
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10019  | https://doi.org/10.1038/s41598-023-37217-7

www.nature.com/scientificreports

Stability analysis and selection 
of sugar beet (Beta vulgaris L.) 
genotypes using AMMI, BLUP, GGE 
biplot and MTSI
Dariush Taleghani *, Abazar Rajabi , Ali Saremirad  & Parviz Fasahat 

The methods utilized to analyze genotype by environment interaction (GEI) and assess the stability 
and adaptability of genotypes are constantly changing and developing. In this regard, often instead 
of depending on a single analysis, it is better to use a combination of several methods to measure 
the nature of the GEI from various dimensions. In this study, the GEI was investigated using different 
methods. For this purpose, 18 sugar beet genotypes were evaluated in randomized complete block 
design in five research stations over 2 years. The additive effects analysis of the additive main effects 
and multiplicative interaction (AMMI) model showed that the effects of genotype, environment and 
GEI were significant for root yield (RY), white sugar yield (WSY), sugar content (SC), and extraction 
coefficient of sugar (ECS). The multiplicative effect’s analysis of AMMI into interaction principal 
components (IPCs) showed that the number of significant components varies from one to four in the 
studied traits. According to the biplot of the mean yield against the weighted average of absolute 
scores (WAAS) of the IPCs, G2 and G16 for RY, G16 and G2 for WSY, G6, G4, and G1 for SC and G8, G10 
and G15 for ECS were identified as stable genotypes with optimum performance. The likelihood ratio 
test showed that the effects of genotype and GEI was significant for all studied traits. In terms of RY 
and WSY, G3 and G4 had high mean values of the best linear unbiased predictions (BLUP), so they 
were identified as suitable genotypes. However, in terms of SC and ECS, G15 obtained high mean 
values of the BLUP. The GGE biplot method classified environments into four (RY and ECS) and three 
(WSY and SC) mega-environments (MEs). Based on the multi-trait stability index (MTSI), G15, G10, 
G6, and G1 were the most ideal genotypes.

Climatic conditions along with soil characteristics are the main environmental factors that affect the plants’ 
growth and also the agricultural productivity1. Therefore, it is necessary to consider the effect of environment as 
many environmental factors overshadow the genetic potential of the plant and cause low performance in com-
mercial fields2. The yield gap between measured yield in cultivar introduction trials and actual yield in farmers’ 
fields has been estimated to be more than 30% in some countries3. The main reason is the lack of yield stability 
as a result of GEI. It is important to note that with increase in the genetic potential of the yield, the plant will 
naturally have a greater demand for the agricultural resources and as a result, it is subjected to the risk of biotic 
and abiotic stresses. Therefore, high yield potential should be accompanied by increased tolerance against unfa-
vorable environmental factors; as a result, the yield stability does not decrease with an increase of yield potential.

GEI refers to the different response of genotypes in a wide range of environments. It is known by researchers 
who are active in the field of crop breeding as it affects breeding progress and makes it difficult to evaluate and 
select superior genotypes. Therefore, it is of importance to breeders in terms of development and release of new 
high-yielding cultivars. Meanwhile, quantitative traits such as yield, which are economically and agronomically 
important, can be significantly affected by GEI. This force breeders to be more careful in evaluating and releas-
ing genotypes and choose the best genotypes in terms of yield and adaptability in target environment. On the 
other hand, GEI may also provide opportunities for breeders to select genotypes that interact positively with a 
particular location (specific adaptation) or perform well in most environments (general adaptation). This can 
be achieved by cultivating genotypes in different environments, recording their response, and finally selecting 
a superior and stable genotype4.
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High yield potential in sugar beet is vital for efficient productivity in arable land. Sugar beet is one of the most 
important sugar crops supplying about 30% (nearly 42 million tons) of the world’s sugar needs5 and is known as 
the second sugar crop after sugarcane6,7. Sugar beet genotypes adapt to different environments in a different way, 
so their evaluation can be different according to the breeding goals. These assessments require a series of multi-
environment trials (METs) in the advanced selection phase to be valid8. Each genotype should be evaluated for 
several years in different locations in order to identify high yielding and stable genotypes and recommend them 
for cultivation in target areas. Therefore, METs are carried out to evaluate genotypes for more reliable results. 
By cultivating genotypes in different environments, different genotypic responses are recorded, and a superior 
and stable genotype(s) can be identified.

Several methods are introduced to analyze the information obtained from METs and are generally divided 
into two main groups of univariate and multivariate methods. Among the multivariate methods, AMMI model 
is of great importance. AMMI method is actually a combination of analysis of variance and principal compo-
nents (PCs) analysis. The first part of AMMI, i.e., the additive part, uses analysis of variance9 and the second 
part, which includes the multiplicative part, uses the PCs analysis method in order to analyze the GEI based on 
PCs10. In fact, the reason for the widespread use of this model is the high resolution of main effects and GEI, as 
well as the justification of a large part of the sum of squares of the interaction11. Recently, a new index called the 
WAAS12 has been added to the indices based on the AMMI model. In this approach, all the IPCs (in addition 
to first and second components) are considered and used to draw the biplot of the average performance against 
the first PC of the GEI (AMMI1). As a result, the variance of the GEI is fully included in the selection of the 
superior genotype12.

The AMMI model is often used together with the GGE biplot graphical model to identify MEs as well as 
winning genotypes in each ME. This graphical model has been proposed based on PC analysis10,13–15. This 
method helps breeder to simply evaluate the genotype stability and the combination of stability with the yield of 
genotypes and different environments through the graphical representation of GEI. The unique feature of GGE 
biplot is that based on the plots, it can be decided which genotype has the highest potential in which environ-
ment or subgroup16. In addition to the above-mentioned methods, BLUP has also been used to analyze METs17. 
This method estimates the mean yield of genotypes in mixed models with high efficiency. In order to use the 
advantages of both AMMI and BLUP, an index called weighted average absolute scores of BLUPs (WAASB) has 
been introduced, which is actually the integration of AMMI and BLUP12. Since, in identifying and introducing 
new cultivars, breeders consider both stability and yield characteristics at the same time, in addition to reduce 
the GEI, genotypes with high yield potential are selected; therefore, considering the WAASB index and yield 
(Y), the WAASBY index was introduced, in which both stability and yield characteristics are taken into account 
at the same time12.

Recently, Olivoto, et al.12 introduced the theoretical basis of the MTSI to select high yield and stable genotypes 
in METs based on multiple traits considering both fixed and random effects models. The MTSI is calculated based 
on the distance from the ideal genotype estimated through factor analysis. This index provides the possibility 
of selecting stable genotypes with a positive selection differential for traits that are intended to increase and a 
negative selection differential for traits that are intended to decrease. On the other hand, this stability index can 
be useful for breeders whose goal is to simultaneously select for average performance and stability by consider-
ing several traits; because it provides a unique selection process that is easy to interpret and takes into account 
the correlation structure among traits12.

In this study, a set of new sugar beet hybrids were cultivated with the aim of evaluating the effect of GEI on 
the potential for quantitative production of sugar and also determining their adaptability in a wide range of 
environments in order to identify superior hybrids.

Materials and methods
Plant materials.  In the present study, nine selected pollinator lines of sugar beet from different sugar con-
tent groups, were crossed with two single crosses in 2019. A total of 18 sugar beet genotypes (Table 1) were 
evaluated in field experiments. Genotypes were obtained from the Seed Bank of the Sugar Beet Seed Institute 
(SBSI), Karaj, Alborz, Iran.

Table 1.   Characteristics of the studied sugar beet genotypes.

Row Genotype code

Origin

Row Genotype code

Origin

♀ ♂ ♀ ♂

1 G1 F-21121 SB27 10 G10 F-21122 SB33

2 G2 F-21122 SB27 11 G11 F-21121 SB51

3 G3 F-21121 920,760 12 G12 F-21122 SB51

4 G4 F-21122 920,760 13 G13 F-21121 HSF-14-P.35

5 G5 F-21121 S1-24 14 G14 F-21122 HSF-14-P.35

6 G6 F-21122 S1-24 15 G15 F-21121 950,123

7 G7 F-21121 920,128 16 G16 F-21122 950,123

8 G8 F-21122 920,128 17 G17 F-21121 33,866-94

9 G9 F-21121 SB33 18 G18 F-21122 33,866-94
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Location and field experimental design.  Field experiments were conducted over 2 years (2020–2021) 
in five research stations in a randomized complete block design with four replications. The characteristics of 
the environments and physicochemical properties of the soil are presented in Tables 2 and 3, respectively. The 
experimental plots used in the study had six rows, each of which was 10 m long with a 0.5-m interrow spacing.

Measurement of traits.  At harvest, roots of the experimental plots were weighed and RY was estimated. 
After washing the roots, pulp samples were randomly taken and examined for qualitative characteristics at the 
Quality Control laboratory of Sugar Beet Seed Institute (SBSI). These quality characteristics included SC, alpha 
amino N, sodium (Na+), and potassium (K+) elements18. Based on the values obtained for these properties, WSY, 
and ECS were estimated by Eqs. (1) and (2), respectively19,20. However, all international, national and institu-
tional guidelines have been taken into account in various stages of experiments.

where WSY is white sugar yield (t ha−1), WSC is white sugar content (%), RY is root yield (t ha−1), ESC is extrac-
tion coefficient of sugar (%) and SC is sugar content (%).

Statistical analysis.  The homogeneity of the variances of experimental errors was checked with Bartlett’s 
test21. After the homogeneity of error variances was confirmed, a variance analysis based on the AMMI model 
was performed on each trait’s data. Equation (3) was used to perform stability analysis by the AMMI method9.

where Yge is the yield of genotype g in environment e; µ is the grand mean; αg is the genotype deviation from 
the grand mean; βe is the environment deviation; �n is the singular value for IPCn and correspondingly �2n is its 
eigenvalue; γgn is the eigenvector value for genotype g and component n; δen is the eigenvector value for environ-
ment e and component n, with both eigenvectors scaled as unit vectors; and ρge is the residual. By performing 
AMMI analysis of variance using R software (metan package), the IPCs were obtained for each genotype and 

(1)WSY = WSC × RY

(2)ECS =

(

WSC

SC

)

× 100

(3)Yge = µ+ αg + βe +
∑

n

�nγgnδen + ρge

Table 2.   Geographical characteristics of the experimental environments.

Row Environment code Year Location of the research station Altitude (m) Latitude Longitude

1 E1 2020
Karaj, Alborz, Iran 1312 35° 55ʹ N 50° 54ʹ E

2 E2 2021

3 E3 2020
Mashhad, Khorasan Razavi, Iran 1316 36° 30ʹ N 59° 37ʹ E

4 E4 2021

5 E5 2020
Shiraz, Fars, Iran 1484 29° 32ʹ N 52° 36ʹ E

6 E6 2021

7 E7 2020
Miandoab, West Azerbaijan, Iran 1296 36° 58ʹ N 46° 05ʹ E

8 E8 2021

9 E9 2020
Hamedan, Hamedan, Iran 1818 34° 47ʹ N 48° 30ʹ E

10 E10 2021

Table 3.   Physicochemical properties of soil at the experimental environments.

Environment code pH EC (ds m−1) O.C. (%) P (ppm) K (ppm) Clay (%) Silt (%) Sand 9%) Texture

E1 7.21 0.53 0.74 8.24 596 37.30 41.40 21.30 Clay-loam

E2 7.30 0.77 1.01 1.97 398 37.30 41.40 21.30 Clay-loam

E3 7.90 1.55 0.70 12.00 261 21.00 57.00 20.00 Silty-clay-loam

E4 7.65 1.67 0.75 12.10 296 16.00 36.00 48.00 Silty-loam

E5 8.00 0.93 0.74 1.02 490 36.00 43.20 20.80 Clay-loam

E6 7.80 2.01 0.76 4.40 264 36.00 43.20 20.80 Clay-loam

E7 7.30 0.83 49.00 13.00 402 65.00 58.00 25.00 Silty-loam

E8 7.10 0.78 56.00 17.00 521 61.10 55.40 23.70 Silty-clay-loam

E9 7.93 6.14 0.45 47.60 499 15.50 27.50 53.00 Silty-loam

E10 7.93 6.14 0.45 47.60 499 15.50 27.50 53.00 Silty-loam
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environment. WAAS were estimated from the IPCs of AMMI analysis of variance. The IPC1 in the traditional 
AMMI1 biplot was replaced by WAAS.

where WAASi is the weighted average of absolute scores of the ith genotype or environment; IPCAik is the abso-
lute score of the ith genotype or environment in the kth IPC; and EPk is the magnitude of the variance explained 
by the kth IPC.

To evaluate the genotypes stability across the environments, a linear mixed model was used. The variance 
components were estimated by restricted maximum likelihood. The estimations were performed assuming geno-
type and GEI as random effects. The significance of random effects was tested by the likelihood ratio test. The 
BLUP of ith genotype was predicted as the sum of the general mean overall environments and genotypic effect. 
WASSB were estimated based on single value decomposition of the GEI effects from the matrix of the BLUP. The 
equation of WAASB (5) is similar to WAAS. The WAASBY was calculated allowing weighting between its mean 
performance and stability based on Eq. (6):

where (Eq. 5) WAASBi is the weighted average of absolute scores of the ith genotype or environment; IPCAik is 
the absolute score of the ith genotype or environment in the kth IPC; and EPk is the magnitude of the variance 
explained by the kth IPC. In Eq. (6), WAASBY i is the superiority index with different weights between yield and 
stability for the gth genotype; θY and θS are the weights for yield and stability, respectively; rGg and rWg are the 
rescaled values of the gth genotype for yield and WAASB, respectively.

Graphic analysis of GGE biplot was done based on single value decomposition according to Eq. (7):

where, Yij is the mean of ith genotype in jth environment, µ is the mean of all genotypes, βj is the main effect of 
jth environment, �1 and �2 are the special quantities for the first and second components, respectively, ξi1 and ξi2 
are the special vectors of genotypes, and ηj1 and ηj2 are the environmental vectors of first and second components, 
respectively, and εij is the remaining quantity for the ith genotype in jth environment.

MTSI was computed to calculate the mean performance and simultaneous stability of RY, WSY, SC and ECS 
based on Eq. (8)12.

where MTSIi is the multi-trait stability index of the genotype i, γij is the score of the genotype i in the factor j, and 
γj is the score of the ideal genotype in the factor j. Scores were calculated based on factor analysis for genotypes 
and traits.

Results and discussion
Additive main effects and multiplicative interaction (AMMI).  Considering that the error variance 
of different trials was homogeneous, the analysis of variance of the AMMI’s model additive effects was per-
formed for RY, WSY, SC and ECS (Table 4). The significant effect of the environment at the 1% probability level 
for all above-mentioned traits indicated the existence of a difference among the experimental environments. The 

(4)WAASi =

∑P
k=1 |IPCAik × EPk |

∑P
k=1 EPk

(5)WAASBi =

∑P
k=1 |IPCAik × EPk |

∑P
k=1 EPk

(6)WAASBY i =

(

rGg × θY
)

+ (rWg × θS)

θY + θS

(7)Yij − µ− βj = �1ξi1ηj1 + �2ξi2ηj2 + εij

(8)MTSIi =





f
�

j=1

�

γij − γj
�2





0.5

Table 4.   Additive effects analysis of variance of AMMI model for the studied traits of sugar beet genotypes. ns, 
*, **: non-significant and significant at five and one percent probability levels, respectively.

Source of variation df

Mean of squares

Root yield (RY)
White sugar yield 
(WSY)

Sugar content 
(SC)

Extraction coefficient 
of sugar (ECS)

Environment 9 13,998.20** 338.67** 275.95** 663.73**

Error 1 30 247.00 6.90 3.85 44.71

Genotype 17 1343.90** 42.61** 7.88** 95.03**

Environment: genotype 153 249.70** 6.31** 1.72* 19.07**

Error 2 510 53.70 1.66 1.40 11.21

Coefficient of variation (%) 11.88 14.73 6.69 4.20
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genotype effect was also significant for all studied traits at the 1% probability level; therefore, the studied geno-
types showed different RY, WSY, SC and ECS. GEI was also significant for all traits at the 1% probability level. 
It caused variation in genotypes ranking in different environments for all studied traits. Such a result has been 
reported in almost all similar studies22–25.

Phenotypic variance components including genetic variance, environmental variance and GEI variance was 
calculated for all traits (Fig. 1). Based on the results, significant genetic and environmental variance was observed 
for different traits. The highest phenotypic variance of RY and WSY was assigned to genetic variance and the 
highest phenotypic variance of SC and ECS was assigned to environmental variance. For RY and WSY, where 
the ratio of genetic diversity to environment is higher, the selection efficiency will increase and identification 
followed by selection of favorable genotypes from unfavorable ones will be conducted more accurately26. GEI 
variance had the lowest contribution to the phenotypic variance for all traits. In general, results indicated the 
high effect of genes in creating diversity among genotypes in terms of RY and WSY. Meanwhile, genotypes were 
affected by environmental conditions in terms of SC and ECS. The low variance of the GEI indicated the low 
effect of it on the phenotypic expression of traits in different genotypes, which caused low yield fluctuations 
from one environment to another. Contrary to the results of this study, Taleghani et al.25 reported high effect of 
environment (71.50%) on WSY followed by genotype (9.80%), and GEI (7.20%) for autumn-sown sugar beet. In 
Basafa and Taherian27 study, the justified variance by GEI was equal to 7.84%. Also, Mostafavi and Saremirad28 
reported the justified variance for the environment, genotype, and GEI as 17.69%, 32.79%, and 17.90% of the 
total sum of squares, respectively. In their study, genotype caused the greatest variation in yield, which indicated 
high genotype diversity.

Considering the significant effect of GEI for all studied traits, multiplicative effects analysis was performed to 
identify stable genotypes based on AMMI’s model. AMMI model with two significant IPCs is the best predicted 
model29,30. Based on the results (Table 5), the number of significant components varied from one to four for 
all studied traits. For RY, the first four components were significant at the 1% probability level and explained 
91% of the variations related to GEI. The number of influencing components for WSY was equal to three, all of 
which were significant at the 1% probability level and explained 86.30% of the GEI effect. The variations related 
to the SC were justified by a significant component at the 1% probability level, which was equal to 56.40%. The 
ECS had two significant components that explained 60.66% of the GEI effect. The residual sum of squares from 
AMMI with the lowest mean of squares for all studied traits was non-significant, which indicates the considerable 
accuracy of this model31. In a study by Omrani et al.32 the first four components explained 83% of the GEI. Fathi 
et al.33 reported the contribution of the first and second PCs of the GEI as 49.49% and 22.50%, respectively, and 
both accounted for 71.60% of the variations in the GEI. In another study using AMMI model, the first IPC was 
significant and explained about 63% of GEI variation28. Rajabi et al.23 also reported the significant effect of first 
six IPCs explaining 98.80% of the total GEI variations.

The biplot of mean performance versus WAAS which is called the WAAS biplot (Fig. 2), unlike AMMI model 
which considers only the first IPC, shows stability based on all scores of the IPCs. Therefore, WAAS considers the 
total variance of GEI in identifying stable genotypes. In this biplot, the vertical line in the middle of the biplot 
shows the total mean RY (Fig. 2a), WSY (Fig. 2B), SC (Fig. 2c) and ECS (Fig. 2D) of 10 experimental environ-
ments. Genotypes and environments on the right side of this line have a yield value higher than the total mean, 
and on the other hand, genotypes and environments on the left side of this line have a yield value lower than the 
total mean. The horizontal axis in the middle of the biplot shows the mean of the WAAS. From the intersection 
of this axis with the vertical axis, the biplot is divided into four quadrants. Genotypes in different quadrants of 

Figure 1.   Proportion of the phenotypic variance for studied traits in sugar beet genotypes.
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the biplot can be classified based on their suitability for different environments. The genotypes located in the first 
quadrant of the biplot include G13, G17 and G11 related to RY, G13, G14, G17 and G11 related to WSY, G13, G14, 
G17 and G18 related to SC and G14, G13 and G18 related to the ECS had a high WAAS value and yield value 
lower than the total mean, which indicates their highly fluctuating and unstable nature in terms of the relevant 
traits in different environments and a performance value lower than the mean. In general, these genotypes are 
not recommended for cultivation. Genotypes G3 and G4 located in the second quadrant of the RY and WSY 
biplots, G9 located in the second quadrant of the SC biplot, and G5 and G9 located in the second quadrant of 
the ECS biplot have high WAAS and performance value above the total mean. If the environmental conditions 
are favorable, the yield value of these genotypes will be high and can be recommended for cultivation in areas 
with ideal conditions for the growth and development of sugar beet. Genotypes G6, G5, G8 and G14 in the third 
quarter of the RY biplot, G12, G6, G5 and G18 in the third quarter of the WSY biplot, G11 and G12 in the third 
quarter of the SC biplot and G4, G16, G2, G12 and G17 in the third quarter of the ECS biplot had lower WAAS, 
which indicates their stability or lack of influence from environmental conditions. At the same time, these geno-
types showed low performance value. Genotypes G2, G16, G18, G9, G10, G7, G15 and G1 located in the fourth 
quadrant of the biplot related to RY, G16, G2, G10, G1, G9, G7, G8 and G15 located in the fourth quadrant of 
the biplot related to WSY, G6,G 4, G1, G15, G10, G8, G16, G7, G5 and G3 located in the fourth quadrant of the 
biplot related to the SC and G8, G10, G15, G11, G6, G1, G3 and G7 located in the fourth quarter of the biplot 
related to the ECS had low WAAS and higher performance value than the total mean. Genotypes placed in this 
quadrant of the biplot are known as stable genotypes with optimal performance due to their low influence on 
environmental conditions as well as proper performance. In general, the WAAS biplot can be described in a way 
that genotypes with WAAS values of zero or close to zero are considered the most stable genotypes; Therefore, 
G2, G16, G12 and G6 in terms of RY, G12, G16 and G6 in terms of WSY, G6, G4, G1 and G11 in terms of SC, 
and G8, G10, G15, G4 and G11 in terms of ECS have low GEI and high stability, but the ideal genotypes are 
those that have a WAAS value of zero or close to zero and a yield value higher than the total mean. Genotypes 
G2 and G16 in terms of RY, G16 and G2 in terms of WSY, G6, G4 and G1 in terms of SC and G8, G10 and G15 
in terms of ECS, in addition to stability, had a yield value higher than the total mean, so they were selected as 
stable genotypes with optimal performance value. Despite the different stability analysis methods, the AMMI 
provides useful information to achieve accurate results28,34.

Best linear unbiased prediction (BLUP).  Based on the likelihood ratio test, the effect of genotype for 
all studied traits, including RY, WSY, SC, and ECS was significant at the 1% probability level (Table 6). However, 
GEI for RY, WSY, and ECS was found to be significant at 1% probability level and for SC at 5% probability level. 
The significance of GEI indicates the different response of genotypes and the superiority and weakness of them 
in different environments. Therefore, in such a situation, using the BLUP method can bring better and more 
reliable results12. Estimating traits heritability plays an important role in the breeding programs to identify and 
recommend genotypes12,35. Results showed high heritability for all traits. Among studied traits, WSY and RY 
had the highest heritability (Table 6). The correlation coefficient of GEI was low in all traits, especially the SC. 
Selection accuracy for WSY (0.92) and RY (0.90) was high, however for ECS (0.89) and SC (0.88) was in aver-
age (Table 6). This parameter shows the correlation between observed and predicted values12. The average and 
high selection accuracy values of the traits indicated the reliability of the model in selecting superior genotypes. 

Table 5.   Multiplicative effects analysis of variance of AMMI model for studied traits in sugar beet genotypes. 
ns, *, **: non-significant and significant at five and one percent probability levels, respectively.

Source of variation df Sum of squares Mean of squares Relative variance (%) Cumulative variance (%)

Root yield (RY)

 IPCA1 25 21,908.23 876.32** 57.30 57.30

 IPCA2 23 5792.93 251.86** 15.20 72.50

 IPCA3 21 4551.09 216.71** 11.90 84.40

 IPCA4 19 2523.79 132.83** 6.60 91.00

 Noise 65 3425.29 52.69ns 9.00 100

White sugar yield (WSY)

 IPCA1 25 515.10 20.60** 53.40 53.40

 IPCA2 23 186.46 8.10** 19.30 72.70

 IPCA3 21 130.98 6.23** 13.60 86.30

 Noise 84 132.59 1.57ns 13.70 100

Sugar content (SC)

 IPCA1 25 148.49 5.93** 56.40 56.40

 Noise 128 114.59 0.89ns 43.60 100

Extraction coefficient of sugar (ECS)

 IPCA1 25 1379.25 55.17** 47.30 47.30

 IPCA2 23 563.48 24.49** 19.30 66.60

 Noise 105 974.23 9.27ns 33.40 100
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The genotypic correlation between the environments was low in terms of all traits, while the SC had the lowest 
genotypic correlation between environments (Table 6). If low correlation exists, accurate information and details 
are needed to select superior genotypes36.

The predicted mean values of the genotypes for each of the studied traits are presented in Fig. 3. Eleven 
genotypes had a higher than predicted mean value for RY, among which G3 and G4 had the highest predicted 

Figure 2.   Mean performance vs. WAAS biplot from AMMI model for (a) root yield (RY), (B) white sugar yield 
(WSY), (c) sugar content (SC) and (D) extraction coefficient of sugar (ECS).

Table 6.   Estimation of variance components from linear mixed model for studied traits in sugar beet 
genotypes.

Root yield (RY) White sugar yield (WSY) Sugar content (SC) Extraction coefficient of sugar (ECS)

Genotype 27.40** 0.90** 0.15** 1.90**

Genotype: environment 49.00** 1.16** 0.07* 1.96**

Residuals 53.70 1.66 1.42 11.20

Heritability 0.81 0.85 0.78 0.79

R2
GEI 0.37 0.31 0.04 0.13

Accuracy 0.90 0.92 0.88 0.89

rge 0.47 0.41 0.05 0.14
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mean value of RY (Fig. 3a). Out of the total of 10 genotypes that had the predicted mean value of WSY above the 
total mean, G3, G4, G1 and G9 had the highest predicted mean (Fig. 3B). From a total of 18 studied genotypes, 
12 genotypes had higher than predicted mean SC, but only G1 had the highest predicted SC values (Fig. 3c). 
Among the 10 genotypes that had a predicted mean value of ECS above the total mean, G15 and G9 had the 
highest predicted mean values (Fig. 3D). Genotypes G3 and G4 had the mean values of the BLUP model in terms 
of RY and WSY, which made them suitable genotypes in terms of the above-mentioned traits, but in terms of SC 
and ECS, G15 had the higher mean values of the BLUP. The BLUP method estimates the average performance of 
genotypes in mixed models with high efficiency. Therefore, it can fill the gap of AMMI regarding the analysis of 
LMM structure. The BLUP has been used in the evaluation of various crops such as rice37, corn38, cotton39 and 
sugarcane40 and useful results have been presented. One of the most important advantages of the BLUP method 
is the accurate estimation of the mean performance of genotypes, especially in LMMs12,41,42. In addition, when 
there is a LMM effect in the results, the BLUP allows optimal prediction of random effects17,43.

In Fig. 4, it is possible to rank and select genotypes at the same time based on yield value and stability. The 
WASSBY is actually a combination of the WAASB and the yield value of the trait. Blue circles indicate higher 
than mean WAASBY and red circles indicate lower than mean WAASBY index. Regarding RY, G12 had WAASBY 
index higher than the mean and G2 and G16 had relatively higher WAASBY index values compared with other 
genotypes (Fig. 4a). Based on this, G2 and G16 were recognized as stable genotypes with high RY. Results of the 
WAASBY for the WSY showed that among 12 genotypes with an index higher than the mean, G9 and G1 were 
the best in terms of higher values compared with other genotypes (Fig. 4B). Twelve genotypes for SC (Fig. 4c) 
and 11 genotypes for ECS (Fig. 4D) had high WAASBY. Genotype G15 was selected as the best genotype in terms 
of both above-mentioned traits. Stability parameters are important for breeders to ensure the stability of quality 
properties throughout different environments and influences. Olivoto et al. presented the WAASBY index, in 
which both stability and performance characteristics are considered simultaneously. Based on the results, stable 
genotypes could be identified successfully by this index.

GGE biplot graphical analysis.  In order to identify the variation between genotypes, environments and 
to study the GEI, GGE biplot graphical analysis method was used. Results of the GGE biplot showed that the 
first and second PCs accounted for 68.71% and 10.45% (a total of 79.16%) of the variations in RY, respectively. 

Figure 3.   Best linear unbiased peridection mean values of sugar beet genotypes for (a) root yield (RY), (B) 
white sugar yield (WSY), (c) sugar content (SC) and (D) extraction coefficient of sugar (ECS).
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For WSY, the first two PCs accounted for 70.08% and 12.05%, respectively and for SC, for the contribution was 
61.62% and 10.09%, respectively. However, for ECS, it was 59.47% and 12.79%, respectively. Since the first two 
PCs accounted for a considerable rate of variance for all studied traits, it can confirm the relatively high validity 
of the biplot obtained from this study in explaining the variations of genotype and GEI. If the sum of the first and 
second PCs cannot explain most of the data variation, it indicates the complex nature of the GEI44, but this does 
not mean that the biplot is invalid15. According to statements, when biplot justify at least 60% of the data vari-
ance, it can be used to determine MEs45. Hassani et al.46 showed that 62.9% of the GEI variations are explained 
by the first two PCs. In a study, Saremirad et al.47 estimated the sum of the first and second PCs to be nearly 74% 
with first and second PCs accounted for about 46% and 27% of the total variation, respectively.

Figure 5 shows the correlation and relationships between environments. Evaluating the correlation between 
the studied environments not only show their relationships but also can contribute in planning future trial’s 
location in terms of time and money. In Fig. 5, if the angle between the vectors of the environments is smaller, 
the more correlation is among them. In fact, a high correlation between environments means a high correlation 
between the rank of genotypes in those environments. As shown in the RY graph (Fig. 5a), there is a high posi-
tive correlation between Karaj (2020) and Shiraz (2020 and 2021), among Mashhad (2020 and 2021), Hamedan 
(2020 and 2021) and Miandoab (2021), which indicates the relatively similar response of genotypes in these 
regions. Therefore, there is a small difference in genotype ranking for RY. The environmental conditions at the 
Karaj showed no correlation during 2 years of the study which shows that the genotypes response in this station 
was independent in both years. The biplot of WSY (Fig. 5B) showed that there was a positive correlation between 
Mashhad and Hamadan and also among Shiraz, Miandoab and Karaj in 2020. Karaj (2021) had a negative cor-
relation with all environments. In terms of SC (Fig. 5c), there was a high correlation among Hamedan, Mash-
had, Shiraz and Karaj in 2021 and between Miandoab and Karaj in 2020. In terms of ECS (Fig. 5D) there was a 
high correlation among Hamadan, Mashhad in 2020 and Miandoab (2020), and also among Shiraz, Mashhad 
in 2021 and Karaj (2021). Each of the environments of Karaj in 2020 and Miandoab in 2021 showed zero to 
negative correlation with the rest of the environments in terms of ECS. The length of the environment vector is 
an approximation of the standard deviation within each environment and is also an indicator for the differentia-
tion of environments, so that environments with a longer vector length have a greater standard deviation and 

Figure 4.   Estimated values of WAASBY index for (a) root yield (RY), (B) white sugar yield (WSY), (c) sugar 
content (SC) and (D) extraction coefficient of sugar (ECS) in sugar beet genotypes considering the weights of 50 
(yield) and 50 for (stability).
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therefore have a greater ability to differentiate48; Therefore, one of the important features of any environment is 
its ability to differentiate, so that environments lacking the ability to differentiate cannot provide useful informa-
tion about the studied genotypes48. Evaluation of the environment vectors indicated that Hamedan, Miandoab 
and Mashhad have long vector lengths which indicate the high discriminability of these environments, and 
the Karaj environment had less discriminability due to its shorter vector length. Finally, the biplot study of the 
environment correlation showed that most of the studied environments had a high discrimination ability and 
can create a suitable distinction between genotypes.

Figure 6 is related to the polygonal biplot of studied traits, which was drawn to identify MEs and superior 
genotypes in different environments. In this biplot, a polygon is drawn from the connection of the genotypes 
that have the maximum distance from the coordinate origin. Genotypes G5, G13, G17, G14, G15, G3 and G4 
in Fig. 6a, G4, G3, G15, G14, G13 and G5 in Fig. 6B, G5, G9, G15, G13, G14, and G12 in Fig. 6c, and G12, 
G18, G14, G13, G9, and G7 in Fig. 6D were located at the farthest distance and formed a polygon. Then, from 
the origin of the coordinates, perpendicular lines were drawn on the sides of this polygon and the MEs were 
determined15. In the sections where the environments were placed and there are genotypes at the top of them, it 
means that these genotypes have optimum performance in those environments. Genotype G13 in Karaj (2021), 
G14 in Shiraz, G15 in Karaj (2020), and G3 in Mashhad, Miandoab and Hamedan were the best genotypes in 
terms of RY. In terms of WSY, G3 and G4 in Hamadan, Mashhad, Miandoab (2021), and Shiraz (2021), G15 in 
Miandoab (2020), Shiraz (2020) and Karaj (2020) and G5 in Karaj (2021) were the best and stable genotypes. 
Genotype G9 in the Hamedan, Shiraz and Karaj (2021), G15 in Mashhad, Karaj (2020) and Miandoab (2020), 
and G13 in Miandoab (2021) had the highest SC. The highest ECS was observed in G18 in Karaj (2020), G13 

Figure 5.   Biplot examine the relationship between the environments based on (a) root yield (RY), (B) white 
sugar yield (WSY), (c) sugar content (SC) and (D) extraction coefficient of sugar (ECS).
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in Miandoab (2021), Mashhad, Shiraz, Miandoab (2020), Hamedan (2020), G9 in Karaj (2021), and G7 in 
Hamedan (2021). Genotypes placed in sections where there is no environment are not desirable for cultivation 
in any of the studied environments and are among the weak genotypes in most of the environments. Based on 
the polygonal biplot, the experimental environments were studied in different MEs in terms of different traits. So 
that the experimental environments were grouped in terms of RY and ECS in four MEs and in terms of WSY and 
SC in three MEs. Using a polygonal biplot, Hassani et al.49, classified different sugar beet environments into two 
groups and introduced the genotypes with the highest adaptability. Saremirad and Taleghani24 evaluated sugar 
beet hybrids in seven regions in terms of stability. Their results showed that the GEI overshadows the quantita-
tive and qualitative characteristics of sugar yield in hybrids, so this issue should be considered when breeding 
new hybrids. Estimation of GEI provides the possibility to make a decision regarding the breeding for general 
or specific adaptation that depends on the stability of performance in a limited or wide range of environmental 
conditions and an effective step should be taken towards the development of cultivars with stability and adapt-
ability with the target environments.

Multi‑trait stability index (MTSI).  MTSI was computed based on quantitative and qualitative traits. In 
Fig. 7, the experimental genotypes are ranked from the highest to the lowest value of the MTSI so that the geno-
type with the highest value of MTSI is in the center and the genotype with the lowest value of MTSI is located 
in the outermost circle. The genotypes determined in red color dots were selected based on their MTSI values at 
20% selection intensity. G15 was in the first rank followed by G10, G6 and G1 as the most ideal stable genotypes. 

Figure 6.   Polygons of GGE biplot method for determine the appropriate genotypes in every environment based 
on (a) root yield (RY), (B) white sugar yield (WSY), (c) sugar content (SC) and (D) extraction coefficient of 
sugar (ECS).



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10019  | https://doi.org/10.1038/s41598-023-37217-7

www.nature.com/scientificreports/

Average value of all traits in selected genotypes has increased which was aimed at the intended goals. In general, 
the selected genotypes caused favorable selection differential in all traits (Table 7). Sharifi et al.50 and Koundinya 
et al.36 reported that MTSI would be very useful to the plant breeders for the selection of superior genotypes for 
multiple traits based on multi-environment data. Zuffo et al.51 used MTIS to identify stable soybean genotypes 
under drought and salinity stress conditions. Based on the MTSI results, Rajabi, et al.23 introduced five sugar 
beet genotypes as stable genotypes under field condition infected with rhizomania disease. These results were 
consistent with the findings obtained from this study regarding the efficiency of MTSI in identifying superior 
genotypes.

Conclusion
GEI was significant for studied quantitative and qualitative traits in terms of the used stability analysis methods. 
It can be concluded that the environment has played a significant role in influencing the phenotypic expression 
of quantitative and qualitative traits of sugar beet especially for SC an ECS. Although, the highest phenotypic 
variance of RY and WSY was assigned to genetic variance, these traits also showed the highest heritability and 
selection accuracy. According to the results, G2 and G16 in terms of RY, G16 and G2 in terms of WSY, G6, G4, 
and G1 in terms of SC and G8, G10 and G15 in terms of ECS were known as stable genotypes with favorable per-
formance. In general, G15 was the most ideal genotype in terms of all traits followed by G10, G6 and G1. Based 
on the environmental conditions of the experimental areas and their effect on the growth and development of 
sugar beet, these areas are among the important and major areas for sugar beet cultivation. Experimental areas 
were grouped in terms of RY and ECS into four MEs and in terms of WSY and SC into three MEs. In general, 
by applying various stability analysis methods, it not only contributes to evaluate the different aspects of GEI 
nature but also stable genotypes are selected more accurately. In this regard, the MTSI can be useful due to its 
power in the simultaneous selection of stable genotypes based on multi traits.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Figure 7.   Ranking of sugar beet genotypes in ascending order based on MTSI index.

Table 7.   Prediction of selection differential for studied traits based on MTSI index. Xo original value, Xs 
selected value, SD selection differential, SD perc selection differential in percentage, h2 broad sense heritability.

Row Traits Factor 1 Goal Xo Xs SD SD percent h2

1 Root yield (RY) − 0.82 Increase 61.67 62.65 0.98 1.59 0.81

2 White sugar yield (WSY) − 0.94 Increase 8.75 9.21 0.46 5.27 0.85

3 Sugar content (SC) − 0.92 Increase 17.78 18.18 0.40 2.24 0.78

4 Extraction coefficient of sugar (ECS) − 0.87 Increase 79.52 80.89 1.37 1.72 0.80
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