a small number of real numbers (such as q) having the potential of satisfactorily character-
izing different regions of the brain, different functional neuro-states, nosologically different classes of human 
phenomenologies.

We analized the EEG signal of ten typical adult humans from a match-to-sample task experiment with neu-
tral affective interference for access working memory and attention, such in Yang and Zhen’s  study17. This work 
was approved by our ethical board for human research, under CAAE 50137721.4.0000.5269. Each EEG signal 
has 5–10 min length recorded with open eyes at 1000Hz sampling rate, through 20 channels disposed at 10–20 
montage with eyes open. The high, low and band-pass filters were respectively 0.5, 150 Hz and 60 Hz. We did 
not apply any other filter to minimize signal manipulation.

We accessed signal recorded at the midparietal ( Pz ) site (see Fig. 3), where classical cognitive event-related 
potentials, as  P30018, manifest during attention tasks. A threshold was set at − 1.0 standard deviation from Pz 
signal average (Fig. 1, from subject B006). Taking negative voltages we are minimizing the effect of blink artifacts, 
which are positive waves, amplier in frontal places.

Each event is the numerical position i of signal vector (1 s = 1000 positions) where the amplitude crossed the 
threshold downwards. The inter-event distances in − in−1 (where n = 1,...,N) were calculated (Fig. 2, from B006). 
The logarithm distribution of inter-event distances (with 500 distance classes) of all ten EEG signals at Pz were 
superimposed, and the fitting was performed to the following q-statistical function (Fig. 3):

where (aq,βq, cq, ηq, q) = (2.1× 10−5, 2.0× 10−5, 2.12, 2.96, 1.89) for the best fitting. And, for comparison, we 
also included the classical statistical BG function (where q = 1 ), as follows:

(2)Sq ≡ k
1−

∑W
i=1 p

q
i

q− 1
= k

W
∑

i=1

pi lnq
1

pi
= −k

W
∑

i=1

p
q
i lnq pi = −k

W
∑

i=1

pi ln2−q pi (q ∈ R; S1 = SBG),

(3)
Sq(A+ B)

k
=

Sq(A)

k
+

Sq(B)

k
+ (1− q)

Sq(A)

k

Sq(B)

k
.

(4)yq = aq x
cq/[1+ (q− 1)βq x

ηq ]
1

q−1 ,
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where (aBG ,βBG , cBG , ηBG , qBG) = (4.3× 10−4, 0.023, 0.94, 0.93, 1) for the best fitting.
The fitting was performed using three different methods: dog leg trust  region19, trust region  reflective20 and 

crow  search21 algorithms, all available in Scipy library.
The constant a is determined by imposing normalization, i.e., 

∫∞

0
dx y(x) = 1 . Consequently,

for q > 1 and 1
q−1

−
1+cq
ηq

> 0 . In the q → 1 limit, we obtain

It is observed that EEGs at Pz position from all subjects express very similar distributions of distances. The EEG 
regularity was modelled by the q-statistics function instead BG one (Fig. 3).

(5)yBG = aBG x cBG e−βBG x ηBG
.

(6)a−1
q =

∫ ∞

0

dx
xcq

[1+ (q− 1)βqx
ηq ]

1
q−1

= (βq(q− 1))
−

cq+1

ηq

Ŵ(
1+cq
ηq

)Ŵ( 1
q−1

−
1+cq
ηq

)

ηqŴ(
1

q−1
)

(7)
a−1
BG =

β
−

cBG+1

ηBG
BG Ŵ

(

cBG+1
ηBG

)

ηBG
.

Figure 1.  Segment of ongoing EEG from one subject (B006), recorded on the mid-parietal ( Pz ) location of the 
head. Red dots: time values when ddp (signal amplitude) crosses downwards the bottom threshold (1.0 standard 
deviation; red line). EEG sampling rate was 1000 Hz.

Figure 2.  Sequence of inter-event time intervals from EEG signal, as detected in Fig. 1.
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Discussion
Consistently with the use of Sq entropy in numerous articles as a measure of complexity in neural systems, we 
believe that we bring here the demonstration of the applicability of non-extensive statistical mechanics on the 
collective behavior of a neural system through the regularities of EEG. This preliminary study exhibits as a proof 
of concept that q-statistics easily can quantitatively reveal some aspects of brain complexity through the q param-
eter. Future research needs to be carried out to determine whether this measure will be sensitive enough to dis-
criminate the complexity of different regions or different states of the brain, as well as aspects of inter-individual 
diversity (among them, brain diseases or even mental disorders). Consistently, we have verified here that brain 
phenomenology is not properly described within BG statistics (i.e., q = 1). This is by no means surprising since 
BG statistics generically disregards inter-component long-range correlations and their collective behavior, which 
is well known in neural  systems1. In contrast, q-statistics has been empirically shown to be a useful generaliza-
tion of  BGSM12,22–26. In addition to other quite informative complexity measures and related methodologies 
applied to  neurosciences27–31, q-statistics hopefully also is useful in the present case. Here, it was applied through 
a quite simple methodology, using a functional model involving stretched q-exponentials which satisfactorily 
fit the empirical distributions of scalar inter-event intervals (see Fig. 3). Many of these complex systems present 
cq  = 0 , from basic chemical reactions through quantum  tunneling32 to financial market  behavior33, COVID-19 
 spreading34, commercial air traffic  networks35 We are led to believe that we are dealing with universality classes 
of complexity, thus revealing, in what concerns information processing and energy dynamics, far more integra-
tive networks than one might a priori expect from neural  structures36.

By generalizing the BG theory, q-statistics shows that it could be a suitable and promising path to explore 
brain complexity. Our expectancy is that the q parameter can be sensitive to different brain/mental states, to 
brain/mind development, and to neural diversity, perhaps clarifying the boundaries between the normal and the 
ill brain, including extreme cases such as Alzheimer, Pick, and Parkinson diseases. Consistently, a key outcome 
of emergence of self-organized new states in complex systems is an adaptive behavior facing environmental 
 constraints1. Indeed, the concept of disease has also been related to reduced adaptive capabilities, and to the 
alteration of  complexity4,37,38. Along the lines of the seminal philosophical work of G.  Canguilhem3, normality 
should be related to the ability to create new rules (i.e., adaptation) instead of living by the same old norms. We 
intend to further explore, in the future, the neural diversity through the most remarkable paradigm of complexity.

Data availability
The raw EEG wavesfrom all subjects are provided at data.mendeley.com under https:// doi. org/ 10. 17632/ dm392 
2zmpj.1.

Figure 3.  Probability distributions of EEG inter-occurrence times (500 equal logarithmic bins) and fittings with 
statistical models. Superimposed signal recorded on the Pz location of ten subjects performing a work memory 
task. Amplitude threshold = 1.0 standard deviation. Fitting within Boltzmann-Gibbs statistical mechanics 
for non-complex systems (i.e., q = 1 , dashed red curve). Fitting within nonextensive statistical mechanics for 
complex systems (i.e., q  = 1 , black continuous curve). See Methodology for details.

https://doi.org/10.17632/dm3922zmpj.1
https://doi.org/10.17632/dm3922zmpj.1
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