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Individual variability in subcortical 
neural encoding shapes phonetic 
cue weighting
Jinghua Ou *, Ming Xiang  & Alan C. L. Yu *

Recent studies have revealed great individual variability in cue weighting, and such variation is shown 
to be systematic across individuals and linked to differences in some general cognitive mechanism. 
The present study investigated the role of subcortical encoding as a source of individual variability in 
cue weighting by focusing on English listeners’ frequency following responses to the tense/lax English 
vowel contrast varying in spectral and durational cues. Listeners differed in early auditory encoding 
with some encoding the spectral cue more veridically than the durational one, while others exhibited 
the reverse pattern. These differences in cue encoding further correlate with behavioral variability in 
cue weighting, suggesting that specificity in cue encoding across individuals modulates how cues are 
weighted in downstream processes.

To understand speech, listeners need to perceptually organize acoustic cues (i.e., the spectrotemporal compo-
nents of the speech signal) into coherent phonetically coded speech percepts. These acoustic cues are weighted 
differently by listeners depending on the linguistic contrast in a particular language1–3. For example, the tense-
lax vowel contrast in English (e.g., /i/ vs. /ɪ/) is cued by both spectral differences and duration differences, but 
spectral information is more important than the durational one4–6. Recent studies have revealed great individual 
variability in cue weighting7–9, and such variation has been shown to be systematic across contrasts10,11 and across 
time12. Factors governing such variations remain largely under-explored, however. The present study aims to 
examine whether individual variability in cue weighting might stem from differences in early stage of auditory 
encoding by measuring listeners’ frequency-following response (FFR).

Variability in cue weighting is driven by differences in individual perceptual experience, such as L1 
background1,13 or L2 exposure14,15. However, even if listeners consistently weight one cue more than the other(s), 
significant individual variation can still be observed in weight between cues. For example, Kong and Edwards8 
found significant individual variations in the use of fundamental frequency (F0) for the stop initial voicing 
distinction in English, even though listeners consistently weighed voice onset time (VOT) more than F0. An 
experience-driven account is thus insufficient to explain why the relative weighting between cues is not uniform 
across listeners, given that these listeners shared similar language background. This observation led to the hypoth-
esis that such variation might at least partially stem from differences in some general cognitive mechanisms that 
modulate cue weighting. Kapnoula et al.7, for example, linked individual variation in cue weighting between 
VOT and F0 to categorization gradience measured in a visual analogue scaling (VAS) task (i.e., a task that asks 
the listener to rate stimuli along a visually presented continuous scale, such a line, ranging from one category, 
say a perfect /b/, to another, say a perfect /p/), such that listeners who exhibited a more gradient categorization 
pattern (i.e., a more continuous response distribution along the scale) are more likely to assign more weight to 
the secondary F0 cue. Differential cue weighting might also arise from differences in processing strategies. Ou 
et al.11 examined secondary cue weighting in two sets of English contrasts (/b/ vs. /p/ and /i/ vs. /ɪ/) using an 
eye-tracking paradigm and found that listeners who assigned more weights to secondary cues tend to adopt a 
buffer processing strategy where acoustic cues are stored in a memory buffer until all relevant cues are available. 
Alternatively, those who assigned less weights to secondary cue tend to use a continuous cascading processing 
strategy such that relevant cue information is taken into account as soon as they become available.

Individual differences in these cognitive mechanisms may ultimately stem from differences in an earlier stage 
of speech processing such as in the neural encoding of the acoustic cues. For instance, categorization gradience 
as measured in a VAS task with voicing contrast varying in VOT and F0 has been shown to be associated with 
gradient cortical speech representation16. In that study, individuals with low gradience (i.e., responses cluster-
ing around two ends of the scale) showed a step-like response pattern of N1, a negative event-related-potential 
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(ERP) component reflecting initial formation of object representation in early auditory cortex17, while a linear 
relationship between N1 amplitude and VOTs was observed among listeners with high gradience. However, 
the source of the cortical N1 difference is unclear, as acoustic information undergoes several layers of neural 
processing prior to the signal arriving at the cortical level. Recent studies have revealed that differences in cat-
egorization are subserved by how cues are encoded at the subcortical level. For instance, the latency of subcorti-
cal responses to the voicing onset predicts the VOT categorization differences in a 2-alternative-forced-choice 
(2AFC) task between English and Spanish speakers18. Additionally, there is also evidence that the uncertainty in 
VOT categorization in a 2AFC task among English speakers correlates with how faithfully subcortical responses 
encode VOT differences, with listeners who showed high categorization uncertainty (i.e., shallower slopes of the 
classification function) exhibiting less faithful encoding of the acoustic differences19. Listeners with high catego-
rization uncertainty exhibit a more linear encoding of acoustic differences at the cortical level, whereas listeners 
with low categorization uncertainty exhibited N1 responses that reflect a more discrete category pattern. These 
studies primarily focus on neural encoding of a speech continuum varying in one acoustic dimension. It is not 
clear if variability in the subcortical encoding of one cue dimension would necessarily map onto variability of 
encoding of other cue dimensions. A notable exception is Tamura and Sung20, which examined subcortical and 
cortical responses to a /da/-/ta/ continuum varying in VOT and F0 from native Japanese and Korean listeners 
to investigate the differences in cue weighting for voicing distinction. Behaviourally, Japanese speakers assigned 
more weights to VOT than F0, while the reversed pattern was observed for the Korean speakers. Yet, they found 
that the subcortical encoding of VOT did not differ significantly between the two groups of listeners, even though 
the Japanese listeners’ cortical N1 responses were much more sensitive to the VOT distinction than those of 
the Korean listeners. While they concluded the processing of acoustic cue weighting in phonetic perception is 
reflected in the early cortical auditory activity and not in the subcortical activities, their findings only account 
for cross-linguistic differences. It remains unclear if different cue dimensions are differentially encoded within 
the same individual and if such differences are related to individual differences in cue weighting.

Given that secondary cue weighting is associated with categorization gradience7 and uncertainty11, and cat-
egorization uncertainty in turn is associated with the quality of subcortical encoding19, the present study aims 
to elucidate the role of subcortical encoding as a potential source of individual variability in cue weighting by 
focusing on English listeners’ subcortical responses to the tense/lax vowel contrast (/i/ vs. /ɪ/), which is primarily 
cued by spectral (Formant) and durational (Vowel Duration) cues. Specifically, subcortical FFRs were measured 
to assess the precision with which individuals encode the speech stimuli. The FFR is part of the speech-evoked 
subcortical response and reflects the encoding of sustained periodic information (i.e., fundamental frequency in 
tones and higher harmonics in sonorant sounds such as vowels). Because FFRs are rich in temporal and spectral 
information, we can use multiple indices to examine subcortical encoding in a holistic manner; and we can also 
dissect individual components of the FFR response to examine how they reflect distinct aspects of the speech 
stimuli. Two hypotheses were tested. First, individuals who demonstrate relatively higher secondary cue weight 
may also have better general auditory encoding ability. Their encoding ability affords more robust encoding of 
the secondary cue and subsequently deeper integration of such information (Hypothesis 1). We evaluated this 
hypothesis by constructing a global measure of stimulus-to-response correlations (SRC) between subcortical 
responses and stimulus waveforms, which indicates how closely the FFR mirrors the overall stimulus wave-
form without making reference to any specific cue. On the other hand, individual variability in cue weighting 
might reflect cue-specific differences in encoding (Hypothesis 2). To this end, we measured, Formant and Vowel 
Duration (VD) encoding separately. If the two cues were differentially encoded in the FFRs with one cue better 
encoded than the other, it might facilitate the weighting of one cue over the other in the downstream process.

Results
Vowel categorization was examined in a 2AFC task to derive weights of each cue, and a behavioral cue-weight 
ratio was computed to index the relative weighting of cues within individuals (see “Behavioral data analysis” for 
details). To test Hypothesis 1, the FFRs elicited by the vowel continuum were analyzed holistically. Specifically, we 
calculated the global measure of SRC to indicate the overall quality of the FFRs. To test Hypothesis 2, we analyzed 
the FFRs in relation to specific acoustic features, namely the Formant and VD cues (see “EEG data analysis” for 
details). These two different sets of neural indices were then used to predict the behavioral cue-weight ratios.

Behavioral cue weighting.  In the behavioral categorization task, participants classified sounds drawn 
randomly from a “deep” ‒ “dip” continuum with five steps of formant frequency and two steps of VDs. The 
mean identification responses for the vowel continuum are shown in Fig. 1A. Results of a mixed-effect logistic 
regression showed that both Formant [β = − 1.77, z = − 28.85, p < 0.001] and VD [β = 1.25, z = 22.25, p < 0.001] 
were significant predictors of listener response patterns at the group level. The effect of Formant was greater than 
that of VD (βFormant = 1.77 vs. βVD = 1.25), confirming the status of Formant as more important for differentiating 
the contrast between /i/ and /ɪ/. Moreover, the individual Formant and VD cue weight showed a negative cor-
relation (r = − 0.39, p = 0.05) suggesting a trading relationship between the two (Fig. 1C). Individual response 
patterns (Fig. 1B) revealed that subject’s mean rate of /i/-identification response was widely dispersed between 0 
and 100%, suggesting that individual listeners weighted the two cues differently.

Neural cue encoding.  FFRs were analyzed with respects to the two hypotheses. To test Hypothesis 1, we 
computed the SRC to indicate how closely the FFR waveforms mirror the vowel segment of the stimulus with-
out making reference to any specific cue. To test Hypothesis 2, the fast Fourier transform (FFT) was used to 
track Formant information as encoded in the FFR21,22, and VD was measured by estimating the time-course of 
periodicity using autocorrelation23. These formant/VD tracking measures of FFR were used to correlate with the 
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acoustic stimulus values to index how closely the tracking follows the auditory input19,21 that is, F1-encoding 
and VD-encoding indices (see EEG data analysis for a detail description on how the two sets of neural encoding 
indices were constructed).

The salience of the first Formant (F1) contained in the FFRs was used as a proxy for the encoding of the 
Formant structures in the stimuli. Figure 2 shows clear energy peaks in the F0 range (100 to 125 Hz) and in the 
F1 range (200 to 400 Hz). F1-encoding estimated from the FFTs based on group-averaged FFRs were 282 Hz, 
338 Hz, and 367 Hz respectively, which closely paralleled changes in F1 along the stimulus continuum. For each 
participant, automated peak selection in the F1 frequency range was performed using custom routines coded in 
MATLAB and visually confirmed by referring to the individual FFTs.

Vowel duration was estimated by how well the FFR tracked the time-course of fundamental frequency (F0). 
Figure 3 demonstrates the autocorrelograms based on the group-averaged FFRs. In each stimulus condition, we 
observed robust phase locking at around 10 ms time shift, reciprocal of which corresponds to the F0 of the stimuli 
(i.e., 100 Hz; frequency = 1/time shift). The VD-encoding estimated from the group-averaged autocorrelation 
were 44 ms and 229 ms respectively. For each participant, automated selection of onset and offset time bin and 
computation of onset-offset time differences were performed using routines coded in MATLAB.

Brain‑behavior relations.  The behavioral Formant and VD cue weights were obtained based on cue coef-
ficients derived from logistic regression model. To examine the brain-behavior relations, the cue-specific neural 
encoding indices were used to correlate with the behavioral cue weights, and the results show a strong correla-
tion between F1-encoding and Formant cue weights (r = 0.61, p < 0.01), and moderate correlation between VD-
encoding and VD cue weight (r = 0.39, p = 0.04). While the correlations between cue-specific neural encoding 
indices and perceptual cue weights demonstrated that, as a group, listeners rely more on F1 than VD, which 
is consistent with the behavioral findings in the present study, these findings do not provide any information 
regarding the relative importance of cues within individuals. A measure that directly compares the relative 
importance between perceptual cue weights on the one hand and the relative strength of the neural encod-
ing on the other is required. To this end, we computed a cue-weight ratio by dividing a participant’s VD cue 
weight by that participant’s Formant cue weight, with larger values corresponding to more reliance on the VD 
cue. Similarly, to compare the relative encoding quality of each cue within an individual, a cue-encoding ratio 
was computed by diving a participant’s VD-encoding index by that participant’s F1-encoding index. The two 
neural indices, namely cue-encoding ratio and SRC, were used to predict individual differences in perceptual 
cue weighting. We constructed a multiple regression model with the behavioral index of cue weighting (i.e., 
behavioral cue-weight ratio) as the dependent variable, and the two neural indices (i.e., cue-encoding ratio and 
SRC) as the fixed effects.

Results of the regression model showed a significant effect of cue-encoding ratio [β = 1.07, t = 5.17, p < 0.001] 
but no effect of SRC [β = − 1.26, t = − 0.68, p = 0.50] (Table 1). Specifically, the cue-encoding ratio showed a posi-
tive relationship with behavioral cue-weight ratio (Fig. 4), suggesting higher neural VD-F1 ratios associated with 
higher behavioral VD-F1 ratios. That is, listeners who encoded VD more veridically than F1 in the FFR also 
weighted the VD cue more strongly than F1 during vowel categorization.

We constructed another regression model that included cue-encoding ratio as well as years of musical train-
ing and self-rated L2 proficiency as fixed factors, to evaluate the potential effects of musical training and L2 
proficiency on cue weighting. Results showed that musical [β = − 0.03, t = − 0.66, p = 0.51] and L2 experience 
[β = − 0.09, t = − 0.92, p = 0.36] did not have a significant effect on the cue-weight ratio, and the cue-encoding 
ratio remained as the significant predictor [β = 1.09, t = 5.45, p < 0.001] (Appendix Table S3). These results sug-
gest that the subject’s musical and L2 experiences had limited influence on how a listener weight speech cues as 
compared to neural encoding in the current study.

Figure 1.   (A) Mean identification response of /i/ along the vowel continuum with short (in grey) and long VD 
(in yellow) averaged across participants. Error bars represent ± 1 s.e.m. (B) Identification responses from each 
participant. (C) Correlation between Formant and Vowel Duration (VD) cue weights. Dotted lines indicate 
linear functions with shaded regions showing 95% confidence interval.
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Discussion
The present study investigated whether and how individual subcortical encoding of the acoustic signals influ-
ences how cues were weighted when categorizing an English vowel contrast varying orthogonally in two acoustic 
dimensions (i.e., Formant and VD). We observed that the two acoustic cues were differentially encoded at the 
subcortical level across individuals, with some encoding VD better than Formant (or vice versa) while some 
showed equal encoding of the two. Crucially, not only are the cue-specific neural encoding indices correlated 
significantly with perceptual cue weights, the differential encoding as indexed by the cue-encoding ratio is asso-
ciated with the cue-weight ratio from the identification task, suggesting that individual subcortical encoding as 
a source for differences in cue weighting. Another important finding is that cue-specific encoding, rather than 
general encoding ability modulates how cues are weighted in downstream process. This finding is in contrast 
with the findings from Tamura and Sung20 concerning cross-linguistic differences in cue weight. They did not 
observe any general or cue-specific differences in subcortical activities, even though the two languages differ in 
their weighting of VOT and F0 cues. The fact that individual listeners who exhibit differences in perceptual cue 
weights show corresponding cue-specific differences in neural encoding suggests that individual differences in 
cue weighting is likely to be driven by fundamental neurocognitive differences across individuals. At the cross-
linguistic level, differences in perceptual cue weights might be linked to the mapping of subcortical information 
to cortical processes (as suggested by N1 differences to VOT differences between Japanese and Korean listeners), 
rather than population-wide differences in subcortical encoding differences. To be sure, our findings cannot rule 
out past linguistic experiences as a potential factor in contributing to individual differences in cue weighting, 
particularly since subcortical response activities have been shown to be sensitive to training effects24. However, 

Figure 2.   Spectral representations of the group-averaged FFR by three Formant (in rows) and two VD (in 
columns) conditions via FFT, overlaid by the stimulus FFTs (in grey).
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since studies on the acoustic realization of the tense-lax difference in English have repeatedly found the primary 
acoustic cue to be spectral difference4–6, it does not seem likely that language experience alone is sufficient to 
account for the individual variability.

The FFR results showed that listeners differed in early auditory neural encoding with some encoding the 
spectral cue (i.e., Formant) more veridically than the temporal cue (i.e., VD), while others exhibited the reverse 
pattern, suggesting specificity in cue encoding across individuals. These individual differences in cue encod-
ing echoes the different perceptual patterns observed in perception of missing fundamental tones25,26, in that 
some individuals tend to identify the pitch of such tones with the missing F0 (“F0 listeners”) while others based 
their judgment on the frequency of the partials that make up the tones (“spectral listeners”). These perceptual 
preferences have been tied to differences in neuroanatomy, specifically to differences in the cortical volume 
of the Heschl’s gyrus (a pitch detection area) in the left and right hemisphere27. Such a spectral vs. temporal 

Figure 3.   Autocorrelogram of the FFRs by three Formant (in rows) and two VD (in columns) conditions. 
Colors represent the strength of correlation, with warmer color indicating higher correlation. The warm bands 
of color closely follow the inverse of the F0 (frequency = 1/time shift).

Table 1.   Results of the regression model for cue-weight ratio that included stimulus-to-response correlation 
(SRC) and cue-encoding ratio as fixed effects. *** p < 0.001

Predictor β SE t p

Intercept 0.17 0.93 0.18 .853

SRC − 1.26 1.85 − 0.68 .500

Cue-encoding ratio 1.08 0.21 5.17  < .001***
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cue dependence is even more apparent among listeners with cochlear implant (CI), who consistently show 
decreased use of spectral cues and greater use of durational cues, due to reduced spectral resolution of the 
auditory system28–30. In the present study, we found different patterns of weighting the spectral and temporal 
cues in vowel categorization, and these weighting differences in turn depend on how spectrotemporal informa-
tion is encoded at the earliest stage of processing in the auditory system. To be sure, whether the association 
between perceptual cue weight and subcortical tracking of the corresponding acoustic cue generalizes to other 
phonetic cues remains an empirical question that will require further investigation, the association is not likely 
to be unique to cues that are in a trading relationship as in the present case. After all, most, if not all, phonetic 
contrasts are supported by multiple cue dimensions. Such cues may not be related to each other at all, or, if they 
were, they may be positively or negatively correlated10.

One caveat about the present study worth highlighting is the fact that different methods were used to measure 
the neural representation of each cue (i.e., FFT to track Formant and autocorrelation for the VD cues). We chose 
to use different methods for Formant and VD tracking based on the strengths and limitations of each method. 
FFT is a common method for computing spectral composition of a signal but provides no information about 
time-varying frequency content. While there are variants of FFT, such as the Short-Time Fourier Transform 
(STFT)31,32 and wavelet transform33, which can be used to track spectral frequency over time, these methods have 
a trade-off between time and frequency resolution and may not provide the most accurate estimation for both cue 
dimensions. Autocorrelation was used to complement the FFT to accurately capture the temporal information of 
the signal. We believe that utilizing these two different methods allows us to best capture the different aspects of 
the neural encoding that may contribute to phonetic cue weighting. To be sure, the use of different methods to 
measure neural representation may limit the direct comparison between the two due to their distinct underlying 
computations. To mitigate such concerns, our approach—correlating the tracking values with acoustic values 
before comparing the two correlation measures through a ratio ‒ allows us to compare cue encoding at the 
level of similarity, rather than at the level of the original signal patterns, thus ensuring comparability between 
cue dimensions. Nevertheless, to seek a secondary confirmation of the current findings, we performed Time 
Frequency Analysis (TFA) to track spectral frequency over time of the neural signals, and thus Formant and VD 
cue encoding were extracted using the same computational method (see Supplementary analysis for details). 
The TFA results reinforced the positive correlation between cue-encoding ratio and cue-weight ratio (r = 0.68, 
p < 0.001), even if the magnitude the correlational strength using TFA was slightly weaker compared to the cor-
relation obtained using the FFT and autocorrelation methods (r = 0.78); the weaker TFA-based correlation might 
stem from the lower spectral resolution of the TFA.

Our findings do not support a lack of sensitivity to the acoustic details as a general explanation for individual 
variability in cue weighting. While previous studies have observed a relationship between auditory encoding 
and perceptual performance19,34,35, these studies have focused on stimuli that varying in one acoustic dimension. 
By employing stimuli varying in two acoustic dimensions as well as comprehensively evaluating the encoding 
of the two cues, our study found that the relationship between auditory encoding and perceptual performance 
is cue-specific and can vary across individuals. Furthermore, while previous studies have found that individual 
differences in perceptual cue weighting might stem from individual general cognitive mechanisms7,11, our study 
identifies the central role of auditory cue encoding in explaining perceptual cue weight differences. To be sure, 

Figure 4.   Scatterplots behavioral cue-weight ratio and neural cue-encoding ratio. Dotted lines indicate linear 
functions between the two measures with shaded regions showing 95% confidence interval. The subject number 
is shown on each data point.
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the mechanisms of categorization gradience, processing strategy, as well as auditory encoding might all play a 
role in shaping variability in cue weighting, especially since they operate at different stages of speech processing. 
Whether and how these mechanisms operate within the same individuals merits further investigation.

To summarize, by demonstrating that listeners show differential cue encoding, which then affects the reli-
ability and weighting of certain cues that support phonological contrasts, the present study sheds important light 
on the mechanisms underlying variability in cue weighting, moreover, provides a foundation for further research 
to elucidate how perceptual variability might be shaped by different mechanisms at play.

Materials and methods
Participants.  Thirty young adults participated in the experiment. Three participants were excluded due to 
excessive artifacts in the data (electrical noise or high levels of myogenic noise), and two additional partici-
pants were excluded due to technical issues during data recording. Final sample consisted of 25 subjects (age: 
21.79 ± 3.03 years; 9 males), all were university students with no reported speech, hearing, or language disorders. 
Experimental procedures were approved by the Social and Behavioral Science Institutional Review Board at the 
University of Chicago and were in accordance with the Declaration of Helsinki. Informed written consents were 
obtained from all participants.

Participants completed a survey of their language learning and musical training history (Appendix Table S1). 
Participants started their musical training between age 3 to 12 (mean = 7.59, SD = 2.68), and spent an average 
of 7.25 years (SD = 4.43) in training. All participants identified English as their first language except for three, 
who identified an additional language, i.e., Japanese, Mandarin, and Hungarian, as first language. Self-rated 
second-language (L2) proficiency for speaking and listening abilities were on average 4.37 (SD = 1.24) and 3.98 
(SD = 1.16) on a 7-point Likert-type scale ranging from 1 (very poor) to 7 (native-like). All participants reported 
that English is the dominant language in daily life. To account for the potential effects of musical and language 
experience on speech cue weighting, years of musical training and self-rated L2 proficiency (averaged for speak-
ing and listening) were entered as covariates in the brain-behavior analyses.

Stimuli.  Auditory stimuli were synthesized tokens from a /i/-/ɪ/ continuum with varying Formant frequen-
cies and VD. Stimuli were created using a Klatt style synthesizer implemented in Matlab, with formant and VD 
values set with reference to those of Gordon et al.36. A five-step formant frequency continuum were combined 
with two VDs (60 ms and 300 ms) resulting in a total of 10 vowel stimuli. The formant continuum was con-
structed by varying the center frequencies of the first three formants in equal steps from /i/ to /ɪ/ (see Appendix 
Table S2). The fourth and fifth formants were held constant at 3500 and 4500 Hz, respectively. The rise and decay 
times were set at 1/6 of the vowel duration, with 10 ms for the short vowels and 50 ms for the long vowels. The 
fundamental frequency (F0) in all stimuli fell linearly from 125 Hz at onset to 100 Hz at offset. Finally the vowel 
tokens were embedded in a /d_p/ frame to generate a /deep/-/dip/ continuum.

Behavioral identification task.  Participants completed a forced-choice identification task in an acous-
tically shielded booth before the electroencephalography (EEG) recording. The auditory stimuli were deliv-
ered binaurally through Sennheiser HD555 headphones at 80 dB SPL, and the experiment was controlled with 
E-Prime. Participants were instructed to identify the sound as quickly as possible (/deep/ or /dip/) through but-
ton presses on an E-prime response box within 2 s. Each of the ten tokens from the continuum was repeated 15 
times in a randomized order for a total of 150 trials.

EEG data acquisition and preprocessing.  Six tokens from the /deep/-/dip/ continuum (i.e., Formant 
step 1, 3, and 5 with short and long VD) were used to elicit electrophysiological responses. Stimulus delivery 
was controlled in MATLAB, and delivered binaurally at an intensity of 80 dB SPL through inserted earphones 
(ER-1, Etymotic Research, IL). The stimuli were presented in alternating polarities for a total of 2000 sweeps 
per stimulus token (1000 per polarity) with an inter-stimulus interval jittered among 350, 390, 400, 410 ms. The 
six tokens were presented in separate blocks with block order randomized across participants. The entire EEG 
recording lasted about 2 h.

Electrophysiological responses were collected using the Brain Products actiCHamp, EP-preamp amplifiers 
and BrainVision Recorder software (Brain Products GmbH), with Ag–AgCl scalp electrodes placed at vertex 
(Cz, active) referenced to linked mastoids (M1/M2), and the mid-forehead as ground. Data were digitized at 
a sampling rate of 25 kHz, with no online filters applied. Electrode impedances were kept below 5 kΩ, and the 
preamplifier gain was set to 50. All recordings were made passively with the participant sitting comfortably in 
the booth. To minimize myogenic artifacts, participants were instructed to relax and refrain from extraneous 
body movement, and to ignore the stimuli as they watched a silent movie throughout the recording session.

The continuous EEG recordings were bandpass filtered off-line from 80 to 2500 Hz (12 dB/octave, zero phase-
shift). The recordings were then epoched into segments that were time locked to the auditory stimuli (short VD: 
− 50 to 150 ms; long VD: − 50 to 350 ms). After baseline correcting each response to the mean voltage of the pre-
stimulus region, trials with amplitudes exceeding a predefined range ± 35 μV were rejected. The artifact-free trials 
(1765 ± 95) were averaged for each stimulus condition for each subject, and downsampled from 25 to 10 k Hz.

Behavioral data analysis.  Logistic regressions were fitted to each participant’s identification of the stimu-
lus as /deep/, with Formant, VD step and their interaction as fixed factors. Coefficients for Formant and VD were 
used as indices of cue weights to compute a cue-weight ratio (similar to the “reliance ratio” used by Escudero and 
Boersma 2004) for each participant by dividing the VD cue weight by the Formant cue weight, with a ratio of 1 
or close to 1 reflecting equal weighting of both cues. A ratio larger than 1 indicates that the listener relies more 
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on the VD cue relative to the Formant cue; on the other hand, a ratio smaller than 1 reflects more reliance on the 
Formant cue than the VD cue.

EEG data analysis.  Per Hypothesis 1, which attributes individual differences in perceptual cue weighting to 
general auditory encoding ability across listeners, we computed an index to indicate how closely the FFR wave-
forms mirror the vowel segment of the stimulus without making reference to any specific cue. The stimuli were 
downsampled to 10 kHz to match the sampling rate of the FFRs. For each FFR, we first calculated its estimated 
onset delay relative to the vowel onset time (neural lag) due to neural conduction of the auditory pathway. This 
neural lag was computed by cross correlating the FFR and the stimulus vowel waveform in time with respect to 
one another37. The neural lag value (in ms) was taken as the time point in which maximum positive correlation 
was achieved between 6 and 12 ms, the expected latency of the onset component of the auditory subcortical 
response38. The onset of the FFR was adjusted by the neural lag, and the vowel segment of the stimulus was 
truncated from the end by the length of the neural lag, so that the number of data points in the two signals were 
matched. The stimulus-to-response correlations (SRCs) were generated by correlating FFRs (the portion of FFR 
from neural lag to 60 ms/300 ms) with stimulus vowel waveforms using Pearson’s correlation. This measure 
represents both the strength and direction of the linear relationship between the two signals. The SRC was calcu-
lated for each stimulus, then averaged across six the stimulus conditions for each participant.

Per Hypothesis 2, which relates listener-specific perceptual cue weighting to individual differences in cue-
specific neural encoding, we quantified the subcortical encoding of the two cues respectively. The F1 in the FFRs 
was used as a proxy for the encoding of the Formant structures in the stimuli. This is due to the phase-locking 
limitation of the subcortical structures, which limits neural encoding of the periodic acoustic properties to 
temporal events well below the second formant39. Spectral representations were computed from FFRs using the 
fast Fourier transform (FFT). Specifically, for each participant and each stimulus condition, FFRs were aver-
aged across trials, multiplied with a Hanning window, and an FFT was calculated. The nature of F1 encoding 
was quantified from the response FFTs, defined as the peak amplitude in the response spectra between 270 and 
374 Hz, i.e., the expected F1 range from the stimuli. The location of these local maxima provided an estimate of 
the F1 frequency as encoded in the FFR. For each participant, the F1 estimate for each stimulus condition was 
correlated with the stimulus F1 values to compute an index—F1-encoding, to indicate how well the F1 differences 
between tokens were captured in the subcortical responses.

Vowel duration was estimated by how well the FFR tracked the trajectory of F0 in the stimuli. As mentioned 
above, phase-locking at the subcortical regions is limited to lower frequencies39, and we observed that in our 
current study, phase locking activity over time is most robust and consistent across stimulus conditions at the 
fundamental frequency level (see Appendix Fig. S1). To accurately estimate the neural tracking of VD, the 
duration of the F0 (which is also part of the vowel) was used as a proxy for VD, rather than that of the Formant 
structure. The ability of the FFR to follow F0 in the stimuli was evaluated using a periodicity detection short-
term autocorrelation function23,40. Specifically, a sliding window analysis was applied to the FFRs in which a 
40-ms bin was shifted in 1 ms steps to produce a total of 111 overlapping bins for FFRs to the short VD tokens 
and 311 bins for FFRs to the long VD tokens. Each of the time bins was cross-correlated with itself to determine 
how well the bin matched a time-shifted version of itself. The maximum (peak) autocorrelation value (between 
0 and 1) was recorded for each bin, with higher values indicating more periodic time frames. For each stimulus 
and for each participant, the autocorrelation peaks (r values) from all the time bins were averaged to derive 
an autocorrelation-peak-average. We recorded time bins whose autocorrelation r values were larger than the 
autocorrelation-peak-average; then computed the time differences between the onset bin (i.e., the earliest time 
bin where autocorrelation r value was no less than the average) and offset bin (i.e., the last time bin where auto-
correlation r value was no less than the average) to reflect the F0 time-course tracked by the FFR. The length of 
the F0 trajectory was then used to estimate the VD as encoded in the FFR. Similar to the F1-encoding, a VD-
encoding index was also computed for each participant to indicate how well the VD differences between tokens 
were captured in the subcortical responses. Finally, the VD-encoding index was divided by the F1-encoding 
index to construct a neural counterpart of the cue-weight ratio, i.e., a cue-encoding ratio for each participant.

Brain‑behavior relationships.  To examine whether and how subcortical encoding predicted behavioral 
cue weighting, multiple regression analysis was performed with the behavioral cue-weight ratio as the dependent 
variable, and the two neural indices (i.e., cue-encoding ratio and SRC) as the predictors. In addition to the neural 
predictors, years of musical training and self-rated L2 proficiency were also entered into the model to account for 
the potential influences of musical and L2 experiences.

Data availability
The experimental stimuli and the datasets generated during the current study, along with the analysis code, are 
available on Open Science Framework at http://​doi.​org/​10.​17605/​OSF.​IO/​2ZR9W.
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