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Fractional calculus in mathematical 
oncology
Tudor Alinei‑Poiana 1, Eva‑H. Dulf 1,2* & Levente Kovacs 3

Even though, nowadays, cancer is one of the leading causes of death, too little is known about the 
behavior of this disease due to its unpredictability from one patient to another. Classical mathematical 
models of tumor growth have shaped our understanding of cancer and have broad practical 
implications for treatment scheduling and dosage. However, improvements are still necessary on 
these models. The primary objective of the present research is to prove the efficiency of fractional 
order calculus in mathematical oncology, more specifically in tumor growth modeling. For this, a 
generalization of the four most used differential equation models in tumor volume measurements 
fitting is realized, using the corresponding fractional order equivalent. Are established the fractional 
order Exponential, Logistic, Gompertz, General Bertalanffy-Pütter and Classical Bertalanffy-Pütter 
models for a treated and untreated dataset. The obtained results are compared by Mean Squared Error 
(MSE) with the integer order correspondent of each model. The results prove the superiority of the 
fractional order models. The MSE of fractional order models are reduced at least at half in comparison 
with the MSE of the integer order equivalent. It is demonstrated in this way that fractional order 
deterministic models can offer a good starting point in finding a proper mathematical model for tumor 
evolution prediction. Fractional calculus is a suitable method in this case due to its memory property, 
aspect that particularly characterizes biological processes.

Cancer is one of the world’s deadliest diseases. According to the World Health Organization, there were an esti-
mated 19.3 million new cases of cancer and almost 9.9 million deaths from cancer worldwide in 20201. A lot of 
research is being done to find proper models and to apply modern control algorithms to discover personalized 
treatment for patients to, at least, postpone cancer’s evolution with minimal impact of treatment side effects 
(chemotherapy, radiation therapy etc.).

Mathematical modeling is a powerful tool used in finding different structures that can predict the behavior 
of a system, even when referring to a living organism2,3. Using tumor mathematical models, it can be useful in 
cancer proliferation and survival signaling, tumor immunology, tumor microenvironment, metastasis and anti-
cancer therapeutic research. Exploring models of various cancer types will help understanding cancer and the 
corresponding therapeutic approach. It can lead to personalized and efficient treatments.

There are several models developed for different type of tumor evolutions and therapy efficiency. In4 are 
reviewed several emerging therapeutic strategies and discussed how mathematical models have contributed to 
the design of such schedules. All researcher in the field agree that mathematical models can be used to describe 
and forecast the behavior of cancer. This is one of the main objectives of “mathematical oncology”5–7. The ori-
gins of mathematical oncology can be considered the Gompertz population growth model8. Another milestone 
is represented by the Bertalanffy’s organism growth model9. More recently several models are developed and 
discussed. An extensive review of recent results proves the ability of such models to simulate and predict the 
spatiotemporal development of tumors10.

As a starting point for the present research, in11 can be found the fitting of differential equation models to 
tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors. 
There are compared six classical models which are widely used in the field: the Exponential, Logistic, Classic 
Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. The study concludes that these 
models could potentially be effective at predicting treatment outcome.

On the other hand, fractional order calculus becomes more and more used in biological, chemical and medical 
systems12. It generalizes the classical, integer order differential calculus to non-integer orders. Many research-
ers have already proved the superior performance of fractional order models for describing this phenomenon. 
Great results are presented in different areas: from biosciences, bioengineering, medicine, economics to physics, 
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control, signal processing, neural networks13–16. Many authors agree that fractional operators are useful in cap-
turing and understanding the more relative consequences of physical phenomena with higher nonlinearity and 
complexity with long-range memory and history-based properties17. For example paper18 analyzes the dynamics 
of a fractional partial differential equation model of Zika virus. Incorporating the diffusion phenomena using 
Atangana–Baleanu fractional derivative, the authors explain how the spread of humans and mosquitoes influ-
ences the disease’s transmission.

On the other hand mathematical oncology is both an old and a new field of research. Recently, multidiscipli-
nary approaches became more and more attractive. Predictive mathematical modeling is widely used to fill in 
gaps between mathematicians, clinicians, biologist and to make predictions of cancer progression and response 
to therapy on a patient-specific basis. Many papers are published in the field, but all researchers agree that math-
ematical oncology is still in the early stage. Any contribution to the field is welcomed.

The present work try to combine this two field by extending the classical tumor growth models using the 
fractional differential operator. The results are compared by analyzing the mean squared errors (MSE) with 
both real data and the integer order models, highlighting the advantages introduced by fractional calculus. The 
obtained results show the utility and ability of fractional order models to emphasize certain characteristics that 
the integer order systems cannot describe.

The paper is structured as follows. After this introductory part, Section “Materials and methods” presents 
the used methods, while Section “Results and discussions” discusses the obtained results. The work ends with 
a concluding section.

Materials and methods
The concept of integral operator is defined in several ways19. The most used is the Riemann–Liouville definition, 
which states that a fractional order integral of order ℜ(α) > 0 is a natural consequence of Cauchy’s formula for 
repeated integrals, expressed as19:

where I represents the notation for the integral operator and n is a natural number, the order of integration. As 
it can be seen, there is a constraint regarding the order n of this operator, due to the term n!. Introducing the 
Gamma function in the above formula, the notion of integration order can be extended from the set of natural 
numbers to the set of positive real numbers, so the new form of the integral becomes:

where α ∈ R+ is the new order of integration and

is the Euler’s Gamma function which is a generalization of a factorial. The generalization for the whole set of 
real numbers becomes:

which describes the real order integral operator, keeping at the same time the inverse correspondence between 
differentiation and integration.

This definition became19:

for dynamic systems, where f(t) is a causal function of t.
The fractional-order derivative of order α ∈ R + can be defined using the Riemann–Liouville formula19:

or by the alternative definition introduced by Caputo16:
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The advantage of Caputo fractional derivative20 is allowing the initial and boundary conditions to be included 
in the problem. Moreover, this form of the integral overcomes the Riemann–Liouville integral drawback of hav-
ing the derivative of a constant different from zero.

A useful aspect of the variation of the integration order can be represented intuitively in Fig. 1 where a simple 
function of the form f (x) = x is considered. It is obvious that the first order derivative is 1, while the derivative 
of 0 is the function itself. Varying the integration order between 0 and 1 we can obtain a function that oscillates 
between the two curves as shown in Fig. 1.

Fractional operators are widely used to describe complex behaviors of dynamical systems21,22 and proved to 
be a powerful tool in describing and understanding the complex behavior of nonlinear systems.

The mathematical models established and discussed in present work are deterministic models. A deterministic 
model allows to calculate a future event exactly, without the involvement of randomness. This class of models can 
predict the outcome with certainty which from the beginning may be a wrong assumption regarding the complex 
behavior of cancer but can provide a good starting point for finding new models and to extend the research 
to stochastic models. For all models, the dependent variable is the volume of the tumor as a function of time.

The first model considered is the exponential model. This type of model has the simplest form and is based 
on the following differential equation6:

where v is the tumor volume, a represents the growth exponent, the kinetic parameter.
The second analyzed model is the logistic model, with general form6:

where a is the inherent growth rate, k is the average population size of a species in a habitat (in this case, the 
volume of cancerous cells in a living organism) and b is an exponent that corrects the expression of tumor 
growth rate.

The third model is the Gompertz model23:

which is practically a generalization of the logistic model. The constant c introduces the volume minimum carry-
ing capacity. Its advantages are proved mainly in the field of biology, helping to describe the evolution of animals 
and plants, as well as the number or volume of bacteria or cancer cells in a living organism.

The fourth model is the Bertalanffy–Pütter model, having the form24:

where the first definition represents the generalized form of the Bertalanffy-Pütter model, the second standing 
for the particular form when the exponents a and b are equal. The parameters in this case are the pair of expo-
nents (a, b) and coefficients (p, q) where p is the intrinsic growth (meaning the number of new cells minus the 
number of dead cells during a generation) and q is the growth rate declaration factor of antiangiogenic process 
(referring to the vascularization process).

However, these models do not include the effects of memory, which are found in biological systems. Hence, 
in order to take into account the memory effects by the mathematical formulation, it is introduced a new form 
for each model by replacing the ordinary derivative with the fractional operator. For each model the fractional 
order differential correspondent is proposed.
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Figure 1.   Effect of differentiation order variation.
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The fractional order exponential model:

the fractional order logistic model:

the fractional order Gompertz model:

and the fractional order Bertalanffy-Putter model, in both generalized and particular form:

The existence and unicity of the above-mentioned fractional order models of tumor growth are proved, start-
ing from the following form of Riemann–Liouville integral:

Iα =
∫ x
x0f (t)(x − t)α−1dt,α ∈ C,Re{α} > 0 , respectively

Because definition (15) makes the derivative of order α of a function f (x) = K , where K is constant, to be 
Dα f (t) =

[
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]′
= Kxα

Ŵ(1−x) �= 0 , the following definition has been proposed, by changing the kernel from 
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t−α
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 to 1√

2π(1−α2)
 , thus obtaining the Caputo-Fabrizio definition of the integral 

operator25,26:

where M(α) is a constant which depends on α.
Using Losada-Nieto proposition and considering Dα f (t) = h(t), it is obtained:

In the upcoming demonstration fixed-point theory and Picard-Lindelof technique will be used27.
In terms of kernel the following equation holds:

where K(v,t) is one of the models mentioned above (e.g. K(v, t) = av(t)).
Having the Picard iterations:

and rewriting the considered system K, results:

Considering (16) and (17), the equation can be expressed as:

Definition  (Lipschitz function)28: Let t ∈ [0,T] and f (t, x(t)) be a function. f (t, x(t)) is a Lipschitz function if 
there is θ > 0 so that �f (t, x1(t))− f (t, x2(t))� ≤ θ�x1(t)− x2(t)�,∀x1(t), x2(t) ∈ C([0, T],R).

For example, considering the exponential model, it can stated that:
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Theorem 1  29,30: System (17) has a solution if ∃ c so that (φ(α)+ ψ(α) · c)θ < 1.

Theorem 2  29,30: The solution is unique if 1− [φ(α)+ ψ(α) · t] · θ > 0.

Proof  Let be the map ρ : C([0,T],R) → C([0,T],R) defined by:

It is known that the space C([0,T],R) which has attached the following norm �ϕ�c = sup|ϕ(t)| , 
witht ∈ [0,T], isaBanachspace.

Considering v1(0) = v2(0) and knowing that ρ(v(t)) = v(t):

A.	 Existence of the solution:

Let y(t) = v(t) for the considered model F
(
y, t

)
= y , with y(0) the model’s initial condition.

Now the Picard iterations are:

Repeating the algorithm above we get:
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Let y(t)− y(0) = yn(t)− Bn(t) with

⇒ Bn(t) → 0, when n → 0 ⇒ the functions (18) are solutions for the considered sistem.

B.	 Uniqueness of the solution:
	   Assuming 1− [φ(α)+�(α) · t]θ > 0 , meaning we have a unique solution and also know-

ing  that  �v1(x)− v2(x)�C(1− φ(α)b− ψ(t)bt) ≤ 0, we  get  that  �v1(x)− v2(x)�C ≤ 0, but 
�v1(x)− v2(x)�C = sup(|v1(x)− v2(x)|) ≥ 0, so this means that v1(x) = v2(x) ⇒ the solution is unique.

C.	 Stability of solution:
	   For simplicity, we will consider the model (11).
	   The differential equation d

xv
dt = a · v(t) , is a fractional differential equation with a fractional order x.

To prove the stability of the solution v(t) to this fractional differential equation, we can use the concept of 
Mittag–Leffler stability, which is a generalization of Lyapunov stability for fractional differential equations.

Specifically, we can show that the solutions of the fractional differential equation converge to a steady-state 
solution as time approaches infinity if the Mittag–Leffler function satisfies certain conditions.

The Mittag–Leffler function Eα(z) is defined as:

where α is a constant exponent that determines the rate of decay or growth of the function for large values of z.
The general solution to the fractional differential equation d

αv
dt = a · v(t) , is given by:

where A is a constant of integration.
To show the Mittag–Leffler stability of this solution, we need to demonstrate that Eα((a · t)x) converges to a 

finite value as time goes to infinity for certain values of α and a.
For 0 < x < 1 , the Mittag–Leffler function Eα(z) is monotonically increasing and bounded for 0 < z < infinity 

and all α > 0 . Therefore, for 0 < x < 1 and any a, Eα((a · t)x) converges to a finite value as t goes to infinity.
For x ≥ 1 , the Mittag–Leffler function Eα(z) is not necessarily bounded, but it has a Laplace transform that 

is bounded for Re(s) > α , which means that Eα((a · t)x)  decays exponentially for certain values of α and a. Spe-
cifically, Eα((a · t)x) is bounded for 0 < α < x and a ≤ 0 , which implies that the solution v(t) = A · Eα((a · t)x) 
is Mittag–Leffler stable for these values of α and a.

Therefore, we can conclude that the solution v(t) = A · Eα((a · t)x) to the fractional differential equation 
dxv
dt = a · v(t)  is Mittag–Leffler stable for certain values of α and a, depending on the order x of the fractional 

derivative.
Having these proofs, all the above models can be taken into account as being valid to describe the biological 

process considered. All parameter used in the models are supposed to be positive constants, being a biological 
system. All parameters have the same definitions as in the integer order case, appearing the additional degree 
of freedom, α, the fractional order.

The used database is from research31,32, where tumor pieces from a mouse tumor were transplanted orthotopi-
cally to syngeneic FVB mice. The tumor’s volume was measured over a period of 18 days. One group was observed 
without treatment and a second one was treated based on clinician’s protocol. The treatment consisted in drug 
injection when the tumor volume reached 200 [mm3] and at least 10 days have passed since the last treatment. 
The injected drug dose used was the maximum tolerable dose of 8 [mg/kg]. If the maximum volume threshold 
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of 2000 [mm3] was reached, the experiment was stopped. The observations were made regularly, once every two 
to three days, the system’s identification being performed on the interpolated data set using spline curves. There 
were used two sets of measurements to study the tumor’s growth: the first case on which a treatment scheme 
was applied and the second case where only observations were made on the evolution of the tumor’s volume.

For all enumerated models the dependent variable is considered the volume of the tumor as a function of 
time. The goal is to fit each type of models to the entire time series for each dataset. The statistical endpoint of 
each experiment is the minimum Mean Square Error (MSE):

where n represents the number of samples for each model, yi are the real data values and ŷi the values estimated 
by the models. For simplicity as initial conditions were used near zero values.

All model fitting procedures were implemented in Matlab®. For the fractional order calculus FOMCON tool-
box is used33. The optimal parameters for the integer order models were obtained using the fminsearch function 
from Matlab®. The fractional order models were used with the same parameters as already fitted for the integer 
order ones, establishing the best fit by only changing the fractional order. In this way it can be highlighted the 
effect of the introduced fractional order on the tumor model dynamics.

Results and discussions
The simulation results for two dataset for both treated and untreated case are plotted in Fig. 2. These graphics 
reveal that the fractional order derivative has a significant impact on the dynamics of the tumor evolution.

For each considered fractional order, MSE is computed for the resulting models. The impact of the fractional 
order on the MSE is plotted in Fig. 3. It can be observed that there is an optimum value in each case.

The resulted best fitting integer order models and the corresponding fractional order equivalent, having 
the same coefficients, are presented in Table 1, while Table 2 highlights the obtained mean squared errors: The 
evolutions of the MSE for each considered model for both integer and fractional order version for the treated 
and untreated case data are plotted in Fig. 4. With blue are plotted the integer order model results and with read 
the fractional order correspondents.

All obtained results for the integer case are in accordance with the results published in the field34. For the 
fractional order models no results were found in the literature. From the MSE evolution plots for different 
fractional order values can be concluded that in each case there is an optimum value. Decreasing the fractional 
order leads to the decrease of MSE until this minimum MSE is reached.

It can be noted that the MSE of fractional order models are reduced at least at half in comparison with the 
MSE of the integer order equivalent. This good model fitting with fractional order models is even more obvious 
for the untreated case, where even a 26.21% of MSE reduction can be obtained.

The best integer order model for the treated case is the Gompertz model. However, with the fractional order 
equivalent a MSE reduction from 0.0218 to 0.0146 is obtained. It is interesting to see, that a MSE not very far from 
this value (0.021) is obtained with the more simple fractional order logistic model. The extra degree of freedom 
offered by the fractional order makes a useful tool even from a relatively simple model, like the logistic models.

The best integer order model for the data obtained from untreated tumors is the generalized Bertalanffy-Pütter 
model, with a MSE of 0.8557. The fractional order equivalent leads to a MSE of 0.2243, which means a 26.21% 
MSE reduction. As in the untreated case, it can be observed that even the simplest model, the exponential model, 
can lead to a small MSE if fractional order is used.

After all these tests, performed to answer the question how well classical differential equation models can fit 
tumor volume trajectories both in treated and untreated case, it is found that in all cases fractional order versions 
of each model outperforms the corresponding integer order model. Fractional order models are more flexible 
in fitting empirical data, captures features of compliance data and offer improved model predictions, proved by 
the reduced MSE.

Conclusions
Classical mathematical models are in principle useful to model cancer growth for both treated and untreated 
case. Moreover, although several studies analyze such models on different data, to the best of our knowledge, 
no fractional order models are developed for tumor models. Deterministic structures can offer a good starting 
point in finding a proper mathematical model for tumor evolution prediction, but they can be improved by using 
fractional differential calculus in order to improve the approximation obtained from the integer order differential 
equation. Fractional calculus is a suitable method in this case due to its memory property, aspect that particularly 
characterizes biological processes.

The present study discusses the fractional order generalization of four generally recommended mathematical 
models: exponential, logistic, Gompertz and the generalized and particular form of the Bertalanffy-Pütter model.

As presented in the above results, the best results for the treated tumor case were obtained using the frac-
tional order logistic model, which offers MSE similar to the integer order Gompertz model, recommended in 
all published studies. This model offers good results for the untreated tumor case as well. For this case the MSE 
is 0.3002. However, the smallest MSE in this case is offered by the generalized Bertalanffy-Pütter model, having 
a MSE of 0.2243. It is explicable, being the more complex model, with the most parameters.

Although those models offer a good understanding of the tumor’s growth process and cancer development, 
they have a major disadvantage by not being able to provide the necessary structure of a model (unlike a state-
space model) so that it can be used in developing a control strategy. In addition to this, those models do not 

(19)MSE =
1

n

n∑

i=1

(
yi − ŷi

)2
,
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Figure 2.   (a) Exponential model results for treated case; (b) Exponential model results for untreated case; (c) 
Logistic model results for treated case; (d) Logistic model results for untreated case; (e) Gompertz model results 
for treated case; (f) Gompertz model results for untreated case; (g) Generalized Bertalanffy–Pütter model results 
for the treated case; (h) Particularized Bertalanffy–Pütter model results for the treated case; (i) Generalized 
Bertalanffy–Pütter model results for the untreated case; (j) Particularized Bertalanffy–Pütter model results for 
the untreated case.
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Figure 2.   (continued)
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include the presence of an input (explicit treatment used on mice), disturbances (changes in the metabolism of 
the studied specimen or the appearance of certain diseases or abnormalities) or even a resistance to the applied 
treatment.

To sum up, further research is to be done regarding the use of fractional calculus in control theory, but the 
preliminary results show their utility and ability to emphasize certain characteristics that the integer order sys-
tems cannot observe. Also, stochastic models are proven to be a powerful tool in finding better predictions for 
processes that are too complex to be described in a deterministic way. Future research include a mix between 
stochastic and fractional calculus, which can be a solution in finding a proper model to describe any biological 
process inside a living organism, including cancer.

Figure 2.   (continued)
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Figure 3.   MSE evolution for different fractional orders in the case of the: (a) exponential model for treated 
tumor; (b) exponential model for untreated tumor; (c) logistic model for treated tumor; (d) logistic model 
for untreated tumor; (e) Gompertz model for treated tumor; (f) Gompertz model for untreated tumor; (g) 
generalized Bertalanffy–Pütter model for treated tumor; (h) generalized Bertalanffy–Pütter model for untreated 
tumor; (i) particularized Bertalanffy-Pütter model for treated tumor; (j) particularized Bertalanffy–Pütter 
model for untreated tumor.
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Table 1.   The obtained models.

Treated case Untreated case

Integer order exponential model dv

dt
= 0.046 · v(t) dv

dt
= 0.109 · v(t)

Fractional order exponential model dv
0.97

dt
= 0.046 · v(t) dv

0.98

dt
= 0.109 · v(t)

Integer order logistic model dv

dt
= 0.0735 · v(t) ·

(
1−

(
v(t)
2.81

)3.35)
dv(t)
dt

= 0.565 · v(t) ·
(
1−

(
v(t)
35.2

)0.134)

Fractional order logistic model dv
0.94(t)
dt

= 0.0735 · v(t) ·
(
1−

(
v(t)
2.81

)3.35)
dv

0.88(t)
dt

= 0.565 · v(t) ·
(
1−

(
v(t)
35.2

)0.134)

Integer order Gompertz model dv(t)
dt

= 0.204ln

(
8.81

v(t)+5.04

)
dv(t)
dt

= 0.106ln

(
26.09

v(t)+2.24

)

Fractional order Gompertz model dv
0.95(t)
dt

= 0.204ln

(
8.81

v(t)+5.04

)
dv

0.86(t)
dt

= 0.106ln

(
26.09

v(t)+2.24

)

Integer order generalized Bertalanffy–Pütter model dv

dt
= 0.168 · v2.18 − 0.1 · v2.66 dv

dt
= 0.894 · v1.38 − 0.741 · v1.44

Fractional order generalized Bertalanffy–Pütter model dv
0.96

dt
= 0.168 · v2.18 − 0.1 · v2.66 dv

0.96

dt
= 0.894 · v1.38 − 0.741 · v1.44

Integer order particularized Bertalanffy–Pütter model dv

dt
= 0.064v

2.41 − ln(v) · 0.063 · v2.41 dv

dt
= 0.203v

0.74 − ln(v) · 0.011 · v0.74

Fractional order particularized Bertalanffy–Pütter models model dv
0.96

dt
= 0.064v

2.41 − ln(v) · 0.063 · v2.41 dv
0.95

dt
= 0.203v

0.74 − ln(v) · 0.011 · v0.74

Table 2.   MSE for each obtained model.

Treated case Untreated case

Integer order exponential model 0.0457 2.74

Fractional order exponential model 0.022 0.94

Integer order logistic model 0.0236 2.506

Fractional order logistic model 0.0156 0.394

Integer order Gompertz model 0.0218 2.4066

Fractional order Gompertz model 0.0146 0.3824

Integer order generalized Bertalanffy–Pütter model 0.0216 0.8557

Fractional order generalized Bertalanffy–Pütter model 0.0150 0.2243

Integer order particularized Bertalanffy–Pütter model 0.0215 1.0682

Fractional order particularized Bertalanffy–Pütter models model 0.0149 0.2273
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Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable request.
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