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Cooling‑induced expansions 
of Afromontane forests in the Horn 
of Africa since the Last Glacial 
Maximum
Manuel Casas‑Gallego 1,2*, Karen Hahn 1, Katharina Neumann 3, Sebsebe Demissew 4, 
Marco Schmidt 5, Stéphanie C. Bodin 3 & Angela A. Bruch 6

Understanding the changing plant ecosystems that existed in East Africa over the past millennia 
is crucial for identifying links between habitats and past human adaptation and dispersal across 
the region. In the Horn of Africa, this task is hampered by the scarcity of fossil botanical data. Here 
we present modelled past vegetation distributions in Ethiopia from the Last Glacial Maximum 
(LGM) to present at high spatial and temporal resolution. The simulations show that, contrary to 
long‑standing hypotheses, the area covered by Afromontane forests during the Late Glacial was 
significantly larger than at present. The combined effect of low temperatures and the relative rainfall 
contribution sourced from the Congo Basin and Indian Ocean, emerges as the mechanism that 
controlled the migration of Afromontane forests to lower elevations. This process may have enabled 
the development of continuous forest corridors connecting populations that are currently isolated in 
mountainous areas over the African continent. Starting with the Holocene, the expansion of forests 
began to reverse. This decline intensified over the second half of the Holocene leading to a retreat of 
the forests to higher elevations where they are restricted today. The simulations are consistent with 
proxy data derived from regional pollen records and provide a key environmental and conceptual 
framework for human environmental adaptation research.

The Horn of Africa is a major biodiversity  hotspot1,2, mainly as a result of considerable altitudinal contrasts which 
lead to extreme variability of temperature and rainfall and ultimately to the occurrence of diverse ecological 
conditions. Ethiopian vegetation is particularly diverse, comprising numerous endemic species and harboring the 
largest area of Afromontane forests in  Africa3,4. These forests, together with more open savanna-type ecosystems, 
made up the mosaic of habitats that provided the essential resources for the subsistence of early modern humans 
from 200 thousand years before present (thereafter ka)  onwards5–9. Later human populations have steadily inter-
acted with, and benefited from, these ecosystems until  today10. Thus, the understanding of past distributions of 
these habitats is of utmost importance for a range of research fields from paleoanthropology and archeology–in 
order to make hypotheses on plant resources availability for past human populations and their migrations into 
new landscapes–to botany, biogeography and conservation ecology.

Ethiopian plant ecosystems are among the most endangered in Africa due to habitat fragmentation and loss 
caused by deforestation and  overexploitation3,11. Specifically, Afromontane forests have experienced a tremen-
dous anthropogenic pressure as the area where they naturally occur is inhabited by the majority of the country’s 
 population12,13. This type of forest also occurs with comparable floristic composition in other mountainous areas 
across East Africa forming an archipelago of  vegetation14 (Fig. 1). This disjunct distribution pattern suggests an 
earlier connection of the currently isolated populations but the underlying conditions that may have enabled 
such a connection are not known so far.
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Despite the importance of these ecosystems, little is known about their past spatial dynamics and their 
response to changing climatic  conditions15. A number of pollen records furnish valuable information on the 
vegetation history of specific locations and time  periods16–21 but do not allow for a larger scale reconstruction 
of vegetation and environments through time. Here we model past vegetation distributions in Ethiopia since 
the LGM (22 ka) using Ecological Niche Modelling (ENM). We use these simulations in combination with 
currently available fossil evidence from pollen archives to examine how these unique ecosystems were affected 
by past climate and atmospheric  CO2 changes. Our approach has been made possible by the recent availability 
of modern detailed descriptions of potential vegetation in the  region22,23, as well as by the advent of improved 
high-resolution paleoclimatic  datasets24.

Ethiopian climate and vegetation
Rainfall patterns in Ethiopia are complex and not yet fully  understood25, although an overall gradient of increas-
ing mean annual precipitation from northeast (200 mm) to southwest (> 2000 mm) is known to  occur26. Rainfall 
is chiefly controlled by the seasonal north–south shift of the Intertropical Convergence Zone (ITCZ), and the 
country’s geographic proximity to the western Indian Ocean. In winter (December to February), the ITCZ is 
positioned south of Ethiopia, near the equator, resulting in low-moisture winds directed from the north-east and 
the occurrence of a dry season. In spring and summer, the ITCZ shifts northwards resulting in a wind direction 
reversal. As a consequence, prevailing south-westerly humid winds (West African Summer Monsoon) sourced 
from the Congo Basin bring rain across the territory, notably in the highlands. With some exceptions in the 
south-western highlands which receive rain throughout the year, the overall rainfall pattern is bimodal. Thus, 
a second lesser-magnitude rainy season occurs in autumn as a result of the passage of the ITCZ as it returns to 
its southern position. A second dry period of varying duration depending on the region usually occurs in late 
summer between the two rainy  periods22,27.

The intricate topography of the Horn of Africa, with altitudes ranging from 125 m bsl at the Danakil depres-
sion up to 4533 m asl at the Semien Mountains, leads to extreme variability of temperatures. Mean annual tem-
peratures are maximal at the lowlands, exceeding 30 °C in the Danakil Desert in the northern part of the country, 
as well as in the southern section of the Omo River, close to the area where it empties into Lake Turkana. The 
regional lapse rate is estimated to be between 0.5 and 0.7 °C per 100 m in  altitude28,29.

Figure 1.  Current distribution of Afromontane forests in Eastern Africa characterized by intermountain 
isolation (see VECEA project). The green circles include patches of Afromontane habitats in Djibouti (Day 
forest), northern Somalia and south-western Yemen. Map created by the authors using QGIS v3.16.16 (URL: 
http:// qgis. org).

http://qgis.org
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Friis et al.22 defined and mapped out the main potential vegetation units (VUs) of Ethiopia, supported by 
extensive field observations. These VUs represent ecologically and climatically meaningful units of analysis 
(Supplementary Fig. S1), and can in turn be integrated into a broader phytogeographic framework of East Africa 
(see the VECEA project: https:// veget ation map4a frica. org)23. Overall, highland vegetation is characterized by a 
series of altitudinal belts. Above 3200 m, an Afroalpine belt (AA) characterized by shrubby and herbaceous plants 
makes up the dominant vegetation. AA is home of a high number of endemic species, a significant proportion 
of which are threatened with  extinction11,22. Erica shrub-dominated vegetation (EB) typically develops in a nar-
row altitudinal belt from 3000 to 3200 m. Between 1800 and 3000 m, climatic conditions enable the subsistence 
of Afromontane forests. Juniperus, Podocarpus and Olea are the most abundant trees in the dry variant of the 
Afromontane forest (DAF), which transitions into a denser and taller forest variant (moist Afromontane for-
est; MAF) in wetter settings, notably in south-western Ethiopia. The vegetation becomes more open as altitude 
decreases, comprising diverse savanna-type woodlands and bushlands adapted to dry conditions between 400 
and 1800 m. Thus, in the Rift Valley and in areas to the east of it, various species of Acacia and Commiphora are 
dominant (ACB). At the same altitudinal range but to the west of the Rift Valley, deciduous woodlands character-
ized by Combretum and Terminalia (CTW) predominate with an abundance of grasses that are prone to  fire22. 
Desert/semi-desert vegetation (DSS) occurs at altitudes below 400 m, where plant cover is sparse and consists 
of highly drought tolerant species, mainly small trees, shrubs and succulent and annual  herbs3,30.

Evolution of the Ethiopian vegetation units over the last 22,000 years
We have produced maps of potential vegetation distribution for 22 past time slices, one every thousand years 
since the LGM, at 1 km spatial resolution (Supplementary Figs. S2.1–S.2.22). The area under the receiver oper-
ating characteristic curve (AUC) values range between 0.71 and 0.96 for all the models, indicating a good to 
excellent model  performance31,32. AUC values are negatively correlated with the size of the area of the VU 
modelled. Thus, VUs with relatively smaller areas like AA, EB and MAF display the highest AUC values (> 0.9; 
Supplementary Table S1). The maps time series shows significant changes in the distribution of the major VUs 
of Ethiopia through time. Six key time slices are selected for Fig. 2.

According to our simulations, during the LGM (22–20 ka), those VUs adapted to cold conditions (AA and EB) 
covered an area considerably larger than at present (ca. 100,000  km2 vs. ca. 18,000  km2 today), which extended 
into lower elevations and to the mountains located to the north and west of their current area (Fig. 2). The esti-
mates derived from the models suggest that the lower limits of AA and EB laid at altitudes slightly below 2600 
and 2300 m, respectively, in the Arussi and Bale mountains, which means 600–700 m below their current limits. 
Since the LGM, EB is envisaged to have reduced its area gradually up until the relatively warmer Late Glacial 
interstadial (13 ka; Supplementary Figs. S2.1–S2.10). However, the large space occupied by AA in the highlands 
remained more stable during the same period, showing higher resilience.

The predicted large areas with suitable conditions for the development of DAF indicate a significant extent 
of Afromontane forests during the LGM (Fig. 2). Unlike AA and EB, the large area covered by DAF is somewhat 
unexpected, as it has often been assumed that cold and dry conditions, which are characteristic of the LGM, 
led to the spread of open savannas, grasslands and semi-desert landscapes in the Horn of Africa, including the 
Ethiopian  highlands33–36. The simulated extent of DAF attained its maximum at 17–16 ka boosted by low tem-
peratures, and slightly higher precipitations and  CO2 concentrations than during the peak of the  LGM24,37. DAF 
extent remained substantial for most of the remaining Late Glacial, only retreating slightly during the interstadial 
warming (Bølling-Allerød period), notably at 13 ka.

For MAF, the estimates indicate that the areas with highest climatic suitability during the LGM were in the 
mountains of the south-western part of the country where high rainfall occurred. The main contributor to the 
distribution of MAF is mean annual precipitation (Supplementary Table S2). However, given that the temporal 
variations of this variable in the highlands remained mostly within a range that is suitable for MAF, its predicted 
distribution is mainly dependent on variations of the precipitation of the driest month. After the peak of the 
LGM (22–20 ka), the precipitation of the driest month dropped below the critical threshold (ca. 10 mm) neces-
sary to sustain MAF.

Because the ecotone between the forested VUs and those dominated by savannas (ACB and CTW) lies at the 
lower limit of the forests, past expansions of DAF were associated with the retreat of ACB and CTW. Overall, 
both VUs maintained areas comparable to present over the LGM and smaller than at present during the subse-
quent Late Glacial millennia.

The onset of the Younger Dryas (YD), a climatic cooling event represented by the 12-ka simulation (Fig. 2), 
induced a new expansion of AA and EB within the highlands and a downhill shift of DAF at mid altitudes. 
After the YD, the regional effect of global warming that characterized the beginning of the Holocene (from 
ca. 11 ka onwards) led to a gradual decrease of those VUs adapted to colder climate and an uphill shift of the 
forest-savanna ecotone. The effect of the African Humid Period (AHP), which had its peak roughly between 11 
and 7  ka38, did not change this overall pattern significantly. It seems that higher precipitation in the study area 
during the AHP only slowed down the steady DAF decline, a process that intensified after the termination of 
the AHP at 5 ka throughout the late Holocene aridification. The attenuated effect of the AHP in East Africa as 
compared to the northern part of the continent has been pointed out in several  studies39–42. Interestingly, MAF 
started recovering at ca. 5 ka, coinciding with the end of the AHP. MAF recovery is estimated to have originated 
from refugia located at mid-altitudes (1900–2400 m) in the southern sector of the Bale Mountains, to the east of 
Chamo and Abaya lakes (Supplementary Fig. S2.18). Despite an overall regionally drier climate and lower mean 
annual precipitation after the AHP, the simulations reflect that rainfall was more evenly distributed throughout 
the year and current drought-free conditions developed in the south-western highlands.

https://vegetationmap4africa.org
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Figure 2.  Modelled distributions of Ethiopian vegetation units for six key time slices: peak of the Last Glacial 
Maximum (22 ka), Late Glacial (17 ka), Late Glacial interstadial (13 ka), Younger Dryas (12 ka), African Humid 
Period (7 ka), and late Holocene aridification (4 ka). The extent of Afromontane forests is estimated to have 
attained a maximum during Late Glacial. The maps were produced using projections of the vegetation unit’s 
models into past climatic time slices (see Methods). Additional maps of distributions for time periods every 
thousand years are provided in the Supporting Information. Maps created by the authors using QGIS v3.16.16 
(URL: http:// qgis. org).

http://qgis.org


5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10323  | https://doi.org/10.1038/s41598-023-37135-8

www.nature.com/scientificreports/

The predicted distribution of desert and semidesert landscapes is negligible for most of the time span ana-
lyzed. However, it is possible that the areas located in the lowlands of the south-easternmost part of Ethiopia, 
featured with a dashed pattern in the maps, comprised sparse desert vegetation or were devoid of vegetation. 
The models consistently return low probability values (< 0.1) of occurrence for all VUs in these areas, suggest-
ing that this region underwent climatic conditions that were not conducive for the development of any of the 
VUs analyzed.

Drivers of Afromontane forest expansion and regression
One of the most remarkable findings of the simulated vegetation distributions is the observed phases of expansion 
and regression of Afromontane forests. These are in contrast to the long-standing hypothesis that savanna and 
grasslands became more predominant in the Horn of Africa during the  LGM33–36. Our reconstructions show that 
the interplay between the West Atlantic and Indian Ocean monsoon activity–which controlled precipitation–and 
the regional effect of global climate on temperature exerted a decisive control on the habitat configuration. 
Furthermore, atmospheric  CO2 concentrations must have also played a role in the distribution of habitats. The 
effect of  CO2 on vegetation must have been significant during the LGM (22–18 ka), when  CO2 levels were below 
200  ppm37, and gradually became subordinate as  CO2 concentrations approached pre-industrial levels. During 
the Holocene,  CO2 impact on vegetation distribution is estimated to have been neglectable.

While most fossil and model evidence show that overall precipitation across East Africa was lower than at 
present during the LGM, the intensity of this aridity is still a matter for debate and spatial variability certainly 
 occurred43,44. Paleoclimate studies have provided compelling evidence that the LGM saw stronger variability in 
Indian Ocean Dipole (IOD) events, resulting in a predominance of the positive IOD  state45. Positive IOD events 
are linked with enhanced atmospheric convection and rainfall over East Africa, and particularly  Ethiopia46. 
Additionally, it has been argued that areas of equatorial Africa close to the Indian Ocean coast were even wetter 
relative to present due to the combined effect of low sea level and ice–albedo  feedback47. Northern Hemisphere 
cooling by ice–albedo feedback during the LGM drove a weakening of the Indian monsoon and southward 
movement of the ITCZ, facilitating the penetration of Indian Ocean humid air masses into East  Africa47. The 
paleoclimate data used in this study are consistent with the above climate framework. The modelled climatic 
niches indicate that precipitation, although generally lower than at present, remained within a range suitable 
for the subsistence of DAF across large areas of Ethiopia (Fig. 2). The enhanced contribution to rainfall by 
easterly winds from the Indian Ocean during the LGM and the subsequent Late Glacial millennia is reflected 
in the particularly extensive downward expansion of DAF on the slopes of the eastern mountain ranges (Fig. 2, 
Supplementary Figs. S2.1–2.10). Within the above-described context of rainfall pattern, temperature played a 
key role in the observed altitudinal shifts of vegetation. Cooling at the peak of the LGM (ca. 22 ka) induced a 
lowering of the forest-savanna ecotone down to elevations between 1400 and 1600 m in the main Ethiopian 
mountain ranges. The modelled data produced with and without consideration of the  CO2 effect on vegetation, 
indicate that the forest downward expansion was restrained during the LGM (22–18 ka) due to very low  CO2 
concentrations. These favored open habitats (CTW and ACB) at the expense of forests, operating as a driving 
factor opposed to low temperatures and, therefore, containing the forest trend to migrate toward lower eleva-
tions (Fig. 2, Supplementary Figs. S2.1–2.5). From 17 ka,  CO2 concentrations remained above 200 ppm, allow-
ing for a more significant lowering of the forest-savanna ecotone associated to low temperatures during the last 
millennia of the Late Glacial. These ecotonal regions have long been regarded as representing ideal habitats for 
early humans, due to their rich resource  availability48–50. As a consequence of the ecotone lowering, the Rift 
Valley, which acts nowadays as a major biogeographical  barrier51,52, was partly covered with DAF connecting 
large Afromontane forest areas on both sides of the valley. Further supporting evidence that cooler conditions 
favored the downslope migration of the Ethiopian forests derives from global biome models which, although 
with coarse spatial resolution, estimate a significant presence of ‘temperate broad-leaved evergreen forest’ in the 
eastern African mountainous  areas53. The latter biome is interpreted to be equivalent to Afromontane forests in 
this region. Considering that species respond individualistically to  climate54,55, it is most likely that only a set of 
species out of the diverse array that comprises DAF migrated downwards. These species would integrate with 
elements from more open ecosystems forming singular, mixed vegetation types. Like in the Ethiopian highlands, 
a downslope shift of the tree line during the LGM has been inferred for tropical mountains of  Burundi41,43 and 
 Malawi56–58. Our results show how the combined effects of temperature, precipitation and  CO2 concentrations 
may have enabled the development of fairly continuous Afromontane habitat corridors connecting populations 
that are currently isolated over East Africa following a disjunct distribution pattern. After the Late Glacial, dur-
ing the AHP (11–5 ka), the expansion of DAF gradually reversed in the Ethiopian highlands due to increasing 
temperatures and changes in the contribution of precipitation sourced from the Congo Basin and Indian Ocean. 
Increased temperature at the beginning of the Holocene led to a tree line rise, notably to the east of the Rift val-
ley (Fig. 2). However, in the western mountain ranges, our simulations indicate that DAF regression was largely 
limited (Fig. 2), probably due to the buffer effect of increased rainfall driven by strengthened westerly winds 
sourced from the Congo Basin during the AHP. Such a higher contribution to rainfall in Ethiopia by westerly 
winds may have been facilitated by increased northern hemisphere insolation during the boreal summer, which 
was at a maximum at 11 ka. This process resulted in the strengthening of the Indian monsoon and therefore the 
movement of air masses toward India and away from East  Africa59–62. Afterwards, during the second half of the 
Holocene (5 ka to present), further increasing temperatures and decreasing precipitation triggered a widespread 
intensification of DAF decline and its migration to higher elevations where it is restricted today.
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Models validation with pollen data
Direct comparison of the simulated vegetation distributions with proxy data derived from regional pollen records 
is used here to validate the reliability of the models. The pollen sequences from Garba Guracha and the Dendi, 
Tilo, Langeno and Abiyata lakes are the most complete so far and reflect significant vegetation  changes17–19,63–65 
(Fig. 3). The comparisons focus on three key time slices [YD (12 ka), AHP (7 ka) and late Holocene aridification 
(4 ka)] because these underwent remarkable and regionally recognizable changes in vegetation that are well 
documented in the pollen records. The scanty fossil data that document the LGM in the highlands indicate a 
very high abundance of AA  taxa20,66,67, which is in line with our simulations for high elevation areas at that time. 
The YD cooling period is particularly well documented in the Garba Guracha record (3950 m asl) which also 
contains high abundances of taxa adapted to cold  conditions18. By that time, DAF taxa percentages increase at 
sites on lower elevations in the Rift Valley, being maximal at Lake Abiyata (1578 m asl). This is consistent with 
the predictions of high probability of suitable conditions for DAF in the Rift Valley (Fig. 3, 12 ka). During the 
AHP, the major vegetation changes reflected in the pollen records involve considerable increases in EB taxa in 
Garba Guracha, and DAF taxa in Lake Abiyata. At first glance, the increasing abundances of EB taxa seem to 
contradict the models for the AHP which, in contrast, estimate a reduction in the area covered by EB compared 
to the YD (Fig. 3, 7 ka). However, a significant upslope shift of EB from 2700 m to up to 3500 m is simultane-
ously modelled in the vicinity of Garba Guracha. Therefore, it is interpreted that this vertical shift accounts for 
the increase in EB observed on the pollen record. Thus, our simulations provide a new perspective to interpret 
fossil pollen data, indicating that proximity to the depositional site was the main reason why higher EB taxa 

Figure 3.  Modelled distributions of vegetation units for three time periods: Younger Dryas (12 ka), African 
Humid Period (7 ka) and late Holocene aridification (4 ka). Maps focus on the central Rift Valley area where the 
main fossil pollen records are concentrated (Left). Pollen data support the modelled habitat shifts. The temporal 
variations in the abundance of taxa follow patterns that are consistent with the distance from the depositional 
sites to the simulated area covered by the vegetation units (Right). References for pollen records: Lake  Dendi19; 
Lake  Tilo17; Lake  Langeno63; Lake  Abiyata64; Garba  Guracha18. Maps created by the authors using QGIS v3.16.16 
(URL: http:// qgis. org).

http://qgis.org


7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10323  | https://doi.org/10.1038/s41598-023-37135-8

www.nature.com/scientificreports/

abundances are recorded, rather than an expansion of EB in the highlands. Meanwhile, the highest abundances 
of DAF taxa documented in the Rift Valley (Lake Abiyata) confirm the predicted persistence of DAF at lower 
elevations. The aridification since 5 ka is characterized by increases in the percentages of DAF taxa in the pollen 
records from high altitudes (Fig. 3, 4 ka). Here, model-proxy agreement is also strong, with simulations showing 
an uphill migration of the tree line resulting in a higher potential for DAF pollen to be transported into Lake 
Dendi and Garba Guracha. At the same time slice (4 ka), the model still indicates high probability of occurrence 
of DAF in the Rift Valley, although patches of open vegetation (ACB) begin to progress, marking a change in 
the vegetation pattern toward the expansion of grasslands that dominate the valley today. This suggests that the 
areas modelled as DAF in the Rift Valley during this period were probably close to the forest-savanna ecotone. 
Overall, the above observations provide a good level of confidence in the simulated distributions of Ethiopian 
VUs. These results can be used to make inferences about human adaptations to past environmental changes in 
regions of Ethiopia where no other proxy data is available, and can in turn be further tested for consistency with 
the acquisition of new proxy data from specific locations.

Methods
Selection of vegetation units and climatic data. Seven vegetation units (VUs) described for  Ethiopia22 
were selected for analysis and the reconstruction of their past distribution: Afroalpine belt (AA), Ericaceous belt 
(EB), Dry evergreen Afromontane forest and grassland complex (DAF), Moist evergreen Afromontane forest 
(MAF), Acacia-Commiphora woodland and bushland (ACB), Combretum-Terminalia woodland and wooded 
grassland (CTW), Desert and semi-desert scrubland (DSS). These units of potential vegetation cover 97.8% of 
the country’s total area. The current geographic distribution of the VUs was provided by the VECEA project 
team as GIS vector  files23.

Present-day (1979–2013) climate datasets for the study area were taken from the CHELSA (climatologies at 
high resolution for the earth’s land surface areas)  database68. This product provides open access, high-resolution 
(30 arc seconds) and bias-corrected climatic data that have been calculated incorporating orographic predictors 
including wind fields and valley exposition, which makes of it one of the most solid options currently available 
for conducting ecological niche  modelling68, notably in mountainous areas like Ethiopia. Paleoclimate data were 
taken from the CHELSA TraCE21k  database24, for consistency with present-day data and because it provides a 
high spatial (30 arc seconds) and temporal (centennial time slices) resolution. CHELSA TraCE21k uses a similar 
algorithm to CHELSA to approximate the effects of orography on precipitation as well as information on LGM 
ice extent validated by proxy data from Greenland ice  cores24. Time slices were selected every 1 ka since the LGM.

To characterize the VUs climatically, we extracted the value of every pixel (grid cell) from the present-day 
bioclimatic grid files within the geographic bounds of each VU. The frequency of each cell value was then plotted 
and used as an indication of the prevalent climatic conditions in the area covered by each VU (Supplementary 
Fig. S1). This confirms the climatic meaningfulness of the VUs as units of analysis.

Past vegetation distribution modelling. The areas of maximum climatic suitability for each VU were 
estimated through ENM using MaxEnt 3.4.469,70. To train the models, we used present-day climate data and large 
datasets of between 1000 and 10,000 presence locations with geographic coordinates randomly selected within 
the bounds of each VU as sample inputs. No absence data were included in the modelling. For VUs that are 
adjacent to the Ethiopian borders (ACB, CTW and DSS), we took the locations from a wider area across Eastern 
Africa, including Kenya, Tanzania, Uganda, Malawi and Rwanda, where vegetation types equivalent to the VUs 
defined in Ethiopia are known to  occur23. In doing so, we captured the maximum potential climatic ranges for 
the VUs and minimize the potential portion of niches that are currently unavailable. Twenty-five percent of the 
occurrences were used as test points for model evaluation. The results were mapped in QGIS 3.16.1671.

To avoid introducing redundant data into the models, we limited the number of highly correlated variables 
used as predictors in  ENM72. To analyze the relationship between the 19 CHELSA bioclimatic variables, we cal-
culated pairwise Spearman’s correlation coefficients for all combinations of two raster layers in Ethiopia using 
the raster package in R. This led us to discard some variables to reduce collinearity, such as temperature annual 
range; isothermality; and mean diurnal temperature range. However, some variables with high correlation (e.g. 
mean annual temperature and minimum temperature of the coldest month) were kept in the modelling, since 
they provided complementary information that is useful to introduce into the analysis. Moreover, some vari-
ables have differing relevance as causal factors in determining vegetation distribution depending on the VU 
modelled. Ultimately, nine variables were used: mean annual temperature; maximum temperature of warmest 
month; minimum temperature of coldest month; mean temperature of wettest quarter; mean temperature of 
driest quarter; mean annual precipitation; precipitation of wettest month; precipitation of driest month; and 
precipitation of warmest quarter.

The models trained for each VU were then projected into 22 different past climatic time slices (one for every 
thousand years since the LGM) to simulate the consequences of changing climatic conditions on vegetation dis-
tribution in Ethiopia. As a control test to ensure the validity of the projections, we conducted a projection of the 
models into a present-day climatic scenario. This test returned a reasonably accurate reflection of the potential 
natural vegetation in Ethiopia as described by Friis et al.22 (Supplementary Fig. S3). In total, we performed 154 
projections (7 models into each of the 22 time slices).

In a further step, for each time slice a cell-by-cell analysis of the resulting suitability maps for each VU was 
conducted using GIS software. The cells of the grid maps with highest climatic suitability values were selected 
to represent the VU from which they were derived.

Besides climate, which is known to be the main factor controlling current potential vegetation distribution 
in  Ethiopia3,22, atmospheric  CO2 concentration is believed to have had a significant effect on vegetation cover 
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during the LGM, notably in the  tropics73–76. Low  CO2 levels during the LGM (ca. 180 ppm) must have had an 
adverse physiological impact on forested habitats and a positive effect on C4 plant-dominated biomes like savan-
nas. Various studies have shown that forest cover during the LGM is overestimated by models that only consider 
 climate73–75,77. In order to assess the impact of  CO2 on the Ethiopian VUs, correction factors were incorporated 
into the models. These were calculated based on the results shown in Woillez et al.77, who ran dynamical global 
vegetation models for the LGM using LGM  CO2 levels and compared them with models produced using current 
 CO2 levels. The differences in area covered by the biomes in both kind of models analyzed by Woillez et al.77 were 
translated here into correction factors by dividing the fraction cover using LGM  CO2 levels by the fraction cover 
under present-day levels. These factors were applied to the probability of occurrence of each VU (Supplementary 
Table S3). We assume a linear relation between  CO2 concentration and intensity of the physiological effect on 
vegetation growth based on Izumi and  Lezine76. This allows us to calculate the correction factor for each time 
slice with a given past  CO2 concentration. Past  CO2 concentrations have been taken from the estimates in Yu 
et al.37 (Supplementary Table S3).

Compilation of pollen records. We carried out a comprehensive compilation of fossil pollen records from 
Ethiopia to use them as validation tools for the models (Supplementary Fig. S4, Table S4). Fourteen palyno-
logical datasets were obtained from the African Pollen Database (https:// afric anpol lenda tabase. ipsl. fr), Pangaea 
(https:// www. panga ea. de/) and Neotoma (https:// www. neoto madb. org/) databases, all of them available in the 
public domain. These sources also provided chronologies of the sequences including recently updated age-depth 
models. For visualization purposes and to facilitate comparison and correlation of vegetation patterns, pollen 
sequences were plotted against age.

The taxa identified in fossil pollen studies were grouped according to their ecological preference (Supplemen-
tary Table S5). Out of the 361 taxa identified in Ethiopia, 240 with clear ecological significance were assigned to 
one of the VUs analyzed. Taxa characteristic of more than one VU or with unclear ecological significance were 
excluded from the assignment. Likewise, for a regional scale interpretation of the data, taxa sourced from local 
wetlands were not considered in the ecological grouping.

Data availability
All generated maps of vegetation distribution and detailed information on the proxy data interpreted in this 
study are included in the Supplementary Information of this paper and are digitally stored in the ROCEEH 
Metadata Catalogue (ROCEEH, 2022) with open access. The model outputs and maps have also been deposited 
at Zenodo repository as raster and shape files and can be downloaded at https:// zenodo. org/ record/ 71827 12#. 
ZBeNe ITMI2w.
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