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Decoding information 
about cognitive health 
from the brainwaves of sleep
Noor Adra 1,2,3,11, Lisa W. Dümmer 1,2,4,11, Luis Paixao 1,2,5,11, Ryan A. Tesh 1,2,3,11, 
Haoqi Sun 1,2,3,11, Wolfgang Ganglberger 1,2,6, Mike Westmeijer 1,2,7, 
Madalena Da Silva Cardoso 1,2, Anagha Kumar 1,2, Elissa Ye 1,2, Jonathan Henry 1,2,3, 
Sydney S. Cash 1,2, Erin Kitchener 1,2,3, Catherine L. Leveroni 1, Rhoda Au 8, 
Jonathan Rosand 1,3, Joel Salinas 9, Alice D. Lam 1,2,3, Robert J. Thomas 10,12 & 
M. Brandon Westover 1,2,3,12*

Sleep electroencephalogram (EEG) signals likely encode brain health information that may identify 
individuals at high risk for age-related brain diseases. Here, we evaluate the correlation of a previously 
proposed brain age biomarker, the “brain age index” (BAI), with cognitive test scores and use 
machine learning to develop and validate a series of new sleep EEG-based indices, termed “sleep 
cognitive indices” (SCIs), that are directly optimized to correlate with specific cognitive scores. 
Three overarching cognitive processes were examined: total, fluid (a measure of cognitive processes 
involved in reasoning-based problem solving and susceptible to aging and neuropathology), and 
crystallized cognition (a measure of cognitive processes involved in applying acquired knowledge 
toward problem-solving). We show that SCI decoded information about total cognition (Pearson’s 
r = 0.37) and fluid cognition (Pearson’s r = 0.56), while BAI correlated only with crystallized cognition 
(Pearson’s r = − 0.25). Overall, these sleep EEG-derived biomarkers may provide accessible and 
clinically meaningful indicators of neurocognitive health.

Our society is aging at unprecedented rates, with the average human lifespan increasing globally. Aging-associ-
ated cognitive decline impairs daily  functioning1, increases the frequency of hospitalization and emergency  visits2, 
and is associated with heightened risk of  multimorbidity3,4. Patients with cognitive impairment and dementia also 
face barriers to  diagnosis5,6, leading to delayed detection that further hinders appropriate care, treatment, and 
patient functioning. Developing easily repeatable biomarkers of “brain health” (i.e., the combined preservation 
of optimal brain integrity and cognitive function) could facilitate early detection of current or future cognitive 
impairment risk which may in turn guide potential therapeutic opportunities for patients.

Sleep-physiology based metrics are attractive as indicators of brain health because changes in sleep archi-
tecture are not only strongly associated with aging, but also with cognitive decline and a wide range of neuro-
pathologic changes, suggesting that sleep may provide a general-purpose window into brain health. For example, 
people advancing into the fifth decade of age present with increased sleep-onset latency and sleep fragmentation 
and decreased total sleep time and sleep  efficiency7,8. They also exhibit reductions in slow-wave sleep (SWS) per-
cent, rapid eye movement (REM) percent, and density, duration and amplitude of sleep spindles, and increases in 
non-REM stage 1 (N1) percent and nighttime  wakefulness8–10. These age-related sleep changes have been linked 
to subsequent cognitive  decline11 and increased risk of  dementia12,13.
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One recently proposed sleep EEG-based biomarker of brain health is “brain age” (BA)14. Its difference from 
chronological age, called the “brain age index” (BAI), characterizes the extent to which an individual’s observed 
neurophysiologic functioning during sleep deviates from what would be expected for their chronological age. 
In excess, BAI has been linked to higher  mortality15 and an underlying burden of disease, including  dementia16, 
HIV  infection17,  hypertension14, and  diabetes14. Although BAI gives insight into the general functional capacity 
of the brain, it is not explicitly designed to decode information about neuroanatomic integrity and its relation-
ship with cognition has not yet been evaluated.

Here, our aim was to take a novel approach to measuring brain health by developing methods to decode neu-
rocognitive information from sleep. Specifically, we developed a series of novel markers of brain health termed 
Sleep Cognitive Indices (SCIs). Unlike BAI, the SCIs are explicitly designed to correlate with specific components 
of cognition. Such indicators of brain health could be important for identifying age-related brain diseases which 
preferentially affect specific aspects of cognition, or for tracking the effects of interventions targeted at specific 
cognitive domains. We hypothesized that specific combinations of sleep-EEG features would be correlated with 
performance on specific cognitive tasks and that it may thus be possible to develop EEG-based indicators specifi-
cally correlated with different types of cognitive abilities. In comparison, we expected participants with elevated 
BAI to perform worse on cognitive assessments but reasoned that this correlation is likely nonspecific since BAI 
was developed to predict age.

Methods
Design and participants. We conducted a single-center, cross-sectional observational study consisting 
of adults (≥ 18 years of age) who underwent diagnostic polysomnography (PSG) between November 2018 and 
October 2019 at the Massachusetts General Hospital Sleep Laboratory. Enrolled participants completed a cogni-
tive test battery within 40 days of their PSG. Patients were excluded if they had a baseline diagnosis of dementia 
or a learning disability, were unable to perform the cognitive tests due to a lack of English proficiency or impair-
ment (motor, visual, or hearing), or if they had prior experience with the cognitive test battery. This study of 
human subjects was approved by the Mass General Brigham Institutional Review Board. All methods were 
performed in accordance with the study protocol and the Declaration of Helsinki. Written informed consent 
was provided by all participants. The number of subjects and their characteristics are summarized in Table 1.

Sleep signal preprocessing. Electroencephalogram (EEG) signals were recorded from six scalp elec-
trodes: frontal (F3, F4), central (C3, C4), and occipital (O1, O2), each referenced to the contralateral mastoid 
(M1, M2). EEG signals were recorded at 512 Hz and downsampled to 200 Hz before analysis. These signals 
were then band-pass filtered between 0.1 and 20 Hz and noncerebral artifacts were removed using a previously 
described filtering  method18.

The American Academy of Sleep Medicine (AASM) provides guidelines for classifying consecutive 30-s 
epochs of EEG signals into 5 “stages”19, including awake (W), rapid eye movement (REM) sleep, and 3 stages of 
non-REM sleep (N1, N2, N3). EEG epochs were classified following these AASM guidelines by licensed sleep 
technicians and the assigned stages were subsequently reviewed and revised as needed by a sleep physician. 
Only central electrode signals (C3-M2 and C4-M1) were used for our main analysis, as the public sleep dataset 
that we used for external validation, the Sleep Heart Health Study included only central electrodes. We further 
explored model performance when either occipital or frontal electrodes were available for analysis in addition 
to central electrodes.

Spindle and slow oscillation characterization. Sleep spindle and slow oscillation features were 
obtained using Luna  software9 (http:// zzz. bwh. harva rd. edu/ luna/). Spindle detections were included only for 
epochs scored as N2 and N3. A single electrocardiogram (ECG) electrode was zero-phase band-pass filtered 
from 0.3 to 40 Hz and used to apply ECG-correction to remove ECG artifacts from the EEG signals. Slow oscilla-
tions were detected by band-pass filtering between 0.2 and 4.5 Hz. Positive-to-negative zero-crossings were then 
detected in the filtered signal, and intervals between 0.8 and 2-s were designated as slow oscillations if they had 
a negative peak higher than the median across all zero-crossings and a peak-to-peak amplitude higher than the 
median. All spindle and slow oscillation features used for analysis are summarized in Table 2.

Sleep macrostructure features. Sleep macrostructure measures were calculated following AASM defini-
tions, including total sleep time (TST), wake after sleep onset (WASO), sleep efficiency (SE), total time in bed 
(TTB), sleep latency (Sleep_L), and REM latency (REM_L). Percentages of TST spent in N1, N2, N3, and REM 
were calculated using custom code written in Python (https:// www. python. org/). All sleep macrostructure fea-
tures are summarized in Table 2.

Cognitive test battery. All participants were asked to complete the NIH Toolbox Cognition  Battery20. The 
NIH Toolbox Cognition Battery is one of the core domains in the NIH Toolbox for Assessment of Neurological 
and Behavioral Function. It consists of seven instruments that assess the following functional constructs: Flanker 
Inhibitory Control and Visual Attention (ICA), Dimensional Change Card Sort (DCCS; measures cognitive 
flexibility), List Sorting Working Memory (LSWM), Picture Sequence Memory (PSM; measures visual episodic 
memory), Pattern Comparison Processing Speed (PCPS), Picture Vocabulary (PV; measures vocabulary com-
prehension), and Oral Reading Recognition (ORR; measures reading decoding). Of these seven instruments, 
PV and ORR are classified as measures of crystallized cognition and the rest as measures of fluid cognition. 
Fluid cognition reflects a collection of cognitive processes involved in problem-solving, abstract thinking, and 
reasoning that are independent of past knowledge acquired through experience and education. In contrast, 

http://zzz.bwh.harvard.edu/luna/
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Table 1.  Baseline characteristics of study patients (N = 150). * Family history of one patient was unknown 
as patient was adopted. Abbreviations SD, Standard deviation; IQR, Interquartile range; AUDIT, Alcohol use 
disorders identification test; PHQ-4, Patient health questionnaire for depression and anxiety—4 item; PSQI, 
Pittsburgh Sleep Quality Index; ESS, Epworth Sleepiness Scale; AHI, apnea–hypopnea index (# apnea events 
per hour of sleep) at 4% desaturation for hypopnea.

Female (N = 84) Male (N = 66)

Age, years, mean ± SD 47.0 ± 17.2 51.0 ± 18.3

Years of education, mean ± SD 16.1 ± 2.8 16.9 ± 3.2

Race

 White, n (%) 61 (72.6%) 56 (84.8%)

 Black, n (%) 6 (7.1%) 1 (1.5%)

 Hispanic/Latino, n (%) 1 (1.2%) 0 (0.0%)

 Asian, n (%) 5 (6.0%) 4 (6.1%)

 Multiracial, n (%) 11 (13.1%) 5 (7.6%)

Hollingshead index, median [IQR] 48.0 [38.0, 58.0] 56.0 [47.5, 63.8]

Employed or self-employed, n (%) 48 (57.2%) 34 (51.5%)

Marital status (married), n (%) 36 (42.9%) 32 (48.5%)

Current smoker, n (%) 2 (2.4%) 4 (6.1%)

AUDIT, median [IQR] 2.0 [1, 3] 2.0 [0, 4]

History of alcohol abuse, n (%) 3 (3.6%) 11 (16.7%)

History of substance abuse, n (%) 6 (7.1%) 12 (18.2%)

Body mass index, kg/m2, median [IQR] 28.5 [23.9, 33.5] 28.4 [25.4, 32.5]

Charlson Comorbidity Index, median [IQR] 1.0 [0.0, 3.0] 1.0 [0.0 ,3.0]

PHQ-4, median [IQR] 2.0 [1.0, 4.0] 2.0 [0.0, 6.0]

Mediterranean Diet Score, median [IQR] 6.0 [4.0, 8.0] 5.0 [4.0, 7.0]

Family history of dementia, n (%)* 37 (44.0%) 23 (34.8%)

Family history of Parkinson’s disease, n (%)* 15 (17.9%) 7 (10.6%)

PSQI, median [IQR] 8.00 [5.3, 12.0] 8.00 [4.8, 12.0]

ESS, median [IQR] 10.0 [5.0, 13.0] 9.0 [4.0, 12.0]

AHI, median [IQR] 2.2 [0.5, 5.9] 6.2 [2.0, 13.9]

 Normal (< 5), n (%) 60 (71.4%) 26 (39.4%)

 Mild sleep apnea (5 ≤ AHI < 15), n (%) 21 (25.0%) 24 (36.4%)

 Moderate sleep apnea (15 ≤ AHI < 30), n (%) 3 (3.6%) 11 (16.7%)

 Severe sleep apnea (AHI ≥ 30), n (%) 0 (0.0%) 5 (7.6%)

Total Sleep Time, median [IQR] 6.54 [5.8, 7.3] 6.21 [5.0, 6.9]

Sleep Efficiency, median [IQR] 0.85 [0.7, 0.9] 0.82 [0.7, 0.9]

REM Latency, median [IQR] 2.13 [2.4, 3.8] 2.66 [1.8, 4.3]

%N1, median [IQR] 6.74 [3.6, 9.6] 8.71 [5.2, 13.9]

%N2, median [IQR] 60.63 [51.4, 67.7] 63.50 [52.9, 69.4]

%N3, median [IQR] 16.31 [10.7, 22.2] 12.33 [4.1, 20.2]

%R, median [IQR] 16.12 [9.9, 20.1] 14.79 [10.1, 18.2]

WASO, median [IQR] 8.01 [3.5, 15.2] 12.34 [4.1, 23.1]

PSG referral reasons

 Sleep apnea evaluation, n (%) 42 (50.0%) 43 (65.2%)

 Sleepiness, n (%) 42 (50.0%) 33 (50.0%)

 Snoring, n (%) 33 (39.3%) 30 (45.5%)

 Insomnia, n (%) 26 (31.0%) 21 (31.8%)

 Restless legs syndrome, n (%) 14 (16.7%) 16 (24.2%)

 Chronic fatigue, n (%) 2 (2.4%) 1 (1.5%)

 REM sleep behavior disorder, n (%) 1 (1.2%) 1 (1.5%)

 Narcolepsy, n (%) 1 (1.2%) 1 (1.5%)

 Research, n (%) 0 (0.0%) 1 (1.5%)

 Non-restorative sleep, n (%) 1 (1.2%) 0 (0.0%)

 Idiopathic hypersomnia, n (%) 1 (1.2%) 0 (0.0%)
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crystallized cognition represents a group of cognitive processes that apply prior knowledge from experience and 
education to solve problems. Although different, these two cognition types are tightly correlated components of 
total cognition. Despite this association, studies often examine these subdivisions of total cognition separately to 
better understand and treat neurologic  conditions21,22. Additionally, both crystallized and fluid cognition have 
been shown to change with  age23,24. For detailed instrument information, see Table S1. In addition to scores for 
individual tests, three composite scores for fluid, crystallized, and total cognition are provided. Absolute scores 
for each of the seven tests and the three composite scores were used for analyses (all non-age adjusted).

Statistical analyses. Developing the sleep cognitive indices. To develop SCI for specific cognitive meas-
ures, we created a series of regression models. The dependent variable of each model was a task’s absolute scores. 
Independent variables in SCI models included EEG features that were derived from spindles and slow waves, as 
well as the features in Table 2. Demographic variables, such as age and sex, were not included since our primary 
aim was to develop EEG-based indicators of neurocognitive health and evaluate how well brain signals alone 
could capture neurocognitive status, rather than produce accurate predictions of cognitive performance per se. 
EEG-based models were evaluated with a goodness of fit test (see below) in comparison to a full model with 

Table 2.  Sleep features included in the Sleep Cognitive Index (SCI) model (BAI used a subset of features used 
in SCI, i.e., the last two feature domains). *Each feature is averaged across all 30-s epochs in a specific sleep 
stage to represent a whole night, then concatenated over all the sleep stages to represent a whole night; this is 
where × 5 comes from. ^For the main model, sleep features were extracted from sleep EEG central channels 
only.

Domain Feature # using central  electrode^ # using electrodes from three regions

Macro-structure

TST: total sleep time (N1, N2, N3, and REM) in minutes 1

WASO: wake after sleep onset in minutes 1

SE: sleep efficiency, time of sleep divided by TST 1

TBB: total time in bed, time of sleep and awake 1

SL: latency from lights off to the first epoch of sleep in minutes 1

RL: latency from lights off to the first epoch of R in minutes 1

Perc_X: % of time spent in each sleep stage 4

Spindle (N2 and N3)

AMP: mean spindle amplitude (uV or mV units) 2

DENS: spindle density (count per minute) 2

DUR: mean spindle duration (core + flanking region) 2

FFT: mean spindle frequency 2

FWHM: mean spindle full width at half maximum 2

NOSC: mean number of oscillations per spindle 2

SYMM2: mean spindle folded-symmetry metric 2

Spindle-SO coupling (N2 and N3)

COUPL_ANGLE: circular mean of SO phase at spindle peak 2

COUPL_MAG: intra-trial phase clustering metric (ITPC) 2

COUPL_OVERLAP: # of spindles overlapping a SO 2

COUPL_PV: asymptotic p-value for the ITPC statistic 2

Slow oscillations (SO) (N2 and N3)

SO: # of SO detected 2

SO_AMP: median amplitude (of negative peak) 2

SO_DUR: median SO duration 2

SO_NEG_DUR: median negative peak duration 2

SO_POS_DUR: median positive peak duration 2

SO_RATE: # SO per minute 2

Median SO slope:
SO_SLOPE_NEG1: + to − zero-crossing to negative peak
SO_SLOPE_NEG2: negative peak to − to + zero-crossing
SO_SLOPE_POS1: − to + zero-crossing to positive peak
SO_SLOPE_POS2: positive peak to + to − zero-crossing

2 × 4

Waveform for each stage*
Line length, an integrated measure of signal waveform amplitude and 
frequency 2 × 5 2 × 5 × 3

Kurtosis, heavy-tailness of the distribution of the waveform 2 × 5 2 × 5 × 3

Frequency for each stage*

Relative delta / theta / alpha band power, each band has 95% percen-
tile, min, mean, standard deviation across 2-s subepochs within a 30-s 
epoch

4 × 3 × 5 4 × 3 × 5 × 3

Delta-to-theta/delta-to-alpha/theta-to-alpha power ratio, each ratio 
has 95% percentile, min, mean, standard deviation across 2-s subep-
ochs within a 30-s epoch

4 × 3 × 5 4 × 3 × 5 × 3

Kurtosis of delta / theta / alpha /sigma band spectrogram 4 × 5 4 × 5 × 3

Total number of features 212 532
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demographic variables. Because the number of independent variables (160 × 3 + 42 + 10 = 532 with all electrodes, 
160 + 42 + 10 = 212 with one electrode set, Table 2) exceeded the number of participants (150) in our dataset, we 
used linear regression with Elastic Net regularization to prevent overfitting and to force regression models to 
select only the features most relevant to the target task. Note that Elastic Net regularization automatically selects 
which features to retain in the model, and thus the number of features selected varies depending on the specific 
prediction task and data used to develop the model. To avoid overestimation of regression performance, model 
training and feature selection were restricted to training data, while model performance was evaluated strictly on 
held-out test data. In summary, each SCI model is generated by extracting EEG measures of interest (determined 
by Elastic Net regularization), multiplying these EEG measures by the regression coefficients of the model of 
interest (fluid, crystallized, total), and adding the results to obtain a single number (SCI score).

For SCI model optimization and testing model performance, we used nested tenfold cross-validation (CV) 
(Fig. S1). For each functional construct and cognitive composite score, the outer CV loop separated data into 
ten folds, where each fold contained 15 distinct participants. Nine folds were used for model fitting (n = 135) and 
the other fold for model testing (n = 15). This was done ten times, such that testing was performed once on each 
fold. During model fitting, Elastic Net regression was performed to select the best subset of features and their 
coefficients. Strict separation of training and test set was maintained to achieve statistically unbiased estimates 
of out-of-sample performance. Our reported performance results are based on test data only.

In addition to the new SCI models, we calculated the Brain Age Index (BAI) using a previously described 
machine learning  model14. BAI includes features from the waveform time domain (e.g. line length and kur-
tosis which reflect EEG signals complexity) and from the frequency domain (e.g. spectral power of the delta 
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) bands, and their  ratios14,25). All features are summarized in Table 2. 
Features of missing sleep stages were imputed using the K-nearest neighbor approach (K = 10). We used Pearson 
correlations to measure the degree to which the BAI correlates with cognitive test scores. Statistical significance 
was defined using a p-value < 0.05.

Pearson correlation was calculated between cognitive scores and the various SCI and BAI. To compare pairs 
of correlation coefficients (e.g. to evaluate the difference between the strength of correlations of BAI vs. SCI 
with each cognitive test), we completed Fisher r-to-z transformations for each pair of correlation  coefficients26.

To evaluate how well SCI and BAI distinguish individuals who score low versus high on different cognitive 
tests, we divided participants into three groups of equal size for each cognitive test (1/3 low score, 1/3 medium 
score, 1/3 high score). We then performed group-level analysis of discriminability using Cuzick’s non-parametric 
test for trend to examine the statistical significance of the difference in SCI across the different score groups. For 
individual-level analysis of discriminability, we calculated Receiver Operating Characteristic (ROC) curves and 
the Area Under the ROC Curve (AUC) for each SCI model. When performing ROC analysis, the medium score 
group was excluded from this analysis to ensure distinctness between groups.

Evaluating cognitive variation related to age, sex, and education. Performance on cognitive tasks in the NIH 
Toolbox Cognition Battery depends on  age20. We reasoned that, if our SCI indicators are valid, they should 
account for age-related variation in cognitive performance. If so, regression models that include age and SCI 
should explain no more of the variance in cognitive test performance than regression models that include SCI 
alone. Similar reasoning applies to other biological variables that might correlate with cognitive performance, 
including years of education and sex. To address these questions, we created a series of nested regression models 
and compared each submodel using a likelihood ratio test. Specifically, we first fitted two Elastic Net models for 
each cognitive test: (1) a submodel with EEG features alone (SCI model), and (2) a full model with EEG features, 
age, years of education, and sex. We then compared models by calculating the log-likelihood of each model and 
performing a likelihood ratio test to measure the change in deviance for the submodel.

External validation. External validation was performed using EEG data from the Sleep Heart Health  Study27–30 
(SHHS), a composite cohort overlapping with the Framingham Heart  Study31 (FHS). Participants were included 
if they completed a neuropsychological test  battery32 in the FHS within 3 years of their SHHS polysomnogra-
phy exam date. Scores from the following tests were used for the Wechsler Memory Scale (WMS) score cal-
culation: Logical memory—Immediate Recall, Delayed Recall, Recognition; Visual reproductions—Immediate 
recall, Delayed Recall, Recognition; Paired Associate Learning—Immediate Recall, Delayed Recall. Of the 476 
participants in the validation dataset; 152 were subsequently excluded due to incomplete WMS data, with the 
remaining 324 available for analysis. WMS does not include tests that are directly comparable with the three 
NIH toolbox composite scores (total, fluid, and crystallized); therefore we correlated the WMS score with all 
three composite SCI models (total, fluid, crystallized), with the expectation that these constructs are correlated 
and thus, if the SCI models capture valid physiologic information related to brain health, they should exhibit 
some measurable (if nonspecific) correlation with WMS scores.

A subset of participants in the FHS cohort was flagged for possible dementia using criteria as previously 
 described33–36. Through the consensus diagnosis process, some of these participants were assigned a Clinical 
Dementia Rating (CDR)-like dementia severity rating of 0.5 and associated with the diagnosis of cognitive 
impairment no dementia (CIND). We further evaluated the SCI models by calculating the association between 
the subset of cases diagnosed as CIND and the SCI model outputs.

Statistical significance was defined using a p-value < 0.05. All statistical analyses were performed with code 
written in-house using Python (https:// www. python. org/). We did not perform corrections for multiple com-
parisons, as our aim was to measure the correlation of each SCI with its corresponding target cognitive domain 
rather than to draw a general conclusion about the presence or absence of an association between sleep and cogni-
tion; that is, the primary focus of the study was to estimate effect sizes rather than statistical hypothesis testing.

https://www.python.org/
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Results
Overall, 168 participants were enrolled; 18 were subsequently excluded from analysis as they were determined 
to be ineligible or had missing or incomplete data. A flowchart illustrating the screening and enrollment of 
study participants is shown in Fig. 1. The final cohort included 150 participants (56% female) with a mean age 
of 48.8 ± 17.7 years. Participant characteristics are listed in Table 1. The median score for each cognitive test is 
listed in Table S2.

Correlations of cognitive scores with sleep cognitive indices. Figure  2 shows the correlation 
between SCI and each cognitive test. SCI designed for specific cognitive measures showed significant correlations 
with total (r = 0.37, p < 0.0001) and fluid cognitive scores (r = 0.56, p < 0.0001), in addition to each of the five fluid 
subtests (PCPS: r = 0.33, p < 0.0001; Flanker ICA: r = 0.22, p = 0.006; LSWM: r = 0.46, p < 0.0001; DCCS: r = 0.30, 
p = 0.0002; PSM: r = 0.46, p < 0.0001). The SCI designed for measure of crystallized cognition performed poorly 
(r = − 0.07, p = 0.38), as did the SCI designed for its subtests (PV: r = − 0.12, p = 0.16; ORR: r = − 0.08, p = 0.34). We 
also show the correlation matrix when using the different SCI models to predict each cognitive score (Fig. S2).

SCI indicators were normally distributed for all significant SCI models (Fig. S3). The top five features for 
significant SCI models are listed in Table S3. When evaluating the effect of EEG electrode location, we observed 
similar performance for the three composite cognition SCI models across different subsets of EEG electrodes 
(Table 3).

As shown in Table S4, SCI showed stronger correlations than BAI with both total (z = 3.59, p = 0.0003) and 
fluid cognition (z = 4.39, p < 0.0001). For fluid subtests, SCI had stronger correlations with LSWM (z = 3.83, 
p = 0.0001), DCCS (z = 2.31, p = 0.02), and PSM cognitive tasks (z = 2.53, p = 0.01) and similar correlations with 
the Flanker ICA (z = 1.4, p = 0.16) and PCPS tests (z = 1.2, p = 0.23). No difference in correlation between SCI 
and BAI was evident for crystallized composite (z = − 1.59, p = 0.11) and subtest scores (PV: z = − 1.16, p = 0.25; 
ORR: z = − 1.23, p = 0.22).

To evaluate the ability of SCI indicators to discriminate high versus low cognitive scores at the group level, we 
conducted Cuzick’s test for trend and found strong trends for total SCI (z = 4.72, p < 0.0001), fluid SCI (z = 7.06, 
p < 0.0001), and all fluid subtest SCIs (DCCS: z = 5.21, p < 0.0001; Flanker ICA: z = 5.15, p < 0.0001; LSWM: t = 5.16, 
p < 0.0001; PSM: t = 4.67, p < 0.0001; PCPS: t = 4.61, p < 0.0001). The SCI designed for the crystallized cognition 
score (z = − 0.86, p = 0.39) and subtest scores (PV: t = − 1.98, p = 0.05; ORR: t = − 1.42, p = 0.15) did not display 
any significant or meaningful trends (Fig. 3a). Receiver Operating Characteristic (ROC) curves and Area Under 
Curve (AUC) scores confirmed that SCI models could differentiate low versus high scorers at the individual level 
for fluid and total cognition composite and subset scores (AUC ranged from 0.74 to 0.90), but not for crystallized 
composite and subset scores (AUC ranged from 0.38 to 0.46). ROC curves are shown in Fig. 3b.

Examination of BAI showed that among the three major cognition domains, only crystallized cognition 
exhibited a significant correlation, which was negative (Crystallized: r = − 0.25, p = 0.002; Fluid: r = 0.12, p = 0.15; 
Total: r = − 0.03, p = 0.75). Increased BAI was also negatively correlated with both crystallized cognition subtests 
(PV: r = − 0.25, p = 0.003; ORR: r = − 0.22, p = 0.006) and was positively correlated with the processing speed 
fluid subtest (PCPS: r = 0.20, p = 0.01; Flanker ICA: r = 0.06, p = 0.46; LSWM: r = 0.05, p = 0.52; DCCS: r = 0.04, 
p = 0.59; PSM: r = 0.02, p = 0.67). Figure 4 shows a scatter plot and linear fit between BAI and each cognitive test. 
The opposite signs of the correlations between BAI and PCPS (positive correlation) versus crystallized cognition 
(negative correlation) scores likely reflect the differential age-related changes observed in fluid and crystallized 
cognition: fluid cognition tends to decline with age and crystallized cognition likely increases to  compensate24.

Figure 1.  Recruitment flowchart and study design. Flow diagram shows screening and enrollment of study 
participants, exclusions, and arrival at the final cohort (N = 150).
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Evaluating cognitive variation related to age, sex, and education. Likelihood ratio tests con-
firmed that SCI indicators for the three cognition measures and the Flanker ICA, LSWM, PCPS, and PSM 
cognitive tasks fit the data similarly to a full “brain health” model that incorporated EEG, age, education, and sex 
features (p = 0.1). Therefore, SCI models adequately capture variation in cognitive performance related to these 
factors. Detailed metrics for all models are listed in Table S5.

External validation. Of the 324 SHHS/FHS participants available for analysis, 20 participants had mild 
cognitive impairment at the time of neuropsychological evaluation. Using all participant data, both total and 

Figure 2.  Sleep Cognitive Index is moderately associated with total and fluid cognition and not associated with 
crystallized cognition. Scatter plots of the absolute (N = 150) and predicted scores for each subtest and composite 
measures on the NIH Toolbox Cognition Battery are shown below. True cognitive scores are compared with 
cognitive scores predicted by an Elastic Net model for each cognitive test and composite measure. Sleep spindle 
features were generated using Luna. Abbreviations DCCS, Dimensional change card sort; ICA, Inhibitory 
control & attention; LSWM, List sorting working memory; ORR, Oral reading recognition; PCPS, Pattern 
comparison processing speed; PSM, Picture sequence memory; PV, Picture vocabulary.

Table 3.  Effect of EEG electrode placement on SCI performance (MAE: mean absolute error).

SCI

Frontal (F3/F4) Central (C3/C4) Occipital (O1/O2) All electrodes

MAE Pearson’s r MAE Pearson’s r MAE Pearson’s r MAE Pearson’s r

Total 4.06 0.34 4.19 0.37 4.39 0.34 4.4 0.34

Fluid 6.61 0.51 7.29 0.56 6.85 0.50 6.69 0.52

Crystallized 0.50 − 0.09 0.90 − 0.07 0.49 − 0.16 0.47 − 0.20
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fluid cognition SCI indicators showed similar correlations with the participants’ total WMS scores (total: r = 0.31, 
p < 0.0001; fluid: r = 0.32, p < 0.0001). In contrast, the crystallized cognition SCI model was poorly indicative of 
participants’ total WMS scores (r = 0.07, p = 0.23). Correlations between the three SCI models and cognitive 
scores, along with score distributions are shown in Fig. 5. No significant change in the strength of association 
was observed when cognitively impaired participants were excluded from analysis (total: r = 0.30, p < 0.0001; 
fluid: r = 0.30, p < 0.0001; crystallized: r = 0.06, p = 0.28). Baseline characteristics of patients are listed in Table 4.

Discussion
In this cross-sectional observational study, we demonstrate that machine learning analyses of sleep EEG signals 
can generate indices that correlate with specific tests of cognition. These novel sleep EEG-derived machine 
learning models—the SCIs developed in the present study—were optimized to serve as indicators of brain health 
related to each cognitive task. They achieved a weak to moderate correlation with total cognition, moderate 
correlation with a composite measure of fluid cognition, and a range of weak to moderate correlations for fluid 
cognition subtests. SCIs for crystallized cognition and tasks were not correlated with composite crystallized 
cognition and subtest scores. Crucially, all significant SCI models performed well at differentiating low from high 
test scorers at the group and individual levels. Overall, our results suggest that overnight sleep EEG is a promis-
ing source of indicators of neurocognitive health. This is significant because sleep EEG is increasingly easy to 
monitor using home devices. Thus, SCIs may have promise for identifying signs of age-related brain diseases that 
preferentially affect specific aspects of cognitive health and for tracking the physiologic effects of interventions.

SCI versus BAI. Comparing BAI and SCI performance, we found SCIs exhibited stronger correlations with 
cognitive scores for total cognition, fluid cognition, and three fluid functional constructs: working memory, epi-
sodic memory, and cognitive flexibility. Because fluid cognition often declines at earlier stages of the Alzheimer’s 
Disease (AD) pathologic  cascade24,37, measures of fluid cognition may serve as sensitive indicators of preclinical 
AD and increased vulnerability for cognitive decline in cognitively unimpaired adults.

In contrast, the previously published BAI was correlated with crystallized composite cognition and subtest 
scores and with the visual processing speed subtest of fluid cognition. No correlation was found between BAI 

Figure 3.  Analysis of discriminability of the Sleep Cognitive Index. (a) Sleep Cognitive Index models 
discriminated between high and low performers at the group level for total and fluid cognition. (b) ROC curve 
for each cognitive test. Cognitive scores (N = 150) were predicted using an Elastic Net model for each cognitive 
test and composite measure on the NIH Toolbox Cognition Battery. Abbreviations DCCS, Dimensional 
change card sort; ICA, Inhibitory control & attention; LSWM, List sorting working memory; ORR, Oral 
reading recognition; PCPS, Pattern comparison processing speed; PSM, Picture sequence memory; PV, Picture 
vocabulary.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11448  | https://doi.org/10.1038/s41598-023-37128-7

www.nature.com/scientificreports/

and total cognition, fluid cognition, or the remaining four fluid subtests. Although we anticipated SCI to show 
stronger associations with cognition, the lack of an association between BAI and fluid cognition was unexpected. 
On further examination, we found that while crystallized cognition and chronological age (CA) were positively 
correlated (r = 0.37, p = 0.001), BA was negatively correlated with crystallized cognition in our cohort (r = − 0.16, 
p = 0.049). BAI (i.e., BA-CA) was therefore negatively correlated with crystallized cognition. This was not the 
case for fluid cognition. Because both CA and BA were negatively correlated with fluid cognition, their differ-
ence (BAI) was not associated with fluid cognition. The different results for BAI and SCI are in alignment with 
previous findings that relate distinct brain regions for the two cognition types. When evaluating the effects of 
different white-matter tracts on fluid and crystallized cognition, one study linked the forceps minor tract with 
measures of crystallized cognition and the superior longitudinal fasciculus with measures of fluid  cognition23.

The lack of correlation between SCI and crystallized cognition may have arisen because the features computed 
did not capture predictive information about crystallized cognition or the choice of model was inadequate for 
this task due to possible non-linear relationships between sleep features and crystallized cognition.

Including non-EEG metrics of health as features of a cognition index could potentially improve correlations 
between sleep metrics and cognition. For example, one study that predicted individual sleep metrics using age, 
cognitive scores, status of cardiometabolic disease, and baseline covariates found that individuals who performed 
above average within their age group exhibited sleep metrics closer to younger and healthier  individuals38.

Most influential features across SCI models. When reviewing the top contributors to significant SCI 
models, we found that a higher delta-to-theta ratio in N3 was important for total cognition, and a higher delta-
to-alpha ratio in N3 was influential for both total cognition and working memory. This finding is in line with 

Figure 4.  Brain Age Index is moderately associated with crystallized cognition and not associated with total 
and fluid cognition. Scatter plots of BAI and the absolute scores (N = 150) for each subtest and composite 
measures on the NIH Toolbox Cognition Battery are shown below. Abbreviations DCCS, Dimensional Change 
Card Sort; ICA, Inhibitory Control & Attention; LSWM, List Sorting Working Memory; ORR, Oral Reading 
Recognition; PCPS, Pattern Comparison Processing Speed; PSM, Picture Sequence Memory; PV, Picture 
Vocabulary.
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Figure 5.  Validation of the three composite cognition SCI models in the Sleep Heart Health Study (SSHS) 
dataset. (a) SCI indicators of fluid and total intelligence are similarly associated with participants’ Wechsler 
Memory Scale (WMS) scores, while SCI indicators of crystallized intelligence are not associated with WMS 
scores. (b) All three SCI indicators are normally distributed. Participants (N = 324) completed the WMS through 
the Framingham Heart Study.

Table 4.  Baseline characteristics of FHS patients (N = 324). Abbreviations SD, Standard deviation; IQR, 
Interquartile range; ESS, Epworth sleepiness scale; AHI, Apnea–hypopnea index (# apnea events per hour of 
sleep) at 4% desaturation for hypopnea.

Female (N = 159) Male (N = 165)

Age, years, mean ± SD 61.8 ± 1.9 61.8 ± 1.5

Education group

 HS, did not graduate, n (%) 7 (4.4%) 3 (1.8%)

 HS graduate, n (%) 53 (33.3%) 53 (32.1%)

 Some college, n (%) 43 (27.0%) 48 (29.1%)

 College graduate, n (%) 56 (35.2%) 61 (37.0%)

ESS, median [IQR] 6.0 [3.3, 9.0] 7.0 [5.0, 11.0]

AHI, median [IQR] 2.8 [1.0, 8.3] 8.3 [2.8, 14.2]

 Normal (< 5), n (%) 100 (62.9%) 73 (44.2%)

 Mild sleep apnea (5 ≤ AHI < 15), n (%) 42 (26.4%) 54 (32.7%)

 Moderate sleep apnea (15 ≤ AHI < 30), n (%) 14 (8.8%) 26 (15.8%)

 Severe sleep apnea (AHI ≥ 30), n (%) 3 (1.9%) 11 (6.7%)

Total Sleep Time, median [IQR] 6.7 [6.0, 7.3] 6.2 [5.7, 6.9]

Sleep Efficiency, median [IQR] 0.9 [0.8, 0.9] 0.9 [0.8, 0.9]

REM Latency, median [IQR] 1.2 [1.0, 1.9] 1.1 [0.8, 1.7]

%N1, median [IQR] 3.9 [2.3, 5.5] 4.6 [3.1, 6.5]

%N2, median [IQR] 52.6 [46.4, 60.0] 60.1 [53.4, 65.4]

%N3, median [IQR] 21.6 [14.7, 29.3] 12.6 [7.8, 19.8]

%REM, median [IQR] 21.1 [17.2, 24.4] 20.5 [16.9, 23.9]

WASO, median [IQR] 47 [27.8, 72.0] 39 [28.0, 68.6]



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11448  | https://doi.org/10.1038/s41598-023-37128-7

www.nature.com/scientificreports/

previous studies that show decreased delta band power during sleep for older adults with and without sleep 
 disorders39,40 and increased delta band power during sleep in response to a motor learning  task41.

Another N3 feature, line length, significantly contributed to total cognition, fluid cognition, cognitive flex-
ibility, processing speed, and episodic memory models. Line length, also referred to as the mean resultant vector 
length, is the total variation in the signal amplitude and frequency and is a measure of EEG signal complexity. In 
our models, a larger signal complexity led to stronger correlations with cognition. This finding was likely driven 
by the line length of slow oscillations-associated spindles and delta-associated spindles during slow-wave  sleep42.

Kurtosis of band power was also a strong feature for most models. Kurtosis is a measure of the amount of 
transiently occurring events, and a larger kurtosis corresponds with a more heavy-tailed distribution. For exam-
ple, many transient 1-s spindles in a 30-s epoch can lead to higher kurtosis in the sigma band (11–15 Hz). In this 
study, we found that the tail extremity of alpha band power signals near the onset of sleep and during sleep–wake 
periods contributed to higher correlations with fluid cognition, working memory, and inhibitory control and 
visual attention scores. Meanwhile, the tail extremity of theta band power signals during N2 contributed to 
higher correlations with fluid cognition and four fluid functional constructs, excluding episodic memory. For 
total cognition, the tail extremity of delta band power signals during REM sleep likewise contributed to higher 
correlations.

With respect to spindle and slow oscillation features, spindle density during N2 was one of the top three 
contributors to the composite fluid cognition, inhibitory control and visual attention, cognitive flexibility, and 
processing speed models. This finding aligns with previous literature that links spindle density with different 
measures of fluid cognition and functional  constructs43,44. Spindle amplitude, duration or frequency did not 
appear to be important. Further, the number of spindles that overlapped with a detected slow oscillation in N2 
was an important feature for total cognition and three fluid functional constructs: cognitive flexibility, process-
ing speed, and episodic memory. Coupling between the phase of slow-wave oscillations and spindle activity has 
been shown to facilitate memory consolidation and  performance45 and influence cognitive impairment in older 
 adults46. These studies further support our episodic memory model, for which the second most influential feature 
was the circular mean of slow oscillation phase at spindle peak, or mean coupling direction. We also discovered 
that slow oscillation peak duration predicts cognitive flexibility. Slow oscillation slope, which has been linked to 
the effectiveness of neuronal synchronization at the cortical  level47, was also found to predict episodic memory.

Among the sleep architecture features (macrostructure), the percentage of REM sleep was the only highly 
influential one and ranked the third important feature for working memory. This result agrees with previous 
studies that support the role of REM duration in working memory  performance48,49. While REM occurs in the 
middle of the night, other macrostructures are more likely to be effected by the fact that the MGH dataset is a 
clinical dataset. For example, for total sleep time (TST), multiple studies have shown a U-shape  relationship50–53 
where overly long or short TST is associated with worse cognition and TST between 6 and 8 h is associated with 
better cognition. However, the sleep architecture in the sleep lab may not reflect their habitual sleep given that 
participants are awoken around 6am and experience the “first-night effect” associated with sleep studies. This 
also affects wake after sleep onset, sleep efficiency, total time in bed, sleep latency and REM latency.

Goodness of fit. A goodness of fit test showed that SCI models for all cognitive composite scores and all but 
three subtest scores (picture vocabulary, working memory, and episodic memory) were not improved by adding 
age and sex features. This suggests that SCI models capture changes in neurocognitive health related to age and 
sex via features of brain activity during sleep.

EEG electrodes used in the SCI models. As shown in Table 3, the SCI model trained using central EEG 
electrodes performs best. This could be explained by the top features: the delta band power during N3 is highest 
at the central location, therefore the delta-to-theta power ratio during N3 at the central location is the most pre-
dictable. Similarly, the spindles at the central electrodes are the so-called fast spindles, which have been shown 
to correlate with cognition more strongly than slow spindles at frontal  electrodes54.

External validation. We investigated whether SCI designed for the three proposed measures of cogni-
tion were indicative of performance on the WMS in the SHHS/FHS dataset and found significant correlations 
between SCI for fluid and total cognition and WMS scores. Both models resulted in comparable correlations, 
while the crystallized model had no correlation. Compared to our MGH dataset, the overall performance for 
total and fluid cognition SCI models was reduced in the SHHS/FHS dataset. This difference in performance is 
likely driven by differences in methodologies, such as the use of different neuropsychological batteries (the WMS 
selected does not include specific measures of processing speed or working memory), the larger gap between 
neuropsychological and polysomnography exam dates (SHHS/FHS ≤ 1095 days; MGH ≤ 40 days), and the dif-
ference in the average age of the two cohorts (SHHS/FHS: 62 years; MGH: 49 years). Sex was evenly divided for 
both cohorts, while the level of education could not be compared due to different methods of capturing educa-
tion levels.

Limitations. Our study has several limitations, one of which is selection bias. As the study was offered only 
to those undergoing a PSG for suspected sleep disorders, participants likely had at least subjectively abnormal 
sleep. In addition, we did not control for medications. Therefore, the cohort would not be reflective of a healthy 
population. Participants also lacked racial (76% White) and socioeconomic diversity. As the single in-lab PSG 
setting is known to create the first-night effect, sleep for some participants may not represent typical sleep at 
home. Lastly, noise in the cognition scores may exist, as we did not control for the time of day when administrat-
ing the cognitive test battery or the time between PSG and cognitive assessment.
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Future directions. In future research, the night-to-night variability of SCI should be considered, as our 
previous work shows that the average night-to-night standard deviation in calculating BAI is 7.5 years, which 
can be reduced to less than 5 years by averaging consecutive  nights55. Because calculating SCI only requires two 
central electrodes, information on night-to-night variability can be conveniently captured using home-based 
EEG recording devices to improve the reliability of SCI measurements.

Additionally, although BA is commonly measured using magnetic resonance imaging (MRI)56, structural MRI 
scans remain costly, inaccessible to claustrophobic patients and those with metal implants, difficult to deploy 
or repeat, and do not measure functional status. Thus, sleep EEG-based brain age and health biomarkers may 
address some of these concerns due to the cost-effectiveness of EEG devices, the accessibility of home-based 
EEG recording devices, and the aging-associated changes in sleep  EEG57. To understand the potential benefit in 
clinical settings, future work is needed to evaluate this biomarker in a more diverse population with cognitive 
impairment with underlying neuropathologic changes.

Conclusion
Sleep cognitive indices (SCI) are correlated with measures of total and fluid cognition, while the brain age index 
(BAI) is correlated with measures of crystallized cognition. Key features contributing to the observed relation-
ships include delta-to-theta and delta-to-alpha band power ratios, kurtosis, spindle density, coupling between 
slow oscillations and spindles, and percentage of REM sleep. Further research is needed to improve the stability 
of SCI and to validate SCI as a brain health biomarker.

Data availability
The MGH dataset is available from the corresponding author upon reasonable request. The SHHS dataset is 
available from https:// sleep data. org/ datas ets/ shhs. The cognitive test results from the FHS (overlapping with 
SHHS) are available from https:// www. frami ngham heart study. org/.
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