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Preparation of novel Zn–Al layered 
double hydroxide composite 
as adsorbent for removal 
of organophosphorus insecticides 
from water
Nastaran Ghanbari  & Hossein Ghafuri *

In this work, a new and efficient composite LDH with high adsorption power using layered double 
hydroxide (LDH), 2,4-toluene diisocyanate (TDI), and tris (hydroxymethyl) aminomethane (THAM) 
was designed and prepared, which was used as an adsorbent to adsorb diazinon from contaminated 
water. The chemical composition and morphology of the adsorbent were evaluated using Fourier 
transform infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Energy 
dispersive X-ray (EDX) and Field emission scanning electron microscopy (FESEM) techniques. Also, 
the optimal conditions for adsorption of diazinon from water were determined by LDH@TDI@
THAM composite. Various parameters like the effect of adsorbent dosage, pH, concentration and 
contact time of diazinon were studied to determine the optimal adsorption conditions. Then, different 
isotherm models and kinetic adsorption were used to describe the equilibrium data and kinetic. 
Also, the maximum adsorption capacity is obtained when the pH of the solution is 7. The maximum 
adsorption capacity for LDH@TDI@THAM composite was 1000 mg/g at 65 °C and the negative 
values of ΔG indicate that the adsorption process is spontaneous. After that, studying the reusability 
of LDH@TDI@THAM composite showed that the removal of diazinon by LDH@TDI@THAM was 
possible for up to four periods without a significant decrease in performance.

Today, the widespread use of pesticides for pest control and agricultural development, as well as improper 
wastewater disposal has led to surface and groundwater pollution, hence removal and Adsorption from water 
resources is very important1–4. Chemical pesticides enter surface and groundwater sources through various 
means such as direct washing of pesticides, sewage disposal, agricultural drainage water, erosion and air, which 
threatens human health and the environment, thus leading to there has been considerable concern5–9.Various 
techniques that have been studied to remove pesticides from contaminated water include coagulation/floccula-
tion/sedimentation, membrane filtration, adsorption, and advanced oxidation processes, and biodegradation10–16. 
Each of these proposed methods is less considered due to disadvantages such as high investment costs, poor 
performance and secondary pollution and is used in a limited way in wastewater treatment17–19. Hence, absorp-
tion has received considerable attention because of simple efficiency, use on a large scale, regenerative capacity, 
and cost of removing contaminants from water20,21. Today, organophosphate pesticides are widely used around 
the world for pest control due to the ban on the use of organochlorine insecticides22,23. Organophosphate com-
pounds are one of the broad and diverse groups of toxic compounds that include pesticides. Organophosphate 
pesticides are relatively volatile and are very dangerous as neurotoxins to humans and animals. Diazinon with 
the formulation of O,O-diethyl O-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] phosphorothioate can be used 
as an organophosphate insecticide for eliminating flies and mites in a variety of plant and ornamental products 
in agriculture and home because of its low cost and high efficiency24–27. The World Health Organization (WHO) 
has classified it as a second-class pesticide in terms of toxicity28–30. Diazinon is one of the inhibitors of the enzyme 
acetylcholinesterase. Therefore, its removal from water resources is very important. The highest permissible 
concentration of this pesticide in drinking water is 0.1 µg/l, which is higher than this limit and has destructive 
effects on living organisms31.
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Diazinon can be removed from aqueous solutions by various methods such as biochemical decomposition32, 
membrane separation33, oxidation34, photocatalysis35 and adsorption36. Also, Among the various types of methods 
mentioned, adsorption due to simplicity, biocompatibility and high efficiency as a more appropriate method 
of removing diazinon from water sources has received much attention. Hence, in the past decades, various 
adsorbents such as magnetic materials37, carbon nanotubes38, silica particles39, organic porous polymers40 and 
nano-adsorbents41,42 have been reported to remove diazinon.

Two-dimensional nanomaterials of layered double hydroxides (LDHs) with sheet-like structures due to their 
various desirable properties have many applications in various fields43–50. LDHs as a new and widely used class 
of natural or synthetic anionic mineral layered nanomaterials with the formula [M2+

(1−x) M3+
(x) (OH)2]x+ An−

x/n. 
yH2O where M2+ is a divalent metal ion (Zn2+, Cu2+, Mg2+, etc.), M3+ is a trivalent metal ion (V3+, Ga3+, Al3+, 
etc.), and An is an anion. The charge density of LDH layers (CO2

3−, NO−
3, Cl−) is x = M3+/M2+  + M3+, which is 

between 0.2 and 0.33 for pure LDH47,51.
Adsorbents based on layered double hydroxide (LDH) have provided a new path for the design and prepara-

tion of new adsorbents for the degradation of pollutants52,53. These adsorbents because of their very good physical 
and chemical properties, adjustable interlayer distance, high anion exchange capacity, wide light absorption range, 
special layer structure, ease of synthesis, low cost and recyclability have special place among the adsorbents54.

Therefore, in this work, according to the mentioned contents about the importance of removing diazinon 
insecticide from aqueous solutions, an efficient and reusable adsorbent with good adsorption capacity was 
designed and prepared. Also, a facile approach is used to fabricate an environmentally-friendly composite adsor-
bent comprising LDH and organic compounds for the removal of organophosphate insecticide contaminants 
(e.g. diazinon). The components of this novel composite as absorbent include tris(hydroxymethyl)aminomethane 
(THAM) grafted on the surface of LDH by organic bridges (2,4-toluene diisocyanate). THAM and 2,4-toluene 
diisocyanate (TDI) groups placed on the surface and between the LDH layers have increased the adsorption 
capacity on the LDH surface by increasing the functional groups effective (NH2, OH, and aromatic rings) in 
diazinon absorption. Hence, the composite prepared (LDH@TDI@THAM) here was used as a strong adsor-
bent with high adsorption capacity to remove diazinon insecticide from aqueous solutions. The performance 
of the synthesized nanocomposite has been investigated by changing various factors such as dye concentration, 
removal temperature, pH, adsorbent dose, and adsorbent recyclability. The isotherms and adsorption kinetics 
of fabricated composite have been also investigated to show the effect of LDH@TDI@THAM composite on the 
adsorption of diazinon.

Results and discussion
LDH@TDI@THAM composite characterization.  The successful synthesis of LDH@TDI@THAM 
composite was confirmed by different techniques such as FTIR, EDX, XRD, FESEM, and TGA.

Figure 1 shows FTIR spectra obtained for both the Zn–Al LDH and LDH@TDI@THAM composite. The 
adsorption band at 3425 cm−1 related to the stretching vibration of O–H bond (Fig. 1a). The adsorption bands at 
1616 and 1356 cm−1 are related to the bending vibration of H–O–H in water and interlamellar nitrate anions. The 
absorption bands between 879 and 475 cm−1 are attributed to the vibration of M–O bonds (M can be Al or Zn)55.

The FTIR spectrum of LDH@TDI@THAM composite is shown in Fig. 1b. The band at 3328 cm−1 corresponds 
to the vibration of the OH in LDH, and THAM while the band at 2973 cm−1 is related to the stretching vibration 
of C–H bond in THAM. In addition, the adsorption bands at 1735 cm−1 and 1654 cm−1 can be attributed to the 
stretching vibration of carbonyl in ester and amide groups in the composite, respectively. The bands between 
1036 and 559 cm−1 belong to the Metal-O and Al–OH bonds.

Figure 1.   FTIR spectra obtained for (a) Zn–Al LDH, and (b) LDH@TDI@THAM composite.
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Figure 2 shows the EDX analysis of LDH@TDI@THAM composite, in which the presence of elements C 
(52.40%), O (26.39%), N (12.81%), Al (4.28%) and Zn (4.12%) well proves the formation of the composite.

As can be seen, The XRD patterns of Zn–Al LDH and LDH@TDI@THAM composites are presented in Fig. 3. 
Also, Fig. 3a, there are symmetrical and sharp reflections at 2θ of 14.80°, 17.55°, 24.04°, 31.25°, 35.59°, 39.30°, 
47.75°, 57.99°, and 63.01°, respectively, which determine the structure of Zn–Al LDH56.

In addition, The XRD pattern of LDH@TDI@THAM composite is shown in Fig. 3b, which approves the exist-
ence of Zn–Al LDH along with other components of the prepared composite. The peaks related to Zn–Al LDH 
can be clearly seen at 12.80°, 19.14°, 26.47°, 29.98°, 36.27° and 60.54° which is the displacement of the peaks due 
to its composite with THAM. The well-known amorphous halo at 2θ = 20–30° clearly confirms the amorphous 
nature of THAM in the synthesized composite.

FESEM images of Zn–Al LDH and LDH@TDI@THAM composites are shown in Fig. 4. As can be seen 
FESEM images Zn–Al LDH shows regular and stacked hexagonal plates (Fig. 4a and b). In addition, images c–f 
show the morphology of the prepared composite. this images can clearly be seen to increase the diameter of the 
composite plate compared to raw LDH. Therefore, due to the placement of other components of the composite 
next to the LDH, the final structure has been created in the form of irregular plates with a larger diameter. This 
irregularity and increase in diameter can indicate that the composite has been prepared successfully.

Using TGA analysis, the thermal stability of LDH@TDI@THAM composite was investigated (Fig. 5). TGA 
curve shows two weight reductions in the region of 100–150 °C and 200–480 °C, the first decrease is related to 
the removal of water and solvent molecules absorbed between the layers and the surface of the composite. Also, 
the second reduction that occurred in the region of 200–480 °C is related to the decomposition of the organic 
parts of the prepared composite structure. In addition, the curve from the temperature of 480 °C has a constant 
slope, which is related to the mineral parts (Zn–Al LDH) of the composite.

Adsorption experiments.  Experiments were performed for checking the effect of important adsorption 
parameters including concentration, adsorbent dose, temperature, time, and pH on diazinon pesticide adsorp-
tion in LDH@TDI@THAM composite. After performing the desired tests, filtration was used to remove the 

Figure 2.   EDX spectra of LDH@TDI@THAM composite.

Figure 3.   XRD patterns of (a) Zn–Al LDH, and (b) LDH@TDI@THAM composite.
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adsorbent from the aqueous solution. The maximum absorbance of diazinon was considered as the absorbance 
value. Diazinon concentration was checked using UV–vis spectrophotometer. The elimination efficiency and the 
adsorption capacity (qe) (mg/g) of diazinon were studied by Eqs. (1) and (2):

diazinon concentration (Co (mg/L)), equilibrium concentration of diazinon (Ce (mg/L)) value of sorbent (W 
(mg)) and volume of diazinon solution (V (L)).

Effect of concentration.  Next, to find out the optimal concentration of diazinon, 1 mg of absorbent was 
added to 25 mL of solution having various concentrations of diazinon (10–50 mg/L) with pH = 7 at 25 °C for 
60 min. Afterward, filtration was applied to separate the adsorbent from the solution. The absorption was ana-
lyzed by using UV–vis spectrophotometer at wavelength of 247  nm. The obtained values for the maximum 
absorption showed that the concentration of 40  mg/L can be considered as the optimal concentration for 
diazinon absorption (Fig. 6).

(1)Removal % =
(C0 − Ce)

C0
× 100

(2)qe =
V(C0 − Ce)

W

Figure 4.   FESEM images of Zn–Al LDH (a and b) and LDH@TDI@THAM composites (c–f).
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Effect of adsorbent dose.  Different amounts of the adsorbent (1–9  mg) were used to investigate the 
absorption of diazinon pesticide in the presence of LDH@TDI@THAM composite. As shown in Fig.  7, the 
adsorption capacity of diazinon decreases when the amount of the adsorbent increases from 1 to 9 mg. There-
fore, this decrease in the adsorption capacity of diazinon by LDH@TDI@THAM composite is due to the accu-
mulation of adsorbent particles, followed by less access to the active sites of the adsorbent. Thus, by increasing 
the value of LDH@TDI@THAM composite, the number of empty sites available for diazinon absorption, hence, 
leads to a decrease in diazinon absorption.

Effect of temperature.  In various temperatures (25, 40, 65, 80, and 90 °C), the effect of temperature on 
capacity of Zn–Al LDH composite for diazinon adsorption was investigated (Fig. 8). As can be seen in Fig. 8, 
adsorption capacity decreases by increasing the temperature from 25 to 40  °C. At temperatures higher than 
40 °C, the adsorption capacity further decreases, indicating the exothermic nature of diazinon adsorption on the 
LDH@TDI@THAM composite adsorbent.

Effect of time.  Adsorption kinetics of diazinon absorption with an optimal amount of adsorbent (i.e., 1 mg) 
at pH 7 was investigated at different times (15, 30, 60, 90, and 120 min). Figure 9 shows in equilibrium time 
(60 min), diazinon has the highest adsorption capacity owing to the presence of more vacancies on the LDH@
TDI@THAM composite surface. Also, with the time increases from 60 to 120 min, the adsorption capacity of 
diazinon decreases. This reduction in absorption is probably due to the formation of a single layer of diazinon on 
the LDH@TDI@THAM composite surface. In addition, it is possible that this decrease is due to insufficient free 
space for absorption after equilibrium is reached. It can be seen that the adsorption capacity increases by further 
increasing the adsorption time from 15 to 60 min. Therefore, 60 min was chosen as the optimal contact time.

Influence of solution pH.  Figure 10 shows the dependence of diazinon absorption on the pH of the solu-
tion. Diazinon absorption was measured at different pH (1–9) to determine the optimal pH value. As can be 

Figure 5.   TGA curve of the LDH@TDI@THAM composite.

0

200

400

600

800

1000

1200

1400

5 15 25 35 45 55

Initial concentrations (mg/L) 

Q
 (m

g/
g)

Figure 6.   Effect of concentration for the adsorption of diazinon (C0 = 10–50 mg/L, pH = 7, T = 25 °C, m = 1 mg, 
t = 60 min).
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seen, the maximum adsorption capacity is obtained when the pH of the solution is 7. Also, decreasing or increas-
ing the pH from 7 will decrease the absorption capacity.

Kinetics study.  Diazinon absorption kinetics was investigated in the presence of 1 mg of adsorbent, con-
centration 40 mg/L, time 60 min, temperature 40 °C, and pH 7. Stirring of the mixture was performed for 15, 30, 
60, 90, and 120 min. In addition, the solutions were filtered to confidence the absence of adsorbents. For analyz-
ing the kinetic data of diazinon adsorption, pseudo-first-order and pseudo-second-order models were applied 
according to Eqs. (3) and (4), respectively.
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Figure 7.   Effect of the amount of the adsorbent on the diazinon adsorption.
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Figure 8.   Effect of temperature on the diazinon adsorption.
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where k1 (1/min) is the first-order adsorption kinetic, k2 (g/mg.min) is the second-order adsorption kinetic, 
qt (mg/g) is the adsorption capacity, and qe (mg/g) is the adsorption capacity in time. Various kinetic models 
related to diazinon adsorption are summarized in Fig. 11 and Table 1. The correlation coefficient (R2) of pseudo-
first-order (a) and pseudo-second-order models (b) for LDH@TDI@THAM composite was 0.9956 and 0.9988, 
respectively. Therefore, the results show that the adsorption of diazinon on LDH@TDI@THAM composite fol-
lows the pseudo-second-order kinetic model.

Adsorption isotherms.  Freundlich (Eq.  5), Langmuir (Eq.  6), and Temkin (Eq.  7) isotherms were also 
applied for more check the diazinon adsorption on LDH@TDI@THAM composite.

(3)log(qe − qt) = logqe −

(

K1

2.303

)

t

(4)
t

qt
=

1

K2q2e
+

(
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Figure 10.   Effect of pH for the adsorption of diazinon (C0 = 40 mg/L, pH = 7, T = 25 °C, m = 1 mg, t = 60 min).
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Figure 11.   Kinetics of diazinon adsorption by LDH@TDI@THAM composite: pseudo-first-order (a), and 
pseudo-second-order (b) models.
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Ce (mg/L) is the diazinon concentration, qe (mg/g) is the adsorption capacity of the diazinon in optimal 
conditions, n and KF (mg/g) are Freundlich constants, AT is the equilibrium binding constant (L/mg) and B is 
the Temkin constant.

Freundlich, Langmuir, and Temkin isotherms for diazinon adsorption on LDH@TDI@THAM composite 
are compared in Fig. 12. It can be seen that Freundlich isotherm shows higher correlation coefficient (R2) than 
Langmuir and Temkin isotherms, which indicates that the diazinon adsorption on the LDH@TDI@THAM 
composite is more compatible with the Freundlich isotherm. Also, the maximum adsorption capacity at 40 °C 
was 1000 mg/g (Table 2).

Thermodynamic investigation.  The adsorption mechanism was further studied by calculating different 
thermodynamic parameters (ΔS°, ΔH°, and ΔG°) for diazinon adsorption on LDH@TDI@THAM composite 
using Eq. (7) and Eq. (8).

where T (K) is the temperature and R is the gas constant. Figure 13 and Table 3 briefly show the thermodynamic 
parameters related to diazinon adsorption in LDH@TDI@THAM composite. The obtained results clearly confirm 
the exothermicity of the diazinon adsorption process on the LDH@TDI@THAM composite (ΔH° = − 4.157 kJ/
mol). This value for ΔH° confirms physical adsorption of diazinon on LDH@TDI@THAM composite. Also, the 
value obtained for ΔS° is indicative of high tendency of LDH@TDI@THAM composite for diazinon adsorption.

Adsorption mechanism.  Figure 14 shows the absorption mechanism of diazinon pesticide removal using 
LDH@TDI@THAM composite. It is evident that the structure of the LDH@TDI@THAM composite contains 
three functional groups: OH, NH, and aromatic ring. Hence, the adsorption of diazinon may be due to hydrogen 
bonding between amine groups and electron-rich oxygen and electrostatic interaction. Also, the LDH@TDI@
THAM composite contains benzene rings that can form π–π interactions with the benzene ring of diazinon.

Recycling studies.  Reusability and stability for adsorbent materials during the adsorption process is an 
important factor. Thus, to investigate the reusability of LDH@TDI@THAM composite to remove diazinon in a 
mixture of NaCl (0.1 M) and HCl (0.1 M) as a detergent agent. For this reason, a mixture of NaCl (0.1 M) and 
HCl (0.1 M) was used to wash the LDH@TDI@THAM composite, followed by drying at 80 °C for 5 h. Therefore, 
according to Fig. 15, reusability of the LDH@TDI@THAM composite was investigated for four consecutive peri-
ods. XRD pattern and FESEM images of LDH@TDI@THAM composite after adsorption four periods (Figs. 16 
and 17).

The diazinon adsorption capacity of LDH@TDI@THAM composite is compared in Table 4 with other adsor-
bents reported previously. The unique characteristics of LDH@TDI@THAM composite including simple prepa-
ration method, reusability, low cost, and high adsorption capacity have made this adsorbent superior to other 
adsorbents reported previously.

(5)lnqe = lnKF +

(

1

n

)

lnCe

(6)
Ce

qe
=

1

KLqm
+

1

qm
Ce

(7)qe = BTln(KF)+ BTlnCe

(8)lnKd =
�S

R
−

�H

RT

(9)�G◦
= �H◦

− T�S◦

Table 1.   Kinetic parameters for diazinon adsorption on LDH@TDI@THAM composite.

Models LDH@TDI@THAM composite

Pseudo-first-order

qe (mg/g) 70.79

k 0.02

R2 0.9956

Pseudo-second-order

qe (mg/g) 1000

k 0.001

R2 0.9988
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Figure 12.   (a) Langmuir, (b) Freundlich, and (c) Temkin isotherms obtained for diazinon adsorption on 
LDH@TDI@THAM composite.

Table 2.   Parameters of Freundlich and Langmuir isotherms for diazinon adsorption on LDH@TDI@THAM 
composite.

Models Parameters LDH@TDI@THAM composite

Langmuir

qmax (mg/g) 1000

KL 0.181

R2 0.9859

Freundlich

Kf 200.056

n 2.13

R2 0.9981

Temkin

R2 0.9811

B 203.11

AT 2.066
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Table 3.   Thermodynamic values for diazinon adsorption on LDH@TDI@THAM composite.

Adsorbent ΔH° (kJ/mol) ΔS° (J/mol-K)

ΔG° (kJ/mol)

298 313 338 353 368

LDH@TDI@THAM composite − 4.15 − 28.51 − 3.88 − 3.87 − 3.84 − 3.83 − 3.81
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Experimental
Materials and methods.  All chemicals and solvents used were purchased from Aldrich or Merck. LDH@
TDI@THAM composite was characterized by FT-IR (Shimadzu 8400 s), EDX (Numerix DXP-X10P), FESEM 
(TESCAN-MIRA3), and TGA (Bahr Company STA 504). X-ray diffraction (XRD) patterns of the composite 
were recorded on TW 1800 diffractometer (λCuKa = 1.54050 Å).
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Figure 15.   Adsorption–desorption isotherms obtained for diazinon adsorption on the LDH@TDI@THAM 
composite.
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Figure 16.   XRD patterns of reusability LDH@TDI@THAM composite.

Figure 17.   FESEM images of reusability LDH@TDI@THAM composites.
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General procedure for preparing Zn–Al LDH.  LDH was prepared via urea-assisted coprecipitation 
procedure59,60.In a glass flask (200 mL), Zn(NO3)2.6H2O (2.56 g) and Al(NO3)3.9H2O (1.87 g) in aqueous urea 
solution (3 M, 100 mL) stirred at 100 °C for 12 h. Then, the temperature was reduced to 94 °C and kept in the 
aging mode for 12 h. Eventually, the prepared Zn–Al LDH was separated by centrifuging and then washed with 
deionized water to reach pH 7. Then it was dried at 80 °C for 24 h.

Preparation of LDH@TDI@THAM composite.  First, Tris(hydroxymethyl)aminomethane (THAM, 
1 g) was dispersed in toluene (10 mL). Then2,4-toluene diisocyanate (TDI, 1.18 mL) was added and stirred at 
room temperature for 24 h under N2 atmosphere.In the following, Zn–Al LDH (0.5 g) was added and stirred at 
room temperature for another 24 h. Finally, the LDH@TDI@THAM composite was centrifuged, then washed 
with H2O and toluene, finally dried at 85 °C to 18 h (Fig. 18).

Conclusions
In this work, LDH@TDI@THAM composite was prepared to remove diazinon from aqueous solutions. Also, the 
structure of the prepared adsorbent was investigated by different analyzes such as XRD, FTIR, EDX, TGA, and 
FESEM. LDH polymer composite as adsorbent showed a high affinity to absorb diazinon molecule. Moreover, 
kinetic studies have shown that diazinon adsorption on LDH@TDI@THAM composite fit the pseudo-second-
order model. Also, the obtained data confirmed the suitability of the Freundlich isotherm model for diazinon 
adsorption by LDH@TDI@THAM composite. The maximum capacity obtained for LDH@TDI@THAM com-
posite was 1000 mg/g. The thermodynamic data also confirmed the exothermic behavior of adsorption on LDH@
TDI@THAM composite.

Table 4.   compares the diazinon adsorption ability of LDH@TDI@THAM composite with other adsorbents 
reported previously.

Entry Adsorbent Adsorption capacity (mg/g) References

1 NH4Cl-induced activated carbon 250 1

2 clay/GO/Fe3O4 7.38 57

3 Fe3O4-gg-montmorillonite 80 36

4 MNPs-AGENVC-CD 34.24 58

5 LDH@TDI@THAM composite 1000 This work

6 Zn–Al LDH 420 This work
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Figure 18.   Preparation of LDH@TDI@THAM composite.
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